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Abstract

The pursuit of general intelligence has traditionally centered on external objectives: an
agent’s control over its environments or mastery of specific tasks. This external focus,
however, can produce specialized agents that lack adaptability. We propose representa-
tional empowerment, a new perspective towards a truly agent-centric learning paradigm
by moving the locus of control inward. This objective measures an agent’s ability to
controllably maintain and diversify its own knowledge structures. We posit that the
capacity—to shape one’s own understanding—is an element for achieving better “pre-
paredness” distinct from direct environmental influence. Focusing on internal repre-
sentations as the main substrate for computing empowerment offers a new lens through
which to design adaptable intelligent systems.

1 The challenges of task- and environment-centric learning

“Intelligence is what you use when you don’t know what to do.” — Jean Piaget

Reinforcement Learning (RL) has made great progress in training agents to excel at narrow tasks by
maximizing rewards (Sutton & Barto, 1998). Yet as termed by Abel et al. (2024), its core dogmas—
the reward hypothesis (all goals as reward maximization) and the environment spotlight (focus on
modeling environments over agents)—reveal a tension. An agent optimized for a single task reward
in a well-defined environment often struggles when new tasks not incentivized by its original training
(Ringstrom, 2022; Alet et al., 2020). Given that agents, over a lifetime, will have to learn many
aspects of the world, and since we cannot simulate all possible worlds for them to learn in, the
current learning paradigm makes it hard to achieve broadly applicable intelligence—a high level of
preparedness for unforeseen challenges.

Addressing the limitations suggests a new look beyond purely external task objectives and envi-
ronmental designs. A promising direction involves a transition from an external task-centric and
environment-centric viewpoint to a more internal agent-centric perspective (Singh et al., 2009). This
agent-centric view prioritizes the development of internal representations that allow an agent to un-
derstand, adapt, and act effectively even when external objectives are novel or underspecified.

The shift naturally raises a further question: by what principle should these internal representations
be managed to best prepare an agent for future challenges? The information-theoretic concept of
empowerment (Klyubin et al., 2005; Salge et al., 2014; Lidayan et al., 2025; Mantiuk et al., 2025)
offers a promising but underspecified framework. Empowerment quantifies an agent’s potential
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to influence its future, often measured by the range and controllability of reachable states in the
environment. This inherent link to having diverse options makes it a good candidate for formalizing
“preparedness”. However, existing approaches to empowerment still focus on an agent’s control
over external environmental states. Instead, a truly agent-centric view invites us to redirect this lens
inward. If an agent’s capacity is shaped by its internal knowledge, then its ability to control and
diversify these internal representations could be a more direct route to robust adaptability.

Here, we offer a new perspective towards agent-centric learning. By applying empowerment to
the agent’s internal representations, instead of asking which state in the external environment one
should reach, we ask what kind of internal representational structures should an agent form
and curate to maximize its “preparedness” for a diverse and unpredictable future? This focus
suggests that lasting adaptability may arise more profoundly from an agent’s mastery over its own
evolving understanding than from its immediate capacity to alter the external world.

1.1 Extrinsic reward maximization for task-centric learning

A key tenet of RL is that “all of what we mean by goals and purposes can be well thought of as max-
imization of the expected value of the cumulative sum of a received scalar signal (reward)” (Sutton
& Barto, 1998). This statement, coupled with the view of intelligence as primarily goal achieve-
ment (McCarthy, 1998), underpins the influential “reward-is-enough” hypothesis: that maximizing
reward is a sufficient objective for developing general intelligence (Silver et al., 2021).

In this formulation, the reward signal is often a scalar feedback to guide the agent learning in an
environment, indicating the desirability of its actions (or states). Traditionally, the reward comes
externally from the environment and is predefined by the designer, about a task in their mind to be
solved. The agent’s objective then becomes finding a solution (policy) that maximizes the reward.

However, this task-centric learning (when rewards are tied to specific tasks) faces several problems.
It is challenging to craft rewards that precisely capture intended goals without incentivizing undesir-
able “reward hacking” (e.g., a cleaning robot hiding a mess instead of collecting it; Krakovna et al.,
2020; Skalse et al., 2022). Even if the reward function is not correlated with any unintended objec-
tives, it may lack the expressive power to represent all desirable orderings over policies or complex
goal structures (Abel et al., 2021; Bowling et al., 2023). This can lead to “steady-state type” failures,
where agents repeatedly attempt an impossible action (e.g., phasing through a wall) if that naively
maximizes a flawed reward signal (e.g., given the goal of going to the next room).

