
Published as a conference paper at ICLR 2024

PREDICTIVE, SCALABLE AND INTERPRETABLE KNOWL-
EDGE TRACING ON STRUCTURED DOMAINS

Hanqi Zhou1,2,4, Robert Bamler1,3, Charley M. Wu1,2,3∗, & Álvaro Tejero-Cantero1,2∗
1University of Tübingen, 2Cluster of Excellence Machine Learning, 3Tübingen AI Center, 4IMPRS-IS
{hanqi.zhou,robert.bamler,charley.wu,alvaro.tejero}@uni-tuebingen.de

ABSTRACT

Intelligent tutoring systems optimize the selection and timing of learning materials
to enhance understanding and long-term retention. This requires estimates of both
the learner’s progress (“knowledge tracing”; KT), and the prerequisite structure
of the learning domain (“knowledge mapping”). While recent deep learning
models achieve high KT accuracy, they do so at the expense of the interpretability
of psychologically-inspired models. In this work, we present a solution to this
trade-off. PSI-KT is a hierarchical generative approach that explicitly models
how both individual cognitive traits and the prerequisite structure of knowledge
influence learning dynamics, thus achieving interpretability by design. Moreover,
by using scalable Bayesian inference, PSI-KT targets the real-world need for
efficient personalization even with a growing body of learners and learning histories.
Evaluated on three datasets from online learning platforms, PSI-KT achieves
superior multi-step predictive accuracy and scalable inference in continual-learning
settings, all while providing interpretable representations of learner-specific traits
and the prerequisite structure of knowledge that causally supports learning. In
sum, predictive, scalable and interpretable knowledge tracing with solid knowledge
mapping lays a key foundation for effective personalized learning to make education
accessible to a broad, global audience.

1 INTRODUCTION

The rise of online education platforms has created new opportunities for personalization in learning,
motivating a renewed interest in how humans learn structured knowledge domains. Foundational
theories in psychology (Ebbinghaus, 1885) have informed spaced repetition schedules (Settles &
Meeder, 2016), which exploit the finding that an optimal spacing of learning sessions enhances
memory retention. Yet beyond the timing of rehearsals, the sequential order of learning materials
is also crucial, as evidenced by curriculum effects in learning (Dewey, 1910; Dekker et al., 2022),
where exposure to simpler, prerequisite concepts can facilitate the apprehension of higher-level
ideas. Cognitive science and pedagogical theories have long emphasized the relational structure
of knowledge in human learning (Rumelhart, 2017; Piaget, 1970), with recent research showing
that mastering prerequisites enhances concept learning (Lynn & Bassett, 2020; Karuza et al., 2016;
Brändle et al., 2022). Yet, we still lack a predictive, scalable, and interpretable model of the structural-
temporal dynamics of learning that could be used to develop future intelligent tutoring systems.

Here, we present PSI-KT, a novel approach for inferring interpretable learner-specific cognitive traits
and a shared knowledge graph of prerequisite concepts. We demonstrate our approach on three
real-world educational datasets covering structured domains, where our model outperforms existing
baselines in terms of predictive accuracy (both within- and between-learner generalization), scalability
in a continual learning setting, and interpretability of learner traits and prerequisite graphs. The paper
is organized as follows: We first introduce the knowledge tracing problem and summarize related
work (Sec. 2). We then provide a formal description of PSI-KT and describe the inference method
(Sec. 3). Experimental evaluations are organized into demonstrations of prediction performance,
scalability, and interpretability (Sec. 4). Altogether, PSI-KT bridges machine learning and cognitive
science, leveraging our understanding of human learning to build the foundations for automated
tutoring systems with broad educational applications.

∗Equal contribution. Code at github.com/mlcolab/psi-kt
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2 BACKGROUND

In this section, we begin by defining the knowledge tracing problem and then review related work.

2.1 KNOWLEDGE TRACING FOR INTELLIGENT TUTORING SYSTEMS

For almost 100 years (Pressey, 1926), researchers have developed intelligent tutoring systems (ITS) to
support human learning through adaptive teaching materials and feedback. More recently, knowledge
tracing (KT; Corbett & Anderson, 1994) emerged as a method for tracking learning progress by
predicting a learner’s performance on different knowledge components (KCs), e.g., the ‘Pythagorean
theorem’, based on past learning interactions. Here, we focus on the KT problem, with the goal of
supporting the selection of teaching materials in future ITS applications.

In this setting, a learner ℓ receives exercises or flashcards for KCs xℓ
n ∈ {0, 1, . . . ,K} at irregularly

spaced times tℓn, whereupon the performance is recorded, often as correct/incorrect, yℓn ∈ {0, 1}.
We can formalize KT as a supervised learning problem on time-series data, where the goal of
the KT model is to predict future performance (e.g., ŷN+1) given all or part of the interaction
history Hℓ

1:N :={xℓ
n, t

ℓ
n, y

ℓ
n}Nn=1 available up to time tℓN . As part of the process, a KT model may

infer specific representations of learners or of the learning domain to help prediction. If these
representations are interpretable, they can be valuable for downstream learning personalization.

2.2 RELATED WORK

We broadly categorize related KT approaches into psychological and deep learning methods.

Psychological methods. Focusing on interpretability, psychological methods use domain knowledge
to describe the temporal decay of memory (e.g., forgetting curves; Ebbinghaus, 1885), sometimes also
modeling learner-specific characteristics. Factor-based regression models use hand-crafted features
based on learner interactions and KC properties (e.g., repetition counts and KC easiness; Pavlik Jr
et al., 2009). While they model KC-dependent memory dynamics (Pavlik et al., 2021; Gervet et al.,
2020; Lindsey et al., 2014; Lord, 2012; Ackerman, 2014), they ignore the relational structure between
KCs. Half-life Regression (HLR; Settles & Meeder, 2016) from Duolingo uses both correct and
incorrect counts, while the Predictive Performance Equation (PPE; Walsh et al., 2018) models the
elapsed time of every past interaction with a power function to account for spacing effects. By using
shallow regression models with predefined features, these models achieve interpretability, but sacrifice
prediction accuracy. Latent variable models use a probabilistic two-state Hidden Markov Model
(Käser et al., 2017; Sao Pedro et al., 2013; Baker et al., 2008; Yudelson et al., 2013), representing
either mastery or non-mastery of a given KC. These models are limited to binary states by design,
do not account for learner dynamics, and for some, their numerous parameters hinder scalability.
Another probabilistic model, HKT (Wang et al., 2021) accounts for structure and dynamics by
modeling knowledge evolution as a multivariate Hawkes process. Close in spirit to our PSI-KT, this
approach tracks KC structure but lacks any learner-specific representations.

Deep learning methods. Deep learning methods use flexible models with many parameters to
achieve high prediction accuracy. However, this flexibility also makes it difficult to interpret their
learned internal representations. The first deep learning methods explicitly modeled sequential
interactions with recurrent neural networks to overcome the dependence on fixed summary statistics
in simpler regression models, with Deep Knowledge Tracing (DKT; Piech et al., 2015) pioneering the
use of Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997). A similar
architecture, DKTF (Nagatani et al., 2019) incorporated additional input features, whereas Shen
et al. (2021) proposed an intricate modular architecture aimed at recovering interpretable learner
representations, but neglecting KC relations. Structure-aware models leverage KC dependencies,
accounting for the fact that human knowledge acquisition is structured by dependency relationships
(i.e., concept maps; Hill, 2005; Koponen & Nousiainen, 2018; Lynn & Bassett, 2020). Tong et al.
(2020) empirically estimate KC dependencies from the frequencies of successful transitions. AKT
(Ghosh et al., 2020) relies on the attention mechanism (Vaswani et al., 2017) to implicitly capture
structure (Pandey & Karypis, 2019; Choi et al., 2020; Shin et al., 2021; Liu et al., 2023), whereas
GKT (Nakagawa et al., 2019) models it explicitly based on graph neural networks (Kipf & Welling,
2016). Recent work towards interpretable deep learning KT uses engineered features such as learner
mastery and exercise difficulty (Minn et al., 2022), or infers them with neural networks (QIKT; Chen
et al., 2023, IEKT; Long et al., 2021). While diverse approaches to interpretability exist (see Chen
et al., 2023, for review), a comprehensive evaluation framework is still lacking.
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Figure 1: PSI-KT is a hierarchical probabilistic state-space model of learning. (a) Latent knowledge
states for different KCs (colored curves) are inferred from observations. (b) Full hierarchical model
for a single learner: cognitive traits sn control the coupled dynamics of states zkn, which give rise to
observations yn. (c) The dynamics combine memory decay (Eq. 6) and structural influences (Eq. 5).

Here, we present our predictive, scalable and interpretable KT model (PSI-KT) as a psychologically-
informed probabilistic deep learning approach, together with a comprehensive evaluation framework
for interpretability.

3 JOINT DYNAMICAL AND STRUCTURAL MODEL OF LEARNING

In this section, we describe PSI-KT, our probabilistic hierarchical state-space model of human learning
(Fig. 1). Briefly, observations of learner performance y (Fig. 1a, filled/unfilled boxes) provide indirect
and noisy evidence about latent knowledge states z (colored curves, with matching dots in Fig. 1b).
These latent states evolve stochastically, in line with the psychophysics of memory (temporal decay in
Fig. 1c), while simultaneously being subject to structural influences from performance on prerequisite
KCs (structure in Fig. 1c). We introduce a second latent level of learner-specific traits s (Fig. 1b, top),
which govern the knowledge dynamics in an interpretable way.

Below, we describe the method in more detail. We start with the generative model (Sec. 3.1). Next,
we discuss the joint approximate Bayesian inference of latent variables and estimation of generative
parameters (Sec. 3.2). Finally, we show how to derive multi-step performance predictions (see
Sec. 3.3 and Fig. 7 in Appendix A.4 for a graphical overview of inference and prediction).

3.1 PROBABILISTIC STATE-SPACE GENERATIVE MODEL

We conceptualize observations of learner performance as noisy measurements of an underlying time-
dependent knowledge state, specific to each learner and KC. The evolution of knowledge states reflects
the process of learning and forgetting, governed by learner-specific traits. Additionally, knowledge of
different KCs informs one another according to learned prerequisite relationships. We translate these
modeling assumptions into a generative model consisting of three main components:(i) the learner
knowledge state across KCs, zℓ

n = [zℓ,1n . . . zℓ,Kn ]⊺ ∈ RK (colored curves in Fig. 1a), (ii) learner-
specific cognitive traits sℓn ∈ R4 (top row in Fig. 1b), and (iii) a shared static graph A of KCs whose
edges aik quantify the probability for a KC i to be a prerequisite for KC k (Fig. 1c).