Thus, while effective for achieving specific tasks in well-defined environments, this exclusive re-
liance on external reward maximization fails to guide the development of the generalizable internal
representations essential for long-term adaptability in open-ended problems (Hubinger et al., 2019),
such as autonomous robots in unpredictable settings or AI systems for creative discovery.

1.2 Intrinsic motivation offers a band-aid fix towards environment-centric learning

The challenge of developing agents that can generalize beyond training tasks led to intrinsic mo-
tivation—task-agnostic learning objectives that encourage exploration and skill acquisition. These
internal rewards, generated by the agent itself, are typically based on principles like curiosity (seek-
ing novelty or surprise; Pathak et al., 2017; Achiam & Sastry, 2017), learning progress (improving
a model of the environment; Houthooft et al., 2016), or competence (achieving self-set goals; Colas
et al., 2022).

While intrinsic motivation has demonstrably improved learning about the current environment, it
remains fundamentally environment-centric in two key ways. First, its objectives are inherently tied
to the external world. For example, novelty seeking encourages visiting all environmental states, and
learning progress drives the formation of a more accurate transition model of the current environment
(Modirshanechi et al., 2022). The focus, while broader than a single task, remains on “what is out
there to be known or done”. This can lead to overfitting to the specifics of the current environment.
Second, intrinsic motivation functions by augmenting or replacing the external reward signal. The
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agent’s learning still aims to maximize a (now potentially composite) scalar reward. While internal
representations are learned and refined in this process, they are developed to the extent that they
support this reward-seeking behavior, not necessarily because they possess inherent qualities, e.g.,
high compositionality, that would directly help future learning in different contexts.

Thus, while intrinsic motivation pushes agents beyond myopic exploitation of external rewards and
encourages more thorough engagement with their environment, it does not fully address the chal-
lenge of building internal cognitive structures designed for lasting adaptability (Abel et al., 2018).
The resulting representations, though often richer, are still predominantly shaped by environmental
regularities, which may not generalize to new settings.

1.3 Empowerment as a general-purpose objective

Given that existing reward design schemes (both extrinsic and intrinsic) remain tethered to prede-
fined environments, how can an agent develop more general-purpose adaptability? One promising
direction lies in identifying instrumentally convergent goals (Bostrom, 2012)—rewards that are ben-
eficial across final goals in a wide range of environments and tasks (Omohundro, 2018). Intuitively,
for vastly different long-term objectives, from manufacturing paperclips to exploring galaxies, cer-
tain intermediate goals are consistently pursued not because they are inherently valuable, but because
they are instrumental stepping stones. For example, any society is likely to develop highly efficient
energy transportation, e.g., superconducting cables. This is not because conductivity is a terminal
goal for society’s values, but because energy is a powerful enabler for nearly any non-trivial goal.

The concept of empowerment, first introduced by Klyubin et al. (2005), offers an information-
theoretic way to quantify such a general-purpose objective. Empowerment measures an agent’s
capacity to reliably bring about diverse futures regardless of the final goal. Formally, we can de-
fine the traditional, environment-centric empowerment (EnvEmp) as the degree of control an agent
has over its external environment through the channel capacity (mutual information I) between its
sequence of actions a1:T and the resulting environmental state s′ from its current state s:

EnvEmp(s) = max
π(a1:T )

I (s′; a1:T | s) (1)

High empowerment signifies that the agent’s actions can reliably lead to many distinct environmental
states, a capacity that serves as a proxy for preparedness. However, environmental empowerment,
while a step towards general-purpose objectives, inherits some limitations previously discussed. By
focusing on control over externally defined environmental states s and s′, it remains susceptible
to the “frame-of-reference” problem (Clancey, 2014). If the definition of these states is imposed
externally or is not learnable by the agent, then maximizing environmental empowerment might still
lead to specialization to the idiosyncrasies of that particular representation (Mantiuk et al., 2025).

This brings us to the central thesis of this paper: General intelligence and adaptability may require
shifting the locus of empowerment from the external environment to the agent’s own internal rep-
resentations. The critical capacity might not just be to control the world, but to control, adapt, and
expand the very way the agent models and understands the world.

2 Agent-centric representational empowerment

2.1 From environmental to representational states

Environmental empowerment has been shown to explain human behavior that we value the potential
of diverse options (Brändle et al., 2023; Du et al., 2023), although it is subject to the environmental
dynamics (Mantiuk et al., 2025). Here, we define agent-centric empowerment on agent’s inter-
nal representational structures that maximizes its “preparedness”, which in this sense, refers to its
capacity to generate or reconfigure its knowledge to effectively address unforeseen tasks.

Consider a Minecraft world (Hafner, 2021), where an agent driven by environmental empowerment
aims to maximize its control over immediate surroundings. This may translate to building a wooden
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fortress optimized for the local terrain in a forest. However, this specialization becomes suboptimal
if the agent moves to a barren desert. In contrast, an agent driven by representational empowerment
focuses on the knowledge of building techniques and material properties, instead of investing all re-
sources into one perfect base. When the challenge changes to woodland, skyblock or trial chambers,
it can craft new shelters or tools from available items—without needing prior exposure.

Thus, rather than entirely re-defining empowerment, we re-frame the pertinent states involved. Our
formulation follows the spirit of the “bitter lesson” (Sutton, 2019): instead of relying on fixed
human-specified knowledge, we propose that agents explicitly learn to build their own knowledge
by making the dynamics of representation learning the primary target of optimization.

The Minecraft analogy can generalize to abstract knowledge and naturally incorporates the notion
of resource constraints (Lieder & Griffiths, 2020). An agent operates under both memory costs,
associated with storing its knowledge library Zk, and computational costs. Representational em-
powerment helps mediate the trade-off between them. Computational costs can be understood as
twofold: the “offline” effort required for the curator to build and maintain an empowered library,
and the “online” effort for the executor to adapt that library to solve a new task. By investing more
upfront in offline computation to build a library (at a certain memory cost), the agent can amortize
future learning, reducing the online computation needed to solve subsequent problems.

2.2 Potential of diverse and controllable representations internally

Let us assume the agent learns over a sequence of tasks. Each task τk ∈ {τ1, τ2, . . .} is a Markov
Decision Process (MDP) (Sk,Ak,Pk, Rk), with environmental states Sk (e.g., the observed blocks)
and actions Ak (e.g., chopping a tree). The agent maintains an internal library of representations,
Zk (e.g., design of diamond axe), accumulated from prior tasks τ1, . . . , τk. Upon engaging with task
τk+1, it may acquire a new piece of knowledge Ẑk+1 (e.g., construction of bamboo planks).

Here we use meta reinforcement learning (Botvinick et al., 2019) to explain the two components in
learning: 1) A meta-level curator responsible for evolving the internal representational library Zk,
learned from past tasks τ1:k to maximize its representational empowerment. 2) A task-level executor
that uses the curated representation Zk to find solutions for the following specific task τk+1.

2.2.1 Curator: representational empowerment maximization

We frame the curator’s decision-making at the meta level. At each step k, the curator observes a
state sck = (Zk−1, Ẑk)—its current library and new knowledge—and selects an integration action
ack ∈ Ac. These actions, e.g., selecting, composing, or pruning, produce the next library, Zk =

ack(Zk−1, Ẑk). The curator’s goal is to maximize an intrinsic reward rck(Zk) = RepEmp(Zk), the
representational empowerment of the resulting library Zk (defined below in Eq. 2).

This reward RepEmp(Zk) is calculated via multiple simulated roll-outs. The agent imagines
applying a sequence of modification operations, ω1:T

k = {ω1
k, . . . , ω

T
k } drawn from a set of

available operations Ω, to Zk. Using ω1:T
k = ωk for simplicity, this yields a modified library

Z ′
k ∼ p(Z ′

k | Zk, ωk). Then RepEmp(Zk) is the channel capacity between these imagined opera-
tions and their outcomes, quantifying control over the agent’s own representational state:

RepEmp(Zk) = max
ωk∈ΩT

I(Z ′
k;ωk | Zk) (2)

Here, ωk is sampled from the ΩT , T -fold Cartesian product of Ω, and denotes an operation sequence
over T time steps. A high empowerment value, resulting as the reward for action ack, means the
library Zk is both diverse and controllable. The horizon T also reflects a computational budget for
how much Zk can be internally modified by the curator, or by the executor to adapt it later.

We aim to distinguish the high-level actions (ac), on how to update the library globally, from primi-
tive modification operations (ω). Operations ω are fine-grained transformations to update pieces of
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knowledge representation, e.g., the continuous interpolation of high-dimensional features, or sym-
bolic rules (e.g., mutation) for discrete modules, from Zk−1 and Ẑk.