State-space model. State-space models (SSMs) are a framework for partially observable dynamical
processes. They represent the inherent noise of measurements y by an emission distribution p(yn | zn),
separate from the stochasticity of state dynamics, modeled as a first-order Markov process with
transition probabilities p(zn | zn−1). The state dynamics are initiated by sampling from an initial
prior p(z1) to iteratively feed the transition kernel, and predictions can be drawn at any time from the
emission distribution. To represent the influence of individual cognitive traits over the knowledge
dynamics, we additionally condition the z-transitions on the traits s (which also can be observed only
indirectly). The three-level SSM hierarchy of PSI-KT consists of:

Level 2 (latent cognitive traits): sℓn ∼ pθ(s
ℓ
n | sℓn−1) := N (sℓn |Hsℓn−1, R) (1)

Level 1 (latent knowledge states): zℓ
n ∼ pθ(z

ℓ
n | zℓ

n−1, s
ℓ
n) :=

∏
k N (zℓ,kn |mℓ,k

n , wℓ
n) (2)

Level 0 (observed learner performance): ŷℓn ∼ p(yℓn | zℓ,kn ) := Bern(sigmoid(zℓ,kn )). (3)
The choice of Gaussian initial priors (discussed below) and Gaussian transitions ensures tractability,
while the Bernoulli emissions model the observed binary outcomes. We now unpack this model and
all its parameters in detail, starting with the knowledge dynamics.
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Knowledge states z. Recent KT methods (e.g., Nagatani et al., 2019) use an exponential forgetting
function based on psychological theories (Ebbinghaus, 1885). Here, we augment this approach by
adding stable long-term memory (Averell & Heathcote, 2011), and model the knowledge dynam-
ics zℓ,k of an isolated KC k as a mean-reverting stochastic (Ornstein-Uhlenbeck; OU) process:

dzℓ,k/dt = αℓ(µℓ − zℓ,k) + σℓη(t). (4)
Accordingly, the state of knowledge zℓ gradually reverts to a long-term mean µℓ with rate αℓ, subject
to white noise fluctuations η(t) scaled by volatility σℓ. To account for the influence of other KCs,
we adjust the mean µℓ

n using prerequisite weights aik (defined in Eq. 7 below), modulated by the
learner’s transfer ability γℓ

n:
µ̃ℓ,k
n := µℓ

n + (γℓ
n/K)

∑
i ̸=k a

ik zℓ,in . (5)

We obtain the mean mℓ,k
n and variance wℓ

n of the transition kernel in Eq. 2 by marginalizing the OU
process over one time step τ ℓn := tℓn − tℓn−1, which can be done analytically1 ,

mℓ,k
n = rℓn z

ℓ,k
n−1 + (1− rℓn) µ̃

ℓ,k
n , with retention ratio rℓn := e−αℓ

nτ
ℓ
n ∈ (0, 1). (6)

As the time since the last interaction τ ℓn grows, the retention ratio rℓn decreases exponentially with
rate αℓ

n, and the knowledge state reverts to the long-term mean µ̃ℓ,k
n , which partly depends on the

learner’s mastery of prerequisite KCs (Eq. 5). This balances short-term and long-term learning,
reflecting empirical findings from memory research (Averell & Heathcote, 2011). The structural
influences are accounted for in the dynamics of zℓ,kn , thus justifying the conditional independence
assumed in Eq. 2. A Gaussian initial prior pθ(z

ℓ,k
1 ) = N (zℓ,k1 |z̄, w1), where z̄, w1 ∈ R are part of

the generative parameters θ, completes our dynamical model of knowledge states.

Learner-specific cognitive traits s. The dynamics of knowledge states (Eqs. 4- 6) are parameterized
by learner-specific cognitive traits (αℓ

n, µ
ℓ
n, σ

ℓ
n, γ

ℓ
n), which we collectively denote sℓn. Specifically,

αℓ represents the forgetting rate (Ebbinghaus, 1885; Averell & Heathcote, 2011), µℓ (via µ̃ℓ,n
k )

captures long-term memory consolidation (Meeter & Murre, 2004) for practiced KCs and expected
performance for novel KCs, σℓ quantifies knowledge volatility, and γℓ measures transfer ability
(Bassett & Mattar, 2017) from knowledge of prerequisite KCs. These traits can develop during
learning according to Eq. 1, starting from a Gaussian prior pθ(sℓ1) = N (sℓ1|s̄, R1) where s̄ ∈ R4 and
the diagonal matrices H,R1, R ∈ R4×4 are also part of the global parameters θ.

Shared prerequisite graph A. In our model, prerequisite relations influence knowledge dynamics
via the coupling introduced in Eq. 5. We now discuss an appropriate parameterization for the weight
matrix of the prerequisite graph, A := {aik}i,k∈1:K . We assume that prerequisites are time- and
learner-independent so that, in the spirit of collaborative filtering (Breese et al., 2013), we can
pool evidence from all learners to estimate them. To prevent a quadratic scaling in the number of
KCs, we do not directly model edge weights but derive them from KC embedding vectors uk in
lower dimension uk ∈ RD with D ≪ K, collected in embedding matrix UK×D. A basic integrity
constraint for a connected pair is that dependence of KC i on KC k should trade off against that of k
on i, i.e., no mutual prerequisites: aik + aki = 1. With this in mind, we exploit the factorization
of aik introduced by Lippe et al. (2021) in terms of a separate probability of edge existence p(i�k)
and definite directionality p(i→k | i�k):

aik := p(i→k | i�k) p(i�k)

= sigmoid((ui)⊺uk) sigmoid((ui)⊺(M −M⊺)uk), (7)
where the skew-symmetric combination M −M⊺ of a learnable matrix M prevents mutual prerequi-
sites. Having presented the generative model, we now turn to inference and prediction.

3.2 APPROXIMATE BAYESIAN INFERENCE AND AMORTIZATION WITH A NEURAL NETWORK

We now describe how we learn the generative model parameters θ and how we infer the latent
states s, z introduced in Section 3.1 using a neural network (“inference network”). Since learner-
specific latent states s and z are deducible solely from limited individual data, we expect non-
negligible uncertainty. This motivates our probabilistic treatment of these states using approximate
Bayesian inference. By contrast, the model parameters θ (KC parameters U,M in Eq. 7, transition
parameters s̄, H,R1, R in Eq. 1, and z̄, w1 in Eq. 2) can be estimated from all learners, and we thus

1Särkkä & Solin (2019) — the variance is wℓ
n = (σℓ

n)
2(1− e−2αℓ

nτℓ
n)/(2αℓ

n).
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treat them as point-estimated parameters as described below (detailed derivation in Appendix A.1.)
Here, without loss of generality, we show the inference for a single learner.

3.2.1 INFERENCE ON A FIXED LEARNING HISTORY

Here, we assume the full interaction history Hℓ
1:N is available for inferring the posterior over

latents pθ(zℓ
1:N , sℓ1:N | yℓ1:N ). We approach the problem using variational inference (VI). In VI, we

select a distribution family qϕ with free parameters ϕ to approximate the posterior pθ by minimizing
their Kullback-Leibler divergence. This can only be done indirectly, by maximizing a lower bound to
the marginal probability of the data, the evidence lower bound (ELBO). Here, we adopt the mean-
field approximation qϕ(z

ℓ
1:N , sℓ1:N | yℓ1:N ) = qϕ(z

ℓ
1:N ) qϕ(s

ℓ
1:N ) and jointly optimize the generative θ

and variational ϕ parameters using variational expectation maximization (EM; Dempster et al., 1977;
Beal & Ghahramani, 2003; Attias, 1999). Motivated by real-world scalability, we introduce an
inference network (see Appendix A.3 for the architecture) to amortize the learning of variational
parameters ϕ across learners, and we employ the reparametrization trick (Kingma & Welling, 2014)
to optimize the single-learner ELBO:

ELBOℓ(θ, ϕ) = Eqϕ(sℓ1:N )

[
− log qϕ(s

ℓ
1:N ) + log pθ(s

ℓ
1) +

∑N
n=2 log pθ(s

ℓ
n | sℓn−1)

]
+ Eqϕ(zℓ

1:N )

[
− log qϕ(z

ℓ
1:N ) + log pθ(z

ℓ
1) +

∑N
n=1 log pθ(y

ℓ
n | zℓ,xn

n )
]

+ Eqϕ(zℓ
1:N ) qϕ(sℓ1:N )

[∑N
n=2 log pθ(z

ℓ
n | zℓ

n−1, s
ℓ
n)
]
. (8)

The SSM emissions and transitions were introduced in Eqs. 1-3, along with the respective initial
priors. To allow for a diversity of combinations of learner traits to account for the data, we model the
variational posterior across learners, qϕ(s1:N ), as a mixture of Gaussians (see Appendix A.4).

3.2.2 INFERENCE IN CONTINUAL LEARNING

In real-world educational settings, a KT model must flexibly adapt its current variational param-
eters ϕn with newly available interactions (xℓ

n+1, t
ℓ
n+1, y

ℓ
n+1). Retraining on a fixed, augmented

historyHℓ
n+1 to obtain an updated ϕn+1 is possible (Eq. 8), but expensive. Instead, in PSI-KT, we

use the parameters ϕn of the current posterior qϕn(z
ℓ
n, s

ℓ
n) to form a next-time prior,

p̃(zℓ
n+1, s

ℓ
n+1) := Eqϕn (zℓ

n,s
ℓ
n | yℓ

1:n)

[
pθ(s

ℓ
n+1 | sℓn) pθ(zℓ

n+1 | sℓn+1, z
ℓ
n)
]
. (9)

Due to the Bayesian nature of our model, we can now update this prior with the new evidence yℓn+1

at time tℓn+1 using variational continual learning (VCL; Nguyen et al., 2017; Loo et al., 2020), i.e.,
by maximizing the ELBO:

ELBOℓ
VCL(θ, ϕn+1) = Eqϕn+1

(sℓn+1)

[
− log qϕn+1

(sℓn+1)
]

+ Eqϕn+1
(zℓ

n+1)

[
− log qϕn+1

(zℓ
n+1) + log pθ(y

ℓ
n+1 | z

ℓ,xn+1

n+1 )
]

+ Eqϕn+1
(zℓ

n+1,s
ℓ
n+1)

[
log p̃(zℓ

n+1, s
ℓ
n+1)

]
. (10)

Maximizing this ELBOℓ
VCL allows us to update the parameters ϕn+1 based on a new interac-

tion (xℓ
n+1, t

ℓ
n+1, y

ℓ
n+1) directly from the previous parameters ϕn, i.e., without retraining.

3.3 PREDICTIONS

To predict a learner’s performance on KC xℓ
n+1 at tℓn+1, we take the current variational distributions

over sℓn and zℓ
n and transport them forward by analytically convolving them with the respective

transition kernels (Eqs. 1 and 2). We then draw z
ℓ,xn+1

n+1 from the resulting distribution, and predict
the outcome ŷℓn+1 by Eq. 3. When predicting multiple steps ahead, we repeat this procedure without
conditioning on any of the previously predicted ŷℓn+m.

4 EVALUATIONS

Table 1: Dataset characteristics

Dataset → Assist12 Assist17 Junyi15

# Learners L 46,674 1,709 247,606
# KCs K 263 102 722
# Int’s / 106 3.5 0.9 26

We argue above that KT for personalized education must
predict accurately, scale well with new data, and provide
interpretable representations. We now empirically assess
these desiderata, comparing PSI-KT with up to 8 baseline
models across three datasets from online education plat-
forms. Concretely, we evaluate (i) prediction accuracy,
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Figure 2: Within-learner prediction performance (mean ±SEM) as a function of cohort sizes from
100 to the maximum available in each dataset (we omit HLR for legibility; see Table 2.)

quantifying both within-learner prediction and between-learner generalization (Sec. 4.1), (ii) scalabil-
ity in a continual learning setting (Sec. 4.2), and (iii) interpretability of learner representations and
prerequisite relations (Sec. 4.3).

Datasets. Assistments and Junyi Academy are non-profit online learning platforms for pre-college
mathematics. We use Assistments’ 2012 and 2017 datasets2 (Assist12 and Assist17) and Junyi’s 2015
dataset3 (Junyi15; Chang et al., 2015), which in addition to interaction data, provides human-annotated
KC relations (see Table 1 and Appendix A.3.2 for details).

We select HLR from Duolingo and PPE as two influential psychologically-informed regression
models. From the models that use learnable representations, we include two established deep learning
benchmarks, DKT and DKTF, which capture complex dynamics via LSTM networks, as well as the
interpretability-oriented QIKT.

4.1 PREDICTION AND GENERALIZATION PERFORMANCE

In our evaluations, we mainly focus on prediction and generalization when training on 10 interactions
from up to 1000 learners. Good KT performance with little data is key in practical ITS to minimize the
number of learners on an experimental treatment (principle of equipoise, similar to medical research;
Burkholder, 2021), to mitigate the cold-start problem, and to extend the usefulness of the model
to classroom-size groups. To provide ITS with a basis for adaptive guidance and long-term learner
assessment, we always predict the 10 next interactions. Figure 2 shows that PSI-KT’s within-learner
prediction performance is robustly above baselines for all but the largest cohorts (>60k learners,
Junyi15), where all deep learning models perform similarly. The advantage of PSI-KT comes from
its combined modeling of KC prerequisite relations and individual learner traits that evolve in time
(see Appendix Fig. 13 for ablations). The between-learner generalization accuracy of the models
above, when tested on 100 out-of-sample learners, is shown in Table 2, where fine-tuning indicates
that parameters were updated using (10-point) learning histories from the unseen learners. PSI-KT
shows overall superior generalization except on Junyi15 (when fine-tuning).