Decomposing RepEmp(Zk), we can see better that it encourages libraries Zk that have the poten-
tial for diversity (i.e., can be modified into many distinct forms Z ′

k) and controllability (i.e., the
transformation cannot be arbitrary):

I(Z ′
k;ωk | Zk) = H(Z ′

k | Zk)−H(Z ′
k | Zk, ωk) (3)

The first term, H(Z ′
k | Zk), quantifies the diversity of representation Z ′

k reachable from Zk. Higher
diversity suggests Zk can be transformed into a wide range of different representations, potentially
useful for an as-yet-unknown task τn+1. The second term, H(Z ′

k | Zk, ωk), quantifies the average
uncertainty of the outcome Z ′

k given a sequence of operations ωk. A lower value implies that the
operations have more predictable effects, enabling precise control. This term favors representations
that are not only broadly transformable but also have controllable evolutions.

2.2.2 Executor: task-specific adaptation

Once the curator establishes an empowered representation Zk, the executor uses it for the next task
τk+1 in two potentially intertwined phases:

Representation tuning: the executor may first apply a bounded sequence of operations ω1:T ′

k to
mold the generic library into a task-tailored variant Z⋆

k . Because Zk was optimized for high adapt-
ability, a short horizon T ′ may suffice to reach a configuration beneficial for the new task.

Task completion: Using Z⋆
k (or Zk directly), the executor interacts with the environment to max-

imize extrinsic reward Rk+1. The executor can also interleave further operations (fine-tuning Z⋆
k )

with policy updates. For example, if a particular skill from Z⋆
k is almost effective but needs slight

adjustments, the executor can adjust it. This creates a use-improve cycle: observed task performance
provides feedback on which representational refinements are most beneficial, turning the curator’s
long-term investment into improved sample efficiency and asymptotic performance.

3 Example: empowerment through curating the program library

The representations Z are preferably symbolic (e.g., programs, objects) to support interpretable
representational operations, such as abstraction, composition (Rule et al., 2024; Ellis et al., 2021;
Zhou et al., 2024). We provide an example of how to instantiate representational empowerment
through symbolic programs (Sec. 3.1), which offer several advantages as a representational format
(e.g., compositionality and generalization; Lake et al., 2015; Rule et al., 2020).

Formally, we can define a space of program representations L where each program z ∈ L could be
a causal model (Icard, 2017), policies (Correa et al., 2025), values, or goals (Davidson et al., 2025)
forming the cognitive structure. For generality, each program contains a function term and param-
eters, e.g., play(instrument) has the function play and can have parameter violin which
is already highly abstract with typed parameters (type instrument). Drawing inspiration from
evolutionary algorithms and genetic programming (Forsyth, 1981), the representational operations
Ω can include: selection for saving effective programs, function-level crossover for combining
fragments from multiple programs to create new ones (O’Donnell et al., 2009), abstraction for
creating higher-level programs (Bowers et al., 2023), and parameter-level mutation for modifying
parameters of existing programs (Fränken et al., 2022).

3.1 Learning melodic programs

Consider an agent facing a sequence of tasks {τ1, τ2, . . .}. Each task τk requires memorizing and
playing a specific target melody, M target

k . For a task τk, the executor uses the current library Zk−1

to match the melody M target
k . Its actions can be primitive (e.g., add_note(C4)) or executing a
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program (e.g., repeat(C4, 2)). The executor receives a reward, Rk, based on the similarity
between its generated melody and the target. An empowered library Zk−1 would enable generation
more efficiently than add_note verbatim. When finishing τk, the curator might get a new melodic
fragment, Ẑk. This new program is a candidate for the library. The curator then selects an integration
action ack to produce the new library Zk = ack(Zk−1, Ẑk) guided by maximizing RepEmp(Zk).

Programs evolution. After exposure to some tasks (e.g., playing simple folk melodies), the library
Zk−1 contains: up/down(n, steps)(increases/decreases the pitch), repeat(pattern,
times). In a new task τk (e.g., playing chordal harmony and arpeggios), the agent learns
two new programs Ẑk, arpeggio(root, chord, direction) and sequence(note,
pattern). arpeggio generates an arpeggio starting from root, using notes from the chord
type (e.g., major, minor). sequence generates notes starting from note, following the pattern.

The agent can apply modification operations on these programs (Zk−1 and Ẑk). For example, the
agent recognizes that up and down are special cases of move(direction, n, steps) with
direction so it abstracts over them. The agent can combine, applying crossover over arpeggio
and repeat to create repeated_arpeggio(root, chord, direction, times).

3.2 Curating a library with regularized diversity

The agent curates its library Zk based on representational empowerment (Eq. 2). Rather than maxi-
mizing raw diversity (H(Z ′

k | Zk) in Eq. 3), the process balances two key principles: task relevance,
by integrating useful new programs (Ẑk), and controllable adaptability, by penalizing transforma-
tional uncertainty (H(Z ′

k | Zk, ωk)).

Task relevance as a filter. A newly synthesized program ẑ ∈ Ẑk (e.g., arpeggio derived from
task τ5) is considered for long-term integration into Zk−1, because it has proved usefulness within
the task τk. This task performance acts as an initial, pragmatic filter.

Avoiding a single nearly universal program. This term H(Z ′
k | Zk, ωk) in Eq. 3, which is

subtracted, quantifies the average ambiguity or lack of precision. Consider a representation Zk that
is overly flexible, if a program like generate_any_melody(latent) exists. It could be a
very large, unconstrained, but well-trained neural decoder mapping from a latent space to represent
melodies. Here, typical operations (e.g., mutation for small parameter perturbations) result in
highly wild and unpredictable changes to the melody produced. While it might theoretically be able
to produce any melody, p(Z ′

k | Zk, ωk) is diffuse and high, and the problem for the agent becomes
finding a way to choose from the latent space, in order to reliably arrive at the desired melody. Such
a representation can prevent the agent from effectively “sculpting” useful representations.

Potentially, after the agent evaluates which representations provide the most empowerment, it de-
cides to keep move, arpeggio, but discards the now-redundant up and down.

3.3 Comparing program libraries

We further illustrate how empowerment guides this by comparing potential libraries. For simplicity,
we assume two available representational operations Ω: crossover and mutation.

Diversity preference. Assume two melodic library candidates: ZA = {up,down} and ZB =
{move,repeat} (programs explained in Sec. 3.1). Each program can be applied with crossover
into M = 3 distinct variants by converting its style, rhythm, or articulation (e.g., up_staccato,
move_smooth, repeat_accelerando).

Modifications for the 2 programs in library ZA can lead to M2 = 9 distinct libraries Z ′
A (e.g.,

{up_staccato,down,repeat}). Though they are syntactically different, the functional diver-
sity might be less. Crossovers of up and down overlap because of the music octave. We estimate
that the 9 variants from up and down together yield approximately M + δ ≈ 6 effectively distinct
libraries, Neff(ZA) ≈ 6. So, RepEmp(ZA) = H(Z ′

A | ZA) ≈ log2(6) ≈ 2.59 bits.
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The library ZB also has 9 syntactically distinct libraries Z ′
B . Here move provides richer func-

tions because mutation can create higher-order structures considering parameter direction, e.g.,
move_staccato_rhythmic(rhythm_X, steps) (applies a rhythmic pattern to the move-
ment while having staccato). These 3 variants of move could provide at least 2 × M = 6 distinct
functional capabilities. Thus, Neff(ZB) is estimated as 6 × 3 = 18. So, RepEmp(ZB) = H(Z ′

B |
ZB) ≈ log2(18) ≈ 4.17 bits.

Controllability preference. Assume a new library candidate ZC = {neural_gen(latent),
repeat}. Here, neural_gen is a powerful neural melody generator. For neural_gen, sup-
pose there are 20 mutations (the size of the latent space for its parameter). Among them, outcomes
of 5 latents are predictable (ωpred) and unique. outcomes of 15 latents are unstable (ωunstable), having
equal chance of producing ‘style alpha‘ and ‘style beta‘. The diversity of Neff(ZB) ≈ 7 × 3 = 21,
and H(Z ′

C | ZC) ≈ log2(21) ≈ 4.39 bits which reflects high potential. There is a punishment
for the uncertainty that the policy considers 20 × 3 = 60 combinations, thus H(Z ′

C | ZC , ωC) =
(5×3×0)+(15×3×log 2 bit)

60 = 15
23 ≈ 0.75 bits. So, RepEmp(ZC) ≈ 4.39− 0.75 = 3.64 bits.