4.2 SCALABILITY IN CONTINUAL LEARNING

In addition to training on fixed historical data, we also conduct experiments to demonstrate PSI-KT’s
scalability when iteratively retraining on additional interaction data from each learner. This parallels
real-world educational scenarios, where learners are continuously learning (Sec. 3.2.2). Each model
is initially trained on 10 interactions from 100 learners. We then incrementally provide one data point
from each learner, and evaluate the training costs and prediction accuracy. Figure 3 shows PSI-KT
requires the least retraining time, retains the best prediction accuracy, and thus achieves the most
favorable cost-accuracy trade-off (details in Appendix A.5.3).

4.3 INTERPRETABILITY OF REPRESENTATIONS

We now evaluate the interpretability of both learner-specific cognitive traits sℓ and the prerequisite
graphs A. We first show that our model captures learner-specific and disentangled traits that correlate
with behavior patterns. Next, we show that our inferred graphs best align with ground truth graphs,
and the edge weights predict causal support on downstream KCs.

4.3.1 LEARNER-SPECIFIC COGNITIVE TRAITS

For each learner, PSI-KT infers four latent traits, each with a clear dynamical role specified by the
OU process (Eqs. 5-6). In contrast, high-performance baselines (AKT, DKT, and DKTF) describe
learners via 16-dimensional embeddings solely constrained by network architecture and loss mini-
mization. Another model QIKT constructs 3-dimensional embeddings with each element connected

2
https://sites.google.com/site/assistmentsdata

3
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
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Table 2: Prediction accuracy. FT indicates additional fine-tuning and ↑ indicates larger values are
better. The best model performance is in bold and the 2nd best is underlined.

Dataset Experiment HLR PPE DKT DKTF HKT AKT GKT QIKT PSI-KT

Within ↑ .54.03 .65.01 .65.03 .60.01 .55.01 .67.02 .63.03 .63.03 .68.02
Between ↑ .50.03 .50.02 .55.02 .51.01 .54.00 .58.02 .61.02 .60.02 .61.03Assist12
w/ FT ↑ .52.02 .53.01 .58.00 .55.01 .55.00 .61.00 .62.02 .60.03 .62.02

Within .45.01 .53.02 .57.02 .53.03 .52.03 .56.02 .56.04 .58.02 .63.02
Between .33.03 .51.02 .51.00 .48.00 .51.02 .47.01 .53.02 .50.02 .53.02Assist17
w/ FT .41.04 .51.00 .51.03 .53.01 .51.03 .51.02 .54.03 .51.04 .56.02

Within .55.02 .66.03 .79.03 .78.01 .63.02 .81.02 .78.02 .81.02 .83.02
Between .48.02 .55.02 .76.00 .76.02 .61.01 .73.01 .77.03 .76.03 .79.03Junyi15
w/ FT .52.00 .65.03 .81.01 .84.01 .64.03 .83.00 .79.03 .80.03 .80.02
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Figure 3: Continual learning. (Top) Cumulative training time. (Bottom) Prediction accuracy on the
next 10 time steps. We omit results when time is above, or accuracy is below, the range of the axes.

to scores of knowledge acquisition, knowledge mastery, and problem-solving. We collectively refer
to these learner-specific variables as learner representations. Here, we empirically show that PSI-KT
representations provide superior interpretability. We ask that learner representations be 1) specific
to individual learners, 2) consistent when trained on partial learning histories, 3) disentangled (i.e.,
component-wise meaningful, as in Bengio et al., 2013), and 4) and operationally interpretable, so
that they can be used to personalize future curricula. We evaluate desiderata 1-3 with information-
theoretic metrics (Table 3; see Appendix A.6 for details), and desideratum 4 with regressions against
behavioral outcomes (Table 4).

Table 3: Specificity, consistency, and disen-
tanglement vs. best baseline.

Metric Dataset Baseline PSI-KT

Specificity
MI(s; ℓ) ↑

Assist12 8.8 8.4
Assist17 10.1 10.0
Junyi15 13.5 14.4

Consistency−1

Eℓsub MI(sℓ; ℓsub) ↓

Assist12 12.2 7.4
Assist17 6.4 6.4
Junyi15 7.7 5.0

Disentanglement
DKL(s∥ℓ) ↑

Assist12 2.3 7.4
Assist17 0.6 8.4
Junyi15 5.0 11.5

Specificity, consistency, and disentanglement.
Learner representations s should be maximally spe-
cific about learner identity ℓ, which can be quantified
by the mutual information MI(s; ℓ) = H(s)− H(s | ℓ)
being high, where H denotes (conditional) entropy. Ad-
ditionally, when we infer representations sℓsub from
different subsets of the interactions of a fixed learner,
they should be consistent, i.e., each sℓsub should be
minimally informative about the chosen subset (av-
eraged across subsets), such that Eℓsub MI(sℓ; ℓsub) =
Eℓsub [H(s|ℓ)− H(s|ℓsub)] should be low. Note that se-
quential subsets are unsuitable for this evaluation, since
representations evolve in time to track learners’ pro-
gression. Instead, we define subsets as groups of KCs
whose average presentation time is approximately uniform over the duration of the experiment (see
Appendix A.6.1 for details). Lastly, learner representations should be disentangled, such that each
dimension is individually informative about learner identity. We measure disentanglement with
DKL(s∥ℓ) := H(s)− H(s | ℓ)diag, a form of specificity that ignores correlations across sℓ dimensions
by estimating the conditional entropy only with diagonal covariances.

In empirical evaluations (Table 3), PSI-KT’s representations offer competitive specificity despite
being lower-dimensional, and outperform all baselines in consistency and disentanglement. While
disentanglement aids interpretability (Freiesleben et al., 2022), it does not itself entail domain-
specific meaning for representational dimensions. We now demonstrate that PSI-KT representations
correspond to clear behavioral patterns, which is crucial for future applications in educational settings.

Operational interpretability. Having shown that PSI-KT captures specific, consistent, and disentan-
gled learner features, we now investigate whether these features relate to meaningful aspects of future
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behavior, which would be useful for scheduling operations for ITS. We indeed find that the learner
representations of PSI-KT forecast interpretable behavioral outcomes, such as performance decay or
initial performance on novel KCs. Concretely, consider the observed one-step performance difference
∆yℓn := yℓn − yℓn−1. We expect it to be lower for longer intervals τ ℓn = tℓn − tℓn−1 due to forgetting.
However, we recognize no clear trend when plotting ∆yℓn over τ ℓn for the Junyi15 dataset (Fig. 4,
top right). We can explain this observation because different learners forget on different time scales.
Plotting the same test data instead over scaled intervals τ ℓnα

ℓ
n (Fig. 4, top center) shows a clear trend

against an exponential fit (solid line) with less variability, demonstrating that αℓ
n (derived from past

data only) adjusts for individual learner characteristics and can be interpreted as a personalized rate
of forgetting. Here, the choice of the factor αℓ

n is motivated by our inductive bias (Eq. 4). The trend
is much less clear for all baselines: Fig. 4 (top left) uses the best fitting component across all learner
representations from all baselines (full results in Fig. 8 in Appendix A.6.4). Analogously, when we
consider initial performance on a novel KC, we find for PSI-KT that µ̃ℓ,k

n (which aggregates mastery
of prerequisites for KC k at time tn, see Eq. 5) explains it better than the best baseline Fig. 4 (bottom
panels). Table 4 shows that these superior interpretability results are significant and hold across all
datasets. In Appendix A.6.4, we discuss two more behavioral signatures (performance variability and
prerequisite influence) and show they correspond to the remaining components γℓ

n and σℓ
n.

4.3.2 PREREQUISITE GRAPH

PSI-KT infers a prerequisite graph based on all learners’ data, which helps it to generalize to un-
seen learners. Beyond helping prediction, reliable prerequisite relations are an essential input for
curriculum design, motivating our interest in their interpretability. Figure 5a shows an exemplary
inferred subgraph with the prerequisites of a single KC. To quantitatively evaluate the graph, we (i)
measure the alignment of the inferred vs. ground-truth graphs and (ii) correlate inferred prerequisite
probability with a Bayesian measure of causal support obtained from unseen behavioral data.

Alignment with ground-truth graphs. We analyze the Junyi15 dataset, which uniquely provides
human-annotated evaluations of prerequisite and similarity relations between KCs. We discuss here
the alignment of prerequisites and leave similarity for Appendix A.7. The Junyi15 dataset provides
both an expert-identified prerequisite for each KC,and crowd-sourced ratings (6.6 ratings on average
on a 1-9 scale). To compare with expert annotations, we compute the rank of each expert-identified
prerequisite relation i→ k in the relevant sorted list of inferred probabilities {ajk}Kj=1 and take the
harmonic average (mean reciprocal rank, MRR; Yang et al., 2014). Next, we compute the negative
log-likelihood (nLL) of inferred edges aik using a Gaussian estimate of the (rescaled) crowd-sourced
ratings for the i → k KC pair. We finally calculate the Jaccard similarity (JS) between the set of
inferred edges (aik > 0.5) and those identified by experts as well as crowd-sourced edges with
average ratings above 5. The results in Table 5 (left columns) consistently highlight PSI-KT’s superior
performance across all criteria (see Appendix A.7.1 for details).

Causal support across consecutive interactions. For education applications, we are interested in
how KC dependencies impact learning effectiveness. If KC i is a prerequisite of KC k, mastering
KC i contributes to mastering KC k, indicating a causal connection. In this analysis, we show
that inferred edge probabilities aij (Eq. 7) correspond to causal supporti→k (Eq. 11), derived from
behavioral data through Bayesian causal induction (Griffiths & Tenenbaum, 2009). Specifically, we
model the relationship between a candidate cause C and effect E, i.e., a pair of KCs in our case,
while accounting for a constant background cause B, representing the learner’s overall ability and the
influences of other KCs. We consider two hypothetical causal graphs, where Graph 0 Gi↛k represents
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Figure 4: Operational interpretability of represen-
tations, Junyi15 dataset. See text for axes labels
and Appendix A.6.4 for additional results.

Behavioural
signature Dataset Best Baseline PSI-KT

Performance
difference

Assist12 0.01, .67 0.30, <.001
Assist17 −0.03, .30 0.56, <.001
Junyi15 0.03, .06 0.72, <.001

Initial
performance

Assist12 0.04, .01 0.54, <.001
Assist17 0.05, .01 3.70, <.001
Junyi15 0.04, .02 0.92, <.001

Table 4: Coefficients and p-values of regres-
sions relating exp(−αℓ

n τ
ℓ
n) and µ̃ℓ,k

n to unseen
behavioral data across datasets.
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Table 5: (Left) Alignment of inferred graphs with annotated graphs for the Junyi15 dataset. (Right) Re-
gression coefficients and p-values relating causal support to inferred edge probabilities. All baseline
models either lack significance or negatively predict causal support (Appendix Fig. 12).

Metric MRR ↑ JS expert ↑ JS crowd ↑ nLL ↓ coefficient ↑, p-value ↓

Dataset Junyi15 Assist12 Assist17 Junyi15

Best Baseline .0082 .0015 .0047 3.03 1.05, .253 0.22, .792 0.42, .593
PSI-KT .0086 .0019 .0095 4.11 1.15, .003 0.28, <.001 0.97, <.001

(a) (b)

(c)
Binned mean ± SE
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Figure 5: Graph interpretability. (a) Subgraph inferred by PSI-KT on the Junyi15 dataset, showing
prerequisites of target KC ‘area of parallelograms‘. (b) Hypothesized causal graphs, where Graph
1 assumes a causal relationship exists from KC i to KC k, while Graph 0 is the null hypothesis.
(c) Regression of edge probabilities against causal supports. Insets show the best baseline model.

the null hypothesis of no causal relationship, and Graph 1 Gi→k assumes the causal relationship
exists, i.e. correct performance on KC i causally supports correct performance on KC k (Fig. 5b).
We estimate causal support for each pair of KCs i→ k based on all consecutive interactions in the
behavioral data H from KC i at time tn to KC k at time tn+1, as a function of the difference in
log-likelihoods of the two causal graphs (see Appendix A.7.3 for details):

supporti→k := logP (H |Gi→k)− logP (H |Gi↛k). (11)
We then use regression to predict supporti→k as a function of edge probabilities aij inferred from
different models. The results are visualized in Figure 5c and summarized in Table 5 (right). The larger
coefficients indicate that our inferred graphs possess superior operational interpretability (Sec. 4.3).

5 DISCUSSION

We propose PSI-KT as a novel approach to knowledge tracing (KT) with compelling properties for
intelligent tutoring systems: superior predictive accuracy, excellent continual-learning scalability, and
interpretable representations of learner traits and prerequisite relationships. We further find that PSI-
KT has remarkable predictive performance when trained on small cohorts whereas baselines require
training data from at least 60k learners to reach similar performance. An open question for future
KT research is how to combine PSI-KT’s unique continual learning and interpretability properties
with performance that grows beyond this extreme regime. We use an analytically marginalizable
Ornstein-Uhlenbeck process for knowledge states in PSI-KT, resulting in an exponential forgetting
law, similar to most recent KT literature. Future work should support ongoing debates in cognition
by offering alternative modeling choices for memory decay (e.g., power-law; Wixted & Ebbesen,
1997), thus facilitating empirical studies at scale. And while our model already normalizes reciprocal
dependencies in the prerequisite graph, we anticipate that enforcing regional or global structural
constraints, such as acyclicity, may benefit inference and interpretability. Although we designed PSI-
KT with general structured domains in mind, our empirical evaluations were limited to mathematics
learning by dataset availability. We highlight the need for more diverse datasets for structured KT
research to strengthen representativeness in ecologically valid contexts. Overall, our work combines
machine learning techniques with insights from cognitive science to derive a predictive and scalable
model with psychologically interpretable representations, thus laying the foundations for personalized
and adaptive tutoring systems.
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A APPENDIX

The Appendix is organized as follows:

• Appendix A.1 and A.2 provides a detailed derivation of our objective function ELBO in
two scenarios: inference involving complete learning histories (Sec. 3.2.1) and inference for
in a continual learning setting (Sec. 3.2.2).

• Appendix A.3 provides in-depth descriptions of baseline models, and the details and the
selection criterion of the three datasets we use for experiments.

• Appendix A.4 describes the PSI-KT architecture in full detail, including its hyperparameters.
• Appendix A.5 provides additional prediction results. We show the average accuracy, average

f1-score, and their standard error of Fig. 2 in the prediction experiment given entire learning
histories. We also show the average accuracy score and their standard error of Fig. 3 in the
prediction experiment for continual learning setup.

• Appendix A.6 describes the details of the experiment setup and how we derive the metrics
for specificity, consistency, and disentanglement. We also provide comprehensive results on
the operational interpretability of baseline models.

• Appendix A.7 elaborates on the graph assessment framework, including details about the
alignment metrics and a discussion of causal support, and extends the main text evaluations
to all datasets.

A.1 ELBO OF THE HIERARCHICAL SSM

In this section, we derive the single-learner ELBO, Eqs. 8- 10 in the main text. For clarity, we omit
the superindex ℓ in these derivations. Note that the parameters ϕ and θ are global, i.e., they are
optimized based on the entire interaction data across learners.

In variational inference (VI), we approximate an intractable posterior distribution pθ(z | y) with
qϕ(z | y) from a tractable distribution family. We learn ϕ and θ together by maximizing the evidence
lower bound (ELBO) of the marginal likelihood (Blei et al., 2017; Attias, 1999), given by log pθ(y) ≥
ELBO(θ, ϕ) = Eqϕ(z | y) [− log qϕ(z | y) + log pθ(y, z)]. The two terms in the ELBO represent the
entropy of the variational posterior distribution, H

[
qϕ(z | y)

]
= Eqϕ(z|y) [− log qϕ(z | y)], and the

log-likelihood of the joint distribution of observations and latent states Eqϕ(z|y) log pθ(y, z).

We now formulate the ELBO for our hierarchical SSM (see Fig. 1) with two layers of latent states.
We assume that fixed learning histories H1:N until time tN are available and we use capital N
to represent the fixed time point. We approximate the posterior pθ(z1:N , s1:N | y1:N ) using the
mean-field factorization, qϕ(z1:N , s1:N | y1:N ) = qϕ(z1:N ) qϕ(s1:N ):
ELBO(θ, ϕ) = H

[
qϕ(z1:N , s1:N | y1:N )

]
+ Eqϕ(z1:N ,s1:N |y1:N ) log pθ(y1:N , z1:N , s1:N )

= Eqϕ(z1:N ,s1:N | y1:N )

[
− log qϕ(z1:N , s1:N | y1:N ) + log pθ(y1:N , z1:N , s1:N )

]
= Eqϕ(z1:N ) qϕ(s1:N )

[
− log qϕ(z1:N )− log qϕ(s1:N ) + log pθ(y1:N , z1:N , s1:N )

]
.

(12)

In the generative model of PSI-KT, the observation yn at time tn depends on the particular knowledge
state zkn associated with the interacted KC k = xn. All knowledge states zn rely on previous
states zn−1 and cognitive traits sn, which themselves are influenced by sn−1. Thus, we can factorize
the joint distribution pθ(y1:N , z1:N , s1:N ) in Eq. 12 over all latent states and observations:

pθ(y1:N , z1:N , s1:N ) = pθ(s1:N ) pθ(z1:N | s1:N )

N∏
n=1

pθ(yn | zxn
n )

= pθ(s1) pθ(z1)

N∏
n=2

pθ(sn | sn−1) pθ(zn | zn−1, sn)

N∏
n=1

pθ(yn | zxn
n ). (13)

Here, pθ(s1) and pθ(z1) are the Gaussian initial priors for the latent states.
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By incorporating the factorized joint distribution (Eq. 13), the ELBO for PSI-KT can be derived as
follows:

ELBO(θ, ϕ) = Eqϕ(z1:N ) qϕ(s1:N )

[
− log qϕ(z1:N )− log qϕ(s1:N ) + log pθ(y1:N , z1:N , s1:N )

]
= Eqϕ(z1:N ) qϕ(s1:N )

[
− log qϕ(z1:N )− log qϕ(s1:N ) + log pθ(s1) + log pθ(z1)

+

N∑
n=2

log pθ(sn | sn−1) +

N∑
n=2

log pθ(zn | zn−1, sn)

+

N∑
n=1

log pθ(yn | zxn
n )
]

= Eqϕ(s1:N )

[
− log qϕ(s1:N ) + log pθ(s1) +

N∑
n=2

log pθ(sn | sn−1)
]

+ Eqϕ(z1:N )

[
− log qϕ(z1:N ) + log pθ(z1) +

N∑
n=1

log pθ(yn | zxn
n )
]

+ Eqϕ(z1:N ) qϕ(s1:N )

[ n∑
2

log pθ(zn | zn−1, sn)
]
. (14)

A.2 EXTENSION TO CONTINUAL LEARNING

We now extend the ELBO to the continual learning setting, where we observe learning perfor-
mances y1:n sequentially. Here we use the lower case n to indicate the running time index.
We seek the posterior distribution pθ(zn, sn | y1:n) at each interaction time tn given all observa-
tions so far. Usually, one would approximate the posterior with the variational posterior distribu-
tion qϕn

(zn, sn | y1:n) = qϕn
(zn)qϕn

(sn) using the mean-field factorization (Eq. 12). In that case,
the inference process consists of maximizing the ELBO(θ, ϕn) only over ϕn:

ELBO(θ, ϕn) = Eqϕn (zn)qϕn (sn)[− log qϕn
(zn)− log qϕn

(sn) + log pθ(y1:n, zn, sn)]. (15)

However, it is challenging to calculate the joint distribution pθ(y1:n, zn, sn) in our setup, since it
requires marginalizing the full joint distribution pθ(y1:n, z1:n, s1:n) over all zn′ and sn′ with n′ < n.

Henceforth, we aim to reconfigure the objective function ELBO(θ, ϕn), which involves the vari-
ational posterior distribution qϕn

(zn, sn | y1:n) at the time point tn, to establish a linkage with
the posterior qϕn−1

(zn−1, sn−1 | y1:n−1) observed at the preceding time point tn−1. By doing so,
we can recursively optimize the variational parameters ϕn whenever new observations yn are re-
ceived (Nguyen et al., 2017), wherein the initialization draws from the parameters ϕn−1 obtained at
time tn−1.

First, we show that the marginal joint distribution pθ(y1:n, zn, sn) is proportional to the prior
distribution pθ(zn, sn | y1:n−1) on sn, zn at tn−1:

pθ(y1:n, zn, sn) ∝ pθ(zn, sn | y1:n−1) pθ(yn | zn). (16)
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Second, we show how the prior distribution pθ(zn, sn | y1:n−1) can be formulated using the poste-
rior qϕn−1

(zn−1, sn−1 | y1:n−1) at the previous time tn−1, which evolves for a single time step:

pθ(zn, sn | y1:n−1) =

∫
pθ(zn, zn−1, sn, sn−1 | y1:n−1)dsn−1 dzn−1

=

∫
pθ(zn−1, sn−1 | y1:n−1) pθ(sn | sn−1) pθ(zn | sn, zn−1) dsn−1 dzn−1

=

∫
qϕn−1

(zn−1, sn−1 | y1:n−1) pθ(sn | sn−1) pθ(zn | sn, zn−1) dsn−1 dzn−1

=

∫
qϕn−1

(zn−1) qϕn−1
(sn−1) pθ(sn | sn−1) pθ(zn|sn, zn−1)dsn−1dzn−1

= Eqϕn−1
(sn−1)

[
pθ(sn | sn−1)

]︸ ︷︷ ︸
:=p̃ϕn−1

(sn)

Eqϕn−1
(zn−1)

[
pθ(zn | sn, zn−1)

]︸ ︷︷ ︸
:=p̃ϕn−1

(zn | sn)

. (17)

Substituting pθ(sn, zn | y1:n−1) = p̃ϕn−1
(sn) p̃ϕn−1

(zn | sn) using our variational approximation in
Eq. 16 in the ELBO, we finally arrive at the objective function for variational continuous learning:

ELBOVCL(θ, ϕn) = Eqϕn (sn) qϕn (zn)

[
− log qϕn(sn)− log qϕn(zn) + log p̃ϕn−1(sn)

+ log p̃ϕn−1
(zn|sn) + log pθ(yn | zxn

n )
]

= Eqϕn (sn)

[
− log qϕn

(sn) + log p̃ϕn−1
(sn)

]
+ Eqϕn (zn)

[
− log qϕn(zn) + log pθ(yn | zxn

n )
]

+ Eqϕn (zn) qϕn (sn)

[
log p̃ϕn−1

(zn | sn)
]
. (18)

This provides a derivation of Eq. 10 as presented in the main text. Here our focus lies in the
optimization of the parameters ϕn, while holding constant the parameters ϕn−1 acquired from the
preceding time step.

A.3 BASELINE MODELS AND DATASETS

A.3.1 BASELINES

KT models aim to predict the performance ŷℓn of the presented KC xℓ
n at time tℓn for each learner ℓ,

which amounts to learning the mapping ŷℓn = fθ(Hℓ
n′<n) (Sec. 2.1). Because baseline models lack

learner-specific parameters, we here describe the prediction process for a single learner, and omit
the superindex ℓ for clarity. Extending to multiple learners is straightforward since all parameters θ
are global. We use τn := tn − tn−1 to represent the time interval between consecutive interactions
of a learner ℓ, and the KC-specific interval τkn := tkn − tkn−1 for consecutive interactions with the
same KC k. The number of practice repetitions for each KC k up to time tn is denoted as ckn. The
dimension of embeddings D equals 16 in our experiments.

Table 6: Models. # Emb/KC is the number of learnable embeddings per KC. Forgetting is the
functional form of memory decay, with exponential (exp) decay the most common.

Feature HLR/PPE DKT DKTF HKT AKT GKT QIKT PSI-KT

# Emb/KC – 2 2 6 6 3 1 1
Forgetting exp – exp Hawkes – – – OU

We compare with eight baseline models (Sec. 4):

a) HLR (Settles & Meeder, 2016) uses the cumulative counts of correct, incorrect, and total
interactions of KC k until time tn, collectively denoted ckn =

[
ck,1n ck,0n ckn

]⊺ ∈ R3, as well
as the last interval τkn . When a learner interacts with KC xn at time tn, HLR predicts the
probability of a correct performance as:

ŷn := 2−τk
n/hk

n , with memory half-life hk
n := 2θ

⊺ck
n and k = xn. (19)

The learnable weights θ ∈ R3 modulate the influences of correct, incorrect, and total
interaction counts. The training process of HLR does not differentiate features from different
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KCs or learners, thus HLR cannot model the relational structure of KCs or any learner-
specific characteristics.

b) PPE (Walsh et al., 2018) is similar to HLR in predicting performance as a function of
interaction histories. It defines the activation mk

n of KC k at time tn, mk
n := (ckn)

β
(T k

n )
−α

with separate forgetting rate α and learning rate β. The forgetting term T k
n is a function

of the interaction history, which it summarizes as a weighted average of times τkn elapsed
between the exposures to a given KC prior to tn:

T k
n :=

n−1∑
i=1

wk
i τ

k
i , with wk

i = (τki )
−η

n−1∑
j=1

(τkj )
η
. (20)

The forgetting rate α is a function of a stability term κ and a cumulative average of interval
durations between KC exposures modulated by the slope λ:

αk
n = κ+ λ

(
1

n− 1

n−1∑
j−1

1

ln(τkj + e)

)
. (21)

Finally, PPE treats performance ŷn as a logistic function of mk
n with k = xn. The learnable

parameters are θ = {β, η, κ, λ}.
c) DKT (Piech et al., 2015) infers two separate embeddings uk = {uk,0, uk,1} for each KC k,

depending on performance. Here, uk,0, uk,1 ∈ RD represent incorrect interactions and
correct interactions on KC k, respectively, and are shared across all learners, with D being
the dimensionality of the embeddings. DKT trains an LSTM (Hochreiter & Schmidhuber,
1997) over Hn′<n to encode the combined information of KC indices and performance.
For each learner ℓ and all time points tn′<n, DKT takes performance embeddings uxn′ ,0 of
interacted KC xn′ as the input when the performance yn′ is incorrect, or uxn′ ,1 for correct
performance, i.e., DKT takes inputs un′ = uxn′ ,yn′ for all tn′ with n′ < n. DKT then
predicts the subsequent performance on all KCs ŷn = [y1n, . . . , y

K
n ]⊺ ∈ RK , and chooses

only the interacted one, i.e., the xn-th dimension:
hn = LSTM(un′<n;Wh, bh)

ŷn = σ(Wŷhhn + bŷ)

ŷn = ŷn[xn]. (22)
Thus, θ for DKT consists of the neural network parameters Wh, bh,Wŷh, bŷ .

d) DKTF (Nagatani et al., 2019) uses the same LSTM architecture and the same combined
KC-performance embeddings, uk = {uk,0, uk,1} that we described above for DKT. DKTF
uses additional 3-dimensional features tn := [τn, τ

k
n , c

k
n] representing the KC-unspecific

and KC-specific intervals defined above and the cumulative interaction counts ckn for KC k
until time tn. Then, for inputs of every time point tn′ , DKTF concatenates the time informa-
tion tn′ with KC performance inputs un′ for the interacted KC xn′ . DKTF predicts future
performances following the same architecture based on concatenated input [tn′<n;un′<n].

e) HKT (Wang et al., 2021) is the most similar model to our PSI-KT. It uses a Hawkes process
to model the structural influence on the state of KC k due to every other KCs state in the
past interactions i ∈ xn′<n until time tn:

mk
n = λk +

∑
i∈xn′<n

ai,kn κ(tkn − tin′)

κ(tkn − tin′) = exp
(
−
(
1 + βi,k

n log(tkn − tin′)
))

. (23)

Here mk
n includes a base level λk and all previous learned KCs’ influences ai,kn weighted by

the a temporal exponential decay κ(tkn − tin′). The base level λk reflects aspects of KC k
but also of the specific assignments that were interacted with at time point tn, given that
distinct assignments can provide practice for a single KC. To model cross-KC influences ai,kn ,
HKT infers embeddings {uk,0

a , uk,1
a , uk

a} ∈ RD for each KC k. Here uk,0
a , uk,1

a are defined
similarly to the DKT embeddings, whereas uk

a only depends on KC identity k. When
interacting with KC k at time tn, the influence on its state due to having interacted with KC i

at time tn′ with performance yn′ is estimated as ai,kn = (u
i,yn′
a )⊺uk

a. For the coefficient βi,k
n ,

HKT estimates three additional KC-specific embeddings {uk,0
β , uk,1

β , uk
β}, and follows similar
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calculations as for a above. HKT also predicts the performance ŷn as a logistic function of
mk

n with k = xn.

f) AKT (Ghosh et al., 2020) is a transformer-based model (Vaswani et al., 2017) that learns the
structure of KCs implicitly from the self-attention weights. Unlike LSTM models, which
only capture temporal information, AKT captures both temporal and structural relations.
Specifically, AKT first initializes three embeddings {uk,0

a , uk,1
a , uk

a} for each KC k and a
scalar µq for each specific assignment q, representing its difficulty level. For each KC k,
these embeddings are defined as in HKT to separately reflect KC-specific correct/incorrect
interactions and KC identity. However, AKT combines these representations with three
additional embeddings {uk,0

b , uk,1
b , uk

b}, in order to account for difficulty levels. When
a learner interacts at time tn′ with an assignment q related to KC k, the KC identity
embedding becomes uk = uk

a + µquk
b ; after assessing the performance at time tn′ , the

interaction embeddings are similarly updated as uk,yn′ = u
k,yn′
b + µqu

k,yn′
b . Consequently,

a learner’s entire interaction historyHn′<n is represented as a sequence of these combined
KC-interaction-difficulty embeddings. AKT processes these sequential embeddings as input,
using KC embeddings as queries and keys, and interaction embeddings as values within its
attention mechanism. To predict performance ŷn given the KC and assignment, AKT uses
the KC embeddings at time tn to compare with previous queries and keys in the learning
history, and then extract the value. Details about the transformer architecture can be found
in Ghosh et al. (2020).

g) GKT (Nakagawa et al., 2019) applies a graph neural network to leverage the graph-structured
nature of knowledge. Like AKT, GKT initializes three embeddings {uk,0, uk,1, uk} for each
KC k, but instead of only using the embeddings to determine the KC relations, GKT learns
an additional undirected KC graph, represented by its adjacency matrix A. Here aij = 1
represents KC i and KC j are related, i.e., there is information transmission among KC i
and KC j every time the model gets updated. To use the KC relations, GKT first aggregates
the hidden states hk

n and embeddings for the KC reviewed at time tn, k and its neighboring
KCs i:

(hk
n)

′ =

{[
hk
n, u

xn,yn
]

(i = k)[
hk
n, u

i
]

(i ̸= k with aik = 1)

After aggregating the information from the neighboring KCs, GKT updates the hidden states
based on the aggregated features and the graph structure:

hk
n+1 =

{
fθ(h

k,′
n ,hk

n) (i = k)

fθ((h
k
n)

′, (hi
n)

′,hk
n) (i ̸= k with aik = 1).

Finally, GKT uses an MLP layer to predict the probability of a correct answer at the next
time step, ŷkn+1 = fθ(h

k
n+1) where k = xn+1.

h) QIKT (Chen et al., 2023) focuses on assignments together with KCs, where multiple different
assignments can test one KC. Inspired by item-response theory (IRT) (Lord, 2012), QIKT de-
fines three modules, each parameterized by a neural network, to infer interpretable features,
namely assignment-specific knowledge acquisition αn, assignment-specific problem-solving
ability ζn+1, and assignment-agnostic but KC-specific knowledge mastery βn. Apart from
neural network parameters, QIKT learns three sets of assignment-specific embeddings
{vq,0, vq,1, vq}, which have the same purpose as the KC embeddings defined in AKT,
namely for correct interactions, incorrect interactions, and assignment identity. Further-
more, another set of KC-specific embeddings uk is learned for KC-specific features. QIKT
uses LSTM and sum pooling to learn the three features based on each learner’s history,
αn := fθ(V1:n, U1:n), βn := fθ(U1:n), where V1:n and U1:n denote respectively the all
the assignments and KC embeddings in the learning history. The problem-solving ability
ζn+1 := fθ(V1:n+1, U1:n+1) is learned by including the assignment and KC information in
the coming interaction. To predict performance, all three features are aggregated and input
into the sigmoid function, ŷn+1 = σ(αn + βn + ζn+1).

A.3.2 DATASETS

Here we describe the datasets that we have used for evaluation (Assist12, Assist17, and Junyi15),
articulate the reasons for their selection, and discuss some of the limitations derived from this choice.
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Assist12 Assist17 Junyi15
All > 50 All > 50 All > 50

# Interactions 6,123,270 2,431,788 942,816 942,489 25,925,992 23,907,121
# Learners 46,674 12,443 1,709 1,697 247,606 77,655
# Assignments 179,999 51,866 3,162 3,162 5,174 6,174
# KCs 265 263 102 102 722 721

KC Examples
Rounding
Unit Rate

Perimeter of a Polygon

substitution
fraction-division
prime-number

matrix_basic_distance
circles_and_arcs
arithmetic_means

Table 7: Overview of Educational Datasets Assist12, Assist17, and Junyi15, including the number of
interactions, learners, assignments, and KCs from overall log data (All) and the log data including
learners with more than 50 interactions (> 50).

Description of the selected datasets Assist12 and Assist17 are two subsets of the ASSISTments
dataset released by Worcester Polytechnic Institute (Selent et al., 2016). ASSISTments is an online
educational tool widely used in U.S. mathematics classes for learners from grades 4 to 12. Predom-
inantly, its users are middle school students (grades 6-8) from Massachusetts or its vicinity. This
platform is used for both classroom and homework assignments, and can be used with or without
accompanying paper materials. One of the key features of ASSISTments is the immediate feedback
provided to students after they answer a question, allowing them to promptly know whether their
response was correct.

Junyi Academy is a non-profit Chinese online education platform. Their Junyi15 data release reports
the interactions of more than 72,000 students solving mathematics assignments over a year, totaling
16 million attempts. These interaction logs are provided along with two commissioned annotation
sets (‘expert’ and ‘crowd-sourced’) concerning the structure of 837 KCs in the curriculum. Expert
annotations, provided by three teachers, consist of 553 identified prerequisite relations. Crowd-
sourced annotations, provided by 51 graduates from senior high school or higher, consist of both
prerequisite and similarity evaluations for 1954 KC pairs, with each relation strength rated on a scale
from 0 to 9 by at least 3 workers.

We report the numbers of learners, KCs, assignments, and interactions for each dataset in Table 7. In
Figure 6 we complement this basic characterization with histograms of the number of per-learner
interactions, KCs, and assignments, as well as histograms of elapsed time between learner interactions
with arbitrary KCs as well as between interactions with the same KC.

Criteria for dataset selection In order to empirically test our model of learning in structured
domains, we sought datasets from domains with a clear prerequisite structure that provide (1)
identifiable KC labels, and (2) interaction times with sufficient temporal resolution. In domains where
prerequisite relations between KCs are strong, the correct learning order is key for performance,
so that performance data be used to uncover structural relations. Additionally, the dependencies in
these domains can be identified independently by human annotators, which we use to validate model
inferences about the knowledge structure.

1. Identifiable KC labels. Some datasets do not identify the specific KC reviewed at an interac-
tion, but rather a more general assignment or task that could involve multiple unspecified
KCs. While this assignment structure can be explicitly modeled (e.g. our baselines AKT,
HKT, and QIKT), and we do intend to extend our model in future work to cover this setting,
here we intentionally avoided modeling assignment features and concentrated directly on
the underlying KCs and their dependencies, which requires KC identities.

2. Timestamped interactions with high temporal resolution. A resolution in the order of seconds
or less is essential to adequately track the initial phases of the forgetting process, and to
model structural influences that depend on the precise order of KC presentation (see Eq. 5).

Following these criteria, we had to exclude the Statics2011 dataset due to a lack of identified KCs.
The Assistments2009 and Assistments2015 datasets lack timestamps entirely, while the 15-minute
temporal resolution of the Junyi20 dataset is too coarse for our purposes. This leaves us with Assist12,
Assist17, and Junyi15 as appropriate choices to evaluate KT on structured domains. Besides abundant
interaction data, Junyi15 provides human-annotated KC relations that, while noisy, offer an invaluable
reference to compare the inferred prerequisite graphs.
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Limitations The selection of datasets is limited by design to structured domains, where we can
more appropriately put to the test our structure-aware model. We acknowledge that when KCs are
largely unrelated (e.g., general knowledge trivia) the inference of prerequisite structure may confer
no real advantage. Mathematics, in contrast, provides an ideal testing ground, but more interaction
datasets from other domains (e.g., biology, chemistry, linguistics...) and learning stages (primary
school, college) are needed for a more representative assessment of the role of structure in learning. In
the future, we intend to extend our model to accommodate a broader range of datasets, addressing, in
particular, the common case where a single interaction, such as an assignment or a task, is associated
with multiple KCs, which entails a more complex interplay of KCs than is displayed in our current
dataset selection (Wang et al., 2020).

A.4 PSI-KT MODEL ARCHITECTURE

A.4.1 NETWORK DETAILS

In this section, we introduce the detailed architecture of our PSI-KT model and its hyperparameters.
The inference network consists of an embedding network fEmb

ϕ , the cognitive traits encoder fs
ϕ,

and the knowledge states encoder fz
ϕ . The weights of these interconnected networks collectively

constitute the inference parameters ϕ.

Interaction embedding network. The network fEmb
ϕ extracts features from the learning history

tuples Hℓ
1:N = {xn, yn, tn}ℓ1:N , combining information about interaction time, KC identity and

performance.

The KC identity embedding for KC xn corresponds to the learned embedding uxn , which is part of
the generative model that parameterizes the graph structure. The performance embedding is obtained
by expanding the scalar value yn into a vector y⃗n with the same dimensionality as the time and
KC embeddings so that the performance features will be represented on an equal footing. We then
concatenate the KC embedding uxn with the performance embedding y⃗n. The interval embedding
is a positional encoding (Vaswani et al., 2017), PEn = (sinα(τn); cosα(τn)). This embedding
approach accommodates intervals spanning different timescales, from minutes to weeks.

Thus, the joint embedding for a learning interaction is given by vn = fϕ,Emb([u
xn ; y⃗n]) + PEn,

inspired by the transformer architecture (Vaswani et al., 2017).

Latent state encoder. The network fz
ϕ infers the parameters of the variational posterior distri-

bution qϕ(z1:n). Since learning histories do not have a pre-determined length, we use an LSTM
(Hochreiter & Schmidhuber, 1997) as the inference architecture. At each time point, we extract
the hidden states in the LSTM, hz1:n

= LSTM(v1:n). Meanwhile, in the continual learning setting,
information about the history is already encoded and available in the variational parameters for the
last time step ϕn−1, so we use a multi-layer perceptron (MLP), hzn = MLP(vn). Finally, another
MLP (similar to the encoder in Kingma & Welling, 2014) takes the hidden states hzn at every time
point as inputs and produces the mean µzn ∈ RK and log-variance log σzn ∈ RK for knowledge
states zn.

Latent trait encoder. The network fs
ϕ infers the parameters of the variational posterior distri-

bution qϕ(s1:n). The resulting approximate posterior distribution enables the sampling of learner-
specific traits to facilitate personalized predictions. One immediately obvious approach is to use
the same architecture of fz

ϕ . However, the unimodal Gaussian prior over the latent variables cannot
account for the diversity of cognitive trait combinations that we expect to find across learners in
diverse cohorts. What we need is to allow for multimodality in the distribution of s over all learners.

There is work on factorizing the joint variational posterior as a combination of isotropic posteriors, us-
ing a mixture of M experts (MoE; Shi et al., 2019), i.e., qϕ(sℓ1:n |Hℓ

1:n) = 1/M
∑

m qϕm
(sℓ1:n |Hℓ

1:n),
assuming the different modalities are of comparable complexity. However, this may lead to over-
parameterization. Instead, inspired by Dilokthanakul et al. (2016), we opt for a mixture of Gaussians
as a prior distribution that generalizes the unimodal Gaussian prior and provides multimodality. By
assuming that the observed data arises from a mixture of Gaussians, determining the category of
a data point becomes equivalent to identifying the mode of the latent distribution from which the
data point originates. This approach allows us to partition our latent space into distinct categories.
With these discrete variables, it is no longer possible to directly apply the reparameterization trick.
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Table 8: PSI-KT architecture and hyperparameters. FC(a, b) represents a fully connected layer
with input dimension a and output dimension b; K represents the number of KCs, different across
datasets; C represents the number of categories in the mixture of Gaussians for s (we use C = 10 in
our experiments); the semicolon ; separates connected layers, while the slash / separates the layer
architecture for inference on entire histories from the continual learning set-up, where different.

Inputs & Dim Hidden Layers Outputs

fEmb
ϕ

KC Emb & 16
Perf Emb & 16

FC (32, 16)
LeakyReLU(0.2)

FC (16, 16)
vn

fz
ϕ vn & 16

LSTM (16, 32) / FC (16, 32)
FC (32, 16); LeakyReLU(0.2)
FC (16, 16); LeakyReLU(0.2)

FC (16, K); FC (16, K)

µzn , log σzn

fs
ϕ vn & 16

FC (16, 32)
FC (32, 16); LeakyReLU(0.2)
FC(16, 64); LeakyReLU(0.2)
GumbelSoftmax(FC(64, C))

FC(32 + C, 64); LeakyReLU(0.2)
FC(64, 16); LeakyReLU(0.2)

FC(16); FC(64, 4)

µsn , log σsn

To solve this inference challenge, we modify the standard VAE architecture by incorporating the
Gumbel-Softmax trick (Jang et al., 2016). We employ an LSTM network, taking history embed-
dings v1:n as inputs and generating one of C category labels through the Gumbel-Softmax technique,
denoted as w = LSTM(v1:n) ∈ Cat(π). Here Cat(π) represents the categorical distribution with
probabilities π ∈ ∆C . Simultaneously, we capture hidden states at each time point as hz1:n . Subse-
quently, we utilize an MLP to process both the category label and hidden states as input, producing
the mean µsn ∈ R4 and log-variance log σsn ∈ R4 of latent states sn for each time point.

Table 8 presents an overview of the PSI-KT model architecture and hyperparameters used for all
experiments.

A.5 PREDICTION AND GENERALIZATION EXPERIMENTS DETAILS

A.5.1 WITHIN-LEARNER PREDICTION RESULTS AND TRAINING HYPERPARAMETERS

In our prediction experiments, we employ a supervised training approach. For each learner, the first
10 interactions from their learning history are used for training, with the subsequent 10 interactions
used as the test set. To report results, we reserve 20% of the learners as a validation set. We employ
the Adam optimizer (Kingma & Ba, 2014) with an initial learning rate of 0.005 and apply gradient
clipping with a threshold of 10.0. We use a linear decay schedule for the learning rate, halving it
every 200 epochs. Additionally, we maintain a consistent batch size of 32 across models.

In Figure 2 in the main text, we present the average accuracy curves for comparison. For a more
comprehensive overview of our training protocols, including accuracy, F1-score, and their standard
deviation across 5 random seeds, please refer to the detailed results provided in Appendix Tables 9
and 10.

In our baseline models, the original approach was to predict a single time point in the future using
all available historical data. However, we believe that relying solely on short-term predictions is
insufficient for capturing long-term trends in learners’ performance, which is crucial for making
accurate recommendations for customized learning materials. Moreover, it’s often impractical to
assume that we can always access ground-truth data for immediate predictions. Therefore, we predict
10 time points into the future, using the predicted performances as inputs for each step. In other
words, instead of using ground-truth data, if the model can predict ŷn based on all previous training
data yn′<n, we incorporate the predicted performance along with the historical data [yn′<n; ŷn] to
predict ŷn+1.

In the evaluations, we chose to focus on prediction and generalization on a small group of learners,
with numbers ranging from 100 to 1,000. This decision is based on the reality that, in educational
settings, large datasets are not always available or practical. Additionally, little data is key in practical
ITS to minimize the number of learners on an experimental treatment, to mitigate the cold-start
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Table 9: Accuracies for within-learner prediction across numbers of learners (mean ± SEM across
random seeds).

Dataset # Learners HLR PPE DKT DKTF HKT AKT GKT QIKT PSI-KT

100 .54.03 .65.01 .65.03 .60.01 .55.01 .67.02 .63.03 .63.03 .68.02
200 .55.02 .63.03 .66.02 .62.01 .58.01 .67.02 .61.02 .66.02 .70.02
300 .55.01 .66.01 .67.01 .62.00 .58.01 .69.02 .65.02 .65.02 .71.01
400 .55.01 .65.01 .68.01 .63.01 .60.02 .67.03 .63.02 .66.01 .71.01
500 .55.01 .64.01 .67.01 .63.01 .59.03 .67.02 .63.02 .65.02 .70.01

Assist12

1,000 .54.00 .65.00 .68.01 .63.01 .60.01 .70.02 .64.01 .64.01 .70.01

100 .45.01 .53.02 .57.02 .53.03 .52.03 .56.02 .56.04 .58.02 .63.02
200 .45.01 .53.02 .57.02 .54.02 .54.01 .55.01 .56.02 .60.02 .63.01
300 .46.01 .53.01 .57.02 .55.02 .55.02 .56.04 .58.02 .61.01 .63.01
400 .45.01 .53.01 .56.01 .57.02 .56.02 .56.02 .58.02 .61.01 .64.00
500 .46.01 .53.00 .60.01 .58.01 .54.01 .56.02 .58.01 .61.02 .63.01

Assist17

1,000 .44.01 .55.01 .60.01 .57.01 .57.01 .61.01 .60.01 .63.01 .64.00

100 .55.02 .66.03 .79.03 .78.01 .63.02 .81.02 .78.02 .81.02 .83.02
200 .57.01 .65.03 .79.01 .78.02 .68.03 .80.01 .80.01 .80.01 .84.01
300 .56.02 .65.03 .81.01 .79.01 .70.01 .81.01 .78.02 .81.01 .85.01
400 .61.02 .65.02 .81.01 .80.02 .69.02 .82.02 .75.02 .80.01 .85.01
500 .61.01 .67.02 .82.01 .80.02 .70.01 .82.02 .78.02 .81.01 .85.01

Junyi15

1,000 .59.01 .66.02 .81.01 .81.00 .69.01 .82.01 .79.02 .83.01 .85.01

Table 10: F1 scores for within learner prediction across learner numbers (mean ± SEM across random
seeds.)

Dataset # Learners HLR PPE DKT DKTF HKT AKT GKT QIKT PSI-KT

100 .59.02 .77.01 .77.03 .72.01 .64.01 .79.02 .76.01 .73.03 .80.01
200 .60.02 .74.03 .78.02 .73.01 .68.01 .76.02 .74.02 .77.02 .82.01
300 .59.02 .77.01 .79.01 .74.00 .69.01 .73.03 .76.02 .77.01 .83.01
400 .60.02 .77.01 .79.01 .74.01 .70.03 .73.03 .75.01 .76.01 .83.01
500 .60.01 .76.01 .79.01 .74.01 .64.10 .74.02 .75.02 .76.01 .82.01

Assist12

1,000 .60.01 .76.00 .79.00 .74.01 .71.01 .73.02 .76.01 .76.01 .82.00

100 .45.01 .44.01 .42.02 .40.03 .42.03 .40.02 .40.02 .41.02 .48.03
200 .45.01 .44.01 .40.03 .42.01 .43.01 .44.01 .41.02 .43.02 .47.04
300 .45.01 .45.02 .40.02 .41.01 .42.03 .45.03 .42.01 .44.03 .46.03
400 .44.01 .44.02 .41.01 .42.02 .43.02 .45.03 .42.02 .45.01 .47.03
500 .46.01 .45.01 .40.01 .42.00 .40.10 .45.02 .43.02 .45.01 .47.02

Assist17

1,000 .44.01 .44.02 .40.01 .43.00 .43.03 .46.02 .43.02 .47.01 .47.04

100 .53.02 .70.03 .88.02 .87.01 .75.03 .89.01 .87.01 .89.01 .92.01
200 .54.02 .71.02 .88.01 .87.01 .80.02 .88.01 .88.01 .89.01 .91.01
300 .53.02 .71.02 .89.01 .88.01 .80.01 .90.01 .87.02 .89.01 .92.01
400 .52.02 .72.03 .89.01 .88.01 .80.01 .90.01 .87.02 .89.01 .92.02
500 .53.01 .70.02 .89.01 .88.01 .74.08 .88.01 .86.01 .89.01 .92.01

Junyi15

1,000 .52.01 .71.02 .90.01 .89.00 .80.02 .90.01 .85.01 .90.01 .93.00

problem, and extend the usefulness of the model to classroom-size groups. To provide ITS with
a basis for adaptive guidance and long-term learner assessment, we always predict the 10 next
interactions.

In order to ensure a fair evaluation of deep learning models and to avoid biasing our results, we
expanded our dataset to include over 1,000 learners. This expansion was done post-filtering, where
we excluded learners with fewer than 50 interactions. Additionally, 20% of these learners were
designated as a validation set. The average accuracy, along with the number of learners and the
number of parameters used in each model, is detailed in Table 11.

It’s crucial to recognize that deep learning models, despite benefiting from extensive datasets, face
specific challenges. Firstly, PSI-KT has remarkable predictive performance when trained on small
cohorts whereas baselines require training data from at least 60k learners to reach similar performance.
Secondly, the deployment of these deep learning models in real-time applications is challenging due
to their substantial number of parameters.

A.5.2 BETWEEN-LEARNER FINE-TUNING HYPERPARAMETERS

For between-learner generalization, we employ pre-trained models from within learner prediction,
where the details can be found in Appendix A.5.1. These models are trained using data from 100
learners, and we retain the one that achieved the highest prediction accuracy on the validation set.
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Table 11: Accuracy score in within-learner prediction with all learners in each dataset (mean ± SEM
across random seeds).

Dataset # Learners HLR PPE DKT DKTF HKT AKT GKT QIKT PSI-KT

Assist17 1,358 .46.00 .55.00 .58.01 .55.01 .57.01 .60.01 .60.01 .61.01 .64.00
Assist12 9,954 .44.02 .47.00 .69.00 .66.00 .66.00 68.01 .70.00 .68.00 .70.01
Junyi15 62,124 .65.01 .71.01 .85.00 .85.00 .84.01 .86.01 .86.02 .86.00 .85.01

Then, predictions are made by randomly selecting 100 learners from the group that were not included
in the training or validation sets.

In the experiment without fine-tuning, we directly apply the pre-trained models to unseen out-of-
sample learners and present the results in Table 2. This entails using the pre-trained models to predict
the next 10 interactions for out-of-sample learners based on their first 10 interactions as input.

In the fine-tuning experiment, we perform fine-tuning for each model using a batch size of 32.
Additionally, we also set aside 20% of the learners as a validation set during this process to save
the model that achieves the highest accuracy after fine-tuning. For baseline models, HLR, PPE, and
HKT, which are comprised entirely of learner-independent and KC-dependent parameters, we conduct
fine-tuning for all of these parameters. In this scenario, we use the pre-trained models as the initial
weight values for the fine-tuning process. Conversely, for models DKT, DKTF, and AKT, we perform
fine-tuning specifically on their KC embedding parameters and the last fully connected layer within
the neural network, while keeping the remaining layers frozen during the fine-tuning process.

A.5.3 CONTINUAL-LEARNING RESULTS

Table 12: Continual learning accuracy. We report accuracy in predicting 10 subsequent outcomes. #
Data indicate the number of interactions from each learner for training.

Dataset # Data 10 20 30 40 50 60 70 80 90

HLR .54.03 .57.08 .58.08 .59.09 .57.10 .56.07 .54.07 .55.06 .57.08
PPE .65.01 .55.07 .53.07 .52.08 .54.06 .57.06 .59.06 .61.06 .69.04
DKT .65.03 .66.07 .64.06 .68.05 .69.04 .66.05 .66.05 .68.03 .65.01
DKTF .60.01 .67.04 .65.04 .64.04 .66.03 .62.06 .61.04 .63.02 .63.02
HKT .55.01 .56.05 .62.04 .62.05 .63.02 .60.02 .61.03 .61.02 .62.02
AKT .67.02 .66.04 .62.04 .61.04 .61.05 .65.02 .62.02 .61.02 .63.02
GKT .65.02 .62.02 .62.01 .64.05 .65.04 .65.03 .66.06 .65.05 .65.05
QIKT .70.02 .63.01 .64.02 .63.01 .62.03 .62.01 .62.02 .62.02 .63.01

Assist12

PSI-KT .68.02 .70.03 .68.03 .72.03 .75.02 .73.03 .74.02 .74.02 .74.02

HLR .45.01 .46.07 .45.07 .53.06 .55.08 .57.06 .55.06 .55.04 .54.03
PPE .53.02 .52.06 .52.06 .52.07 .52.06 .52.05 .51.05 .54.04 .56.04
DKT .57.02 .52.05 .52.05 .52.06 .59.04 .57.05 .60.04 .63.02 .59.03
DKTF .53.03 .58.05 .54.05 .58.05 .58.04 .55.05 .56.05 .56.04 .61.02
HKT .52.03 .57.04 .60.03 .60.03 .62.02 .61.03 .61.02 .60.02 .61.02
AKT .56.02 .53.05 .52.06 .54.04 .53.04 .53.02 .50.03 .51.03 .57.02
GKT .63.02 .59.05 .54.04 .60.04 .56.03 .54.02 .57.02 .58.02 .58.03
QIKT .65.02 .58.03 .59.03 .56.05 .58.03 .56.02 .58.02 .58.01 .56.02

Assist17

PSI-KT .63.02 .62.04 .65.04 .60.05 .60.05 .62.05 .62.04 .62.04 .64.03

HLR .55.02 .43.06 .42.06 .44.05 .60.04 .63.04 .63.03 .63.04 .64.03
PPE .66.03 .67.06 .64.06 .64.05 .62.04 .63.05 .60.05 .60.03 .61.03
DKT .79.03 .80.04 .78.04 .76.05 .77.04 .75.04 .84.04 .73.02 .74.01
DKTF .78.01 .74.05 .77.05 .74.06 .71.05 .71.04 .74.03 .71.03 .72.02
HKT .63.02 .63.08 .69.07 .67.07 .70.04 .73.04 .73.03 .79.02 .84.02
AKT .81.02 .79.04 .78.05 .79.04 .75.04 .75.03 .76.03 .74.02 .74.03
GKT .82.01 .80.02 .78.03 .78.03 .79.04 .79.03 .79.03 .79.02 .80.02
QIKT .84.00 .80.02 .80.05 .78.03 .78.04 .81.03 .80.02 .78.01 .85.02

Junyi15

PSI-KT .83.02 .81.04 .81.04 .80.04 .77.06 .81.04 .82.04 .83.03 .84.03

In this experiment, we randomly select 100 learners using five different random seeds, and collect
their first 100 interactions. Initially, the models are trained using only the first 10 interactions,
following the same setup as in the within-learner prediction experiment. Following the initial training,
we continuously integrate new interaction data into the training process, introducing one interaction
at a time for each learner. The model iteratively predicts the subsequent 10 performances. This
simulates a common real-world scenario, where learners continually interact with existing or even
new KCs.

In the objective function ELBO shown in Eq. 10, all historical information up to time tn has
already been fully encoded into the variational parameters ϕn. Additionally, to allow for the
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Table 13: Specificity, consistency, and disentanglement.

Metric Dataset DKT DKTF AKT QIKT PSI-KT

Specificity
MI(s; ℓ) ↑

Assist12 8.83 6.62 6.45 2.47 8.40
Assist17 8.08 7.50 10.05 2.95 9.98
Junyi15 12.75 13.50 13.34 4.09 14.37

Consistency−1

Eℓsub MI(sℓ; ℓsub) ↓

Assist12 14.13 12.24 20.15 8.35 7.48
Assist17 14.95 13.11 24.47 6.35 6.35
Junyi15 13.10 17.81 22.15 7.66 5.00

Disentanglement
DKL(s∥ℓ) ↑

Assist12 -1.64 0.38 -8.17 2.31 7.42
Assist17 -3.01 -0.44 -9.81 0.56 8.39
Junyi15 -0.62 4.96 -6.65 1.57 11.49

possibility of learners encountering a new KC during their learning journey, we allow for opti-
mization over the KC parameters in the generative model. As a result, when new interaction
data I = (xn+1, yn+1, tn+1)

1:L becomes available at time tn+1, we use the new data to update both
the inference model parameters ϕn+1 and the generative model parameters U and M which are
related to KCs.

For the baseline models, which are designed to predict performances based on fixed learning histories,
there is no need to update the model parameters for each new data point from each learner individually.
Instead, when new interaction data, denoted as I = (xn+1, yn+1, tn+1)

1:L, becomes accessible at
time tn+1, we update all the model parameters using all the interaction data collected up to that
point, referred to as H1:n+1. This update is performed through 10 gradient descent processes. It
is important to note that we do not include an additional validation set to determine when to stop
training each model separately. Instead, we aim for a fair comparison among all models, ensuring
that they are trained on equal footing with the same limited data and resources available to them.

A.6 LEARNER-SPECIFIC REPRESENTATIONS ANALYSIS

In this experiment, we examine temporal latent features (learner representations) derived from
baseline models. When considering baseline models, it is noteworthy that only DKT, DKTF, AKT,
and QIKT incorporate learner-specific temporal embedding vectors. While HKT utilizes temporal
embeddings, all these embeddings originate from global parameters associated with KCs, rendering
them non-learner-specific. Consequently, our comparative analysis focuses exclusively on PSI-KT
compared with DKT, DKTF, AKT, and QIKT.

We initially present comprehensive results in Table 13, complementing Table 3 from Section 4.3,
wherein only the results from the best-performing baseline models are displayed. Subsequent sections
will detail the experimental setups and metrics employed.

A.6.1 EXPERIMENTAL SETUP FOR SPECIFICITY

In personalized learning, we assume each learner has a unique cognitive profile shaped by past
experiences and educational contexts. Our first step is to connect learner representations sℓn with
these inherent learner-specific cognitive traits, i.e., the specificity of learners given corresponding
representations.

To quantify specificity, we employ mutual information, denoted as MI(s; ℓ) := H(s) − H(s|ℓ)
among all learners, as a measure of the information shared between learner identities and learner
representations. The detailed computation of the metric MI(s; ℓ) is outlined as follows:

MI(s; ℓ) = H(s)− H(s|ℓ)

= −
∫

p(s) log p(s)− 1

L

∑
ℓ

∫
p(s|ℓ) log p(s|ℓ)

=
1

2

(
D(1 + log 2π) + log |Σs|

)
− 1

2L

∑
ℓ

(
D(1 + log 2π) + log |Σsℓ |

)
=

1

2

(
log |Σs| −

1

L

∑
ℓ

log |Σsℓ |
)
. (24)

Here Σs and Σsℓ are the covariance matrices obtained from fitting learner representations from all
L learners or, respectively, a single learner with a Gaussian distribution, and D is the dimensionality
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of learner representations. In experiments, we begin by randomly selecting 1,000 learners from
each dataset and then extracting their first 50 interactions for training. To determine when to stop
training effectively, we set aside a validation set of 20% of learners, which amounts to 200 learners
in our case. This setup mirrors our approach in the prediction experiment. The metric MI(s; ℓ) is
calculated for the learners in the training set. Since our goal here is to evaluate the model’s capacity
to distill representations sℓ that uniquely identify learners, there is no need for a test set. Note that the
baseline models have higher-dimensional learner representations (16 dimensions in our experiments),
potentially allowing them to capture more information.

A.6.2 EXPERIMENTAL SETUP FOR CONSISTENCY

We proceed with a supplementary consistency analysis to determine, among the shared information
quantified in specificity, whether the learner representations capture intricate learner attributes or
merely reflect transient dynamic fluctuations. In the experiment, we split the interaction data of
each learner into five separate groups, i.e., subsets. Each subset contains 30 interactions. These
specific sizes were chosen to ensure we have both enough learners for robust training and enough
interactions in subsets to estimate covariance matrices for our metrics. We thus exclude learners who
have engaged in fewer than 150 interactions.

To form subsets, we find out the average presentation time of each KC and assign the KCs to separate
subsets, so that the overall average interaction time is as similar as possible across subsets. With this,
we aim to wash out, to the extent possible with the limited amount of data, systematic biases in the
partition induced by the dependence of learner representations on time.

The mutual information metric Eℓsub MI(sℓ; ℓsub) := Eℓsub [H(s|ℓ)− H(s|ℓsub)], employed in the
consistency experiments, undergoes the a similar derivation process to Eq. 24.

Eℓsub MI(sℓ; ℓsub) =
1

L

∑
ℓ

(
H(s|ℓ)− 1

5

∑
ℓsub

H(s|ℓsub)
)

=
1

L

∑
ℓ

(
−E
[
logN

(
µsℓ ,Σ

2
sℓ

)]
+

1

5

∑
ℓsub

E
[
logN

(
µsℓsub ,Σ

2
sℓsub

)])
=

1

L

∑
ℓ

(
log |Σsℓ | −

1

5

∑
ℓsub

log |Σsℓsub |
)
. (25)

We fit each sub-learner separately and quantify the divergence metric Eℓsub MI(sℓ; ℓsub) between learn-
ers and their sub-learners. A lower value of Eℓsub MI(sℓ; ℓsub) suggests a higher degree of consistency,
reflecting the difficulty in distinguishing between sub-learners and their corresponding overarching
learners given learner representations. Overall, Table 3 shows that the learner representations of
PSI-KT provide comparable learner specificity and superior consistency. The lower consistency
displayed by baseline models suggests that most of the representational capacity available in their
higher-dimensional representations might be spent on capturing learner-unspecific characteristics of
the training sample.

A.6.3 EXPERIMENTAL SETUP FOR DISENTANGLEMENT

With the insights gained from specificity, our analysis progresses to evaluating to what extent
learner-specific representations, are disentangled. Disentanglement in machine learning has been
characterized as the process of isolating and identifying distinct, independent, and informative
generative factors of variation in the data (Bengio et al., 2013).

In our disentanglement experiments, we use the same setup for specificity, and compute the discrep-
ancy DKL(s∥ℓ) based on 50 interactions of 1,000 learners. Our approach bears similarity to (Kim &
Mnih, 2018), but we relax the unrealistic assumption of independent representations. In real-world
scenarios, independence in cognitive attributes is not a priority. To assess how much information
about learner identity is present in the covariance across the representation dimension, we use the
divergence between full trait-vector entropy and diagonal learner-conditional trait-vector entropy.
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Table 14: (regression coefficient, p-value) tuples for performance difference and initial performance
across models and latents’ dimensions. If there is no significant dimension in one model and dataset
(p > 0.05), we show the dimension with the highest regression coefficient. Bold values indicate the
dimension and the baseline model with the highest statistically significant linear relationship in one
dataset, with which we show the regression results in Figures 8 and 9.

Behavioural
signature Dataset DKT DKTF AKT PSI-KT

Performance
difference

Assist12 (-.009, .643) (.008, .736) (-.009, .665) (.300, <.001)
Assist17 (-.008, .758) (-.029, .304) (-.001, .957) (.556, <.001)
Junyi15 (-.003, .853) (.021, .771) (.025, .064) (.721, <.001)

Initial
performance

Assist12 (.021, .078) (.039, .008) (.017, <.001) (.544, <.001)
Assist17 (.048, .004) (.038, .030) (.010, .030) (3.705, <.001)
Junyi15 (-.025, .034) (.044, .021) (.017, <.001) (.921, <.001)

The discrepancy DKL(s∥ℓ) is estimated by the full entropy of representations H(s) and the diagonal
elements of the covariance matrix in the conditional entropy H(s|ℓ)

DKL(s∥ℓ) := H(s)full − H(s|ℓ)diag =
1

2

(
log |Σs| −

1

L

∑
ℓ

D∑
i=1

log (Σs|ℓ)ii

)
. (26)

Small non-diagonal elements of the covariance matrix in H(s) suggest low cross-correlations. This
can be interpreted as a form of disentanglement. As illustrated in the third row of Table 3, the
representations from PSI-KT consistently exhibit a higher degree of disentanglement across all
datasets.

A.6.4 MIXED-EFFECT LINEAR REGRESSIONS IN OPERATIONAL INTERPRETABILITY

Mixed-effects regression extends linear regression to handle data with hierarchical or clustered
structures, such as repeated measurements from the same subjects (learners in our case). Taking one
of our experiments as an example, we conduct regressions based on yℓn ∼ µ̃ℓ,k

n + (1 | learner). Here,
yℓn represents the dependent variable and µ̃ℓ,k

n is a predictor variable at time tn. Also, (1 | learner)
represents the random intercept associated with each learner. This random intercept accounts for
variability between learners that cannot be explained by the fixed effect µ̃ℓ,k

n . In other words, it
accounts for the fact that different learners might have different biases in their responses, allowing us
to capture a more robust estimate of the group-level effect.

For regression calculations, we use the models trained in the prediction experiments, as described in
Section A.5. For consistent comparisons with specificity experiments, we opt for models trained on a
group of 1,000 learners. This experiment goes beyond a simple sanity check (as in Sec. A.6.1), so
we use the testing data. This choice aligns with our objective of using operational interpretability to
gain insights and inform future controlled experiments with unseen data. We use pre-trained models,
specifically DKT, DKTF, AKT, and our PSI-KT model, selected based on their accuracy scores on the
validation data.

To fairly compare with baseline models, we investigate whether any dimensions within the learner
representations capture behaviors similar to our interpretable cognitive traits. Thus, we perform
regression for each dimension within the learner representations of the baseline models. While
Figure 4 in the main paper presents the regression results concerning the dimension featuring the
most pronounced correlation among baseline models, we provide a complete list of dimensions that
exhibit significant relationships with the behavioral data in Table 14.

Performance decay and forgetting rate To analyze the exponential decay of learner performances
over time, we first show the relationship between performance decay ∆yℓn and the raw time differ-
ence τ ℓn, which is divided into 10 bins. We select bin centers to ensure an equal number of data
points in each bin. This binning approach helps minimize the impact of outliers and ensures a
balanced representation of data within each bin. Also, we show the relationship between decay ∆yℓn
and the time difference scaled by the corresponding forgetting rate αℓ

n at each time point, or each
dimension of learner representations in the baseline models. We assume that if the forgetting rate αℓ

n
is meaningful for each time interval and effectively controls the decay, then the standard error of
behavior data ∆yℓn within each bin should be smaller than the error of binning raw time differences.
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This indicates that the decay is better described as a function of αℓ
nτ

ℓ
n than as a function of τ ℓn alone.

We also compute the standard error for each dimension of learner representations in the baseline
models, and we show the dimension v∗n with the lowest standard error in Figure 8. Then, we perform
mixed-effect regression over the exponential term exp(−αℓ

n τ
ℓ
n) (or exp(−v∗n τ ℓn) in baselines) to

assess how well learner representations predict performance decay (as an exponential function). The
results show that at least one dimension in the learner representations groups certain behavioral data
and reduces the standard errors. However, none of these dimensions exhibit a statistically significant
relationship with the behavioral data.

Initial performance and long-term mean We conducted a mixed-effect regression analysis
between the initial performance and the long-term mean, with the results presented in Figure 9. These
results indicate that, except DKT on the Assist12 dataset, at least one dimension in the baseline learner
representations predicts initial performance. It is important to note that none of the dimensions
exhibit a stronger effect compared to the identified trait µ̃ℓ,k

n in our PSI-KT. Additionally, we note that
embedding dimensions in baselines are trained in a permutation-invariant manner, suggesting that
these models can’t route any particular generative factor of variation in the data (e.g. a behavioral
signature) to a specific dimension.

Prerequisite transfer ability and learning variances In our experiments, we sought to correlate
two additional cognitive traits – transfer ability γ and learning volatility σ - with behavioral data. This
task proved more complex than assessing the forgetting rate and long-term mean because assessing
transfer ability requires reliable annotations of prerequisite relations and learning volatility can be
connected to many unconstrained factors during the learning process.

Regarding transfer ability, our hypothesis posits that given the identified prerequisite KC i for KC j,
a higher transfer ability γℓ

n suggests an increased likelihood of correctly transitioning from one
KC i to KC j. We calculate this transition probability p(j+ | i+)ℓn by observing the frequency of
correct responses to KC i followed by correct responses to KC j up to a certain time tn. This
implies that learners with greater transfer abilities are more likely to answer questions related to
KC i correctly after mastering KC i. However, this approach depends on accurately identifying
prerequisite relationships between KCs. Therefore, we utilized the Junyi15 dataset, which includes
expert-annotated and crowd-sourced prerequisite graphs, for our regression analysis. For learning
volatility σℓ

n, we connect the average squared mean (σ̄ℓ)2 for each learner with the variance in their
performance Var(yℓ1:n).

In Figure 10, we present the results of our mixed-effect regression analyses. Each regression
demonstrates a significant relationship. However, due to the sparsity of the expert-annotated graph,
we do not have enough data to fit the regression model effectively. Thus we choose to use the
crowd-sourcing graphs and consider the edge existence if the edge weight is above 0.5.

A.6.5 VISUALIZATION OF KNOWLEDGE STATES

In this section, we display the curve of inferred knowledge states within the Junyi15 dataset. We
chose sequences where the involved skills are linked by established prerequisite relations. Two
such prerequisites were identified: ’alternate interior angles’ as a prerequisite for ’corresponding
angles’, and ’number properties terminology’ for ’properties of numbers’. These prerequisites were
determined based on crowd-sourcing annotations, where the average score for the annotated relation
exceeded half. We note that PSI-KT can estimate knowledge states at all times and not just interaction
times, which allows us to use natural time in the abscissae and display knowledge states with curves
instead of using the discrete color maps common in the KT literature.

A.7 GRAPH INFERENCE ANALYSIS

A.7.1 DETAILS OF THE METRICS FOR GROUND-TRUTH GRAPH COMPARISON

Here we report comprehensive evaluations of the alignment of the inferred graphs with the human-
annotated graphs in the Junyi15 dataset under different metrics.

As discussed in Section 4.3.2, the Junyi15 dataset provides two types of graph annotations - crowd-
sourced similarity and prerequisite ratings (with 1,954 rated edges), as well as more sparse expert-
annotated prerequisite relations (837 edges). We use the following metrics to compare graph
representations learned by each model against these annotations:
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1. Mean Reciprocal Rank (MRR). We compare the inferred graph with the expert-annotated
using the MRR, defined as |K|−1

∑|K|
i=1(rank(i))

−1, where K is the total number of KCs.
We compute the rank of each expert-identified prerequisite relation i→ k in the relevant
sorted list of inferred probabilities {ajk}Kj=1 and take the harmonic average.

2. Jaccard Similarity (JS) is a classic measure of similarity between two sets, defined as the
size of the intersection of set A and set B (i.e., the number of common elements) over the
size of the union of set A and set B (i.e., the number of unique elements): JS(A,B) =
|A ∩ B|/|A ∪ B|. Here we define the edge sets by thresholding weights at half the scale (0.5
for probability-scaled weights, 5 for the average of the 1-9 crowd-sourced rating).

3. Negative Log-likelihood (nLL) of edge weights given crowd-sourced annotations. The
crowd-sourced annotations provide multiple 1-9 ratings per node pair. One set of annotations
rates the strength of the directed prerequisite relations, whereas the other just rates the
undirected similarity of the pair of nodes. We normalize the ratings from 0 to 1 and fit
them with a Gaussian distribution. Then we compute the log-likelihood of the inferred
edge