Decision and interpretation. The library ZB with the more abstract program (move) is more
empowered, RepEmp(ZB) > RepEmp(ZA) (4.17 > 2.59), because its components can be trans-
formed into a more functionally diverse set. The diversity of ZC(4.39) is actually higher than ZB

(4.17) because of a powerful general program neural_gen. However, when considering the pe-
nalization of uncontrollable mutations, i.e., those programs which require another search over pa-
rameter space, ZB is preferred.

4 Discussions

We propose an agent-centric learning paradigm, based on representational empowerment, in which
an agent maximizes its capacity to controllably diversify its internal knowledge, rather than the
external world. This framework offers a new direction for building adaptable agents while also
extending key ideas from AI, cognitive science, and evolutionary theory.

Knowledge cultivation in AI. From a continual learning perspective, an agent’s internal library Zk

is its evolving knowledge. Unlike standard Bayesian updating (e.g., Bayes-Adaptive MDPs main-
taining beliefs over MDPs) that aims to assimilate all new evidence Ẑk, representational empower-
ment guides a selective curation of Zk rather than updating beliefs based on a fixed parameterization
of past experiences (Bowling & Elelimy, 2025). The goal of curating a library for fast adaptation
is also conceptually related to meta-learning, e.g., Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017). MAML learns a parameter initialization that can be quickly fine-tuned to new tasks via
gradient descent. However, MAML’s meta-objective is only tied to performance on a distribution of
tasks. Representational empowerment, in addition, uses an intrinsic objective—the empowerment
of the library itself—to foster task- and environment-agnostic adaptability.

That said, operationalizing RepEmp(Zk) (Eq. 2) presents both key challenges but also promising
future directions. First, the framework’s effectiveness is sensitive to the (pseudo-)metric or kernel
used to measure distance in the representation space, which is important for computing entropy
terms H(Z ′

k | Zk) and H(Z ′
k | Zk, ωk). A purely syntactic metric might be brittle. A more

robust approach could define a functional metric, where the “distance” between two representations
is measured by the behavioral difference they produce when executed. This metric could even be
learned, for instance through contrastive methods, to capture a task-relevant notion of similarity.

Second, representational empowerment is sensitive to the predefined set of modification operations,
Ω. One direction is to treat the set of operations not as fixed, but as a dynamic, learnable component.
An agent could start with a set of primitive, cognitively-inspired operations (e.g., copy, compose,
abstract) and learn to construct more powerful macro-operations over time. This turns Ω into a
second-order library that co-evolves with the primary knowledge library Zk, creating a virtuous
cycle of cognitive growth and aligning with the idea of a shared “cognitive toolkit” discussed below.
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Information processing in cognitive science. Aligning with the perspective of resource rationality
in cognitive science (Lieder & Griffiths, 2020), representational empowerment exchanges computa-
tional costs with memory costs brought by the library Zk, which amortizes the learning effort. This
extends with classical information-theoretic objectives that can be agnostic to the cost of deriving
or searching for representations. For instance, frameworks like the Information Bottleneck (Tishby
et al., 2000), which compresses an input X to preserve information about a specific target Y , or
Predictive Information (Bialek et al., 2001), which captures past-future regularities, typically com-
press representations for a predefined data stream for “memory” regardless of any “computation”.
They are fundamentally about the efficient processing of sensory information. Here, we argue that
an agent’s long-term cognitive effectiveness may be better understood not just by how efficiently
it processes information about its environment, but by the adaptive potential it cultivates within its
own representational system.

Socio-cultural dynamics. In a multi-agent context, the set of representational operations Ω can
become a shared “cognitive toolkit”. Though agents may share the same physical world, their dif-
ferent goals, values, and learned world models mean that the “effective task” each agent faces and
the resulting representations are often unique (Molinaro & Collins, 2023; Witt et al., 2024). Two
agents in the same physical space can have divergent policies and interpretations of environmental
affordances. Consequently, directly transferring policies or internal representations from one agent
to another is often difficult, while the ability to exchange or co-develop these operations is crucial
for collective intelligence, just as human progress leverages shared conceptual tools (e.g., language,
mathematics; Wu et al., 2024). For example, effective education often focuses on problem-solving
methodologies (e.g., mathematical proof techniques like induction) rather than just rote memoriza-
tion of solutions to specific problems. Future work could explore how a population can collectively
discover and disseminate operations that enhance their collective representational empowerment,
forming a “cultural ratchet” for cognitive tools (Tennie et al., 2009).
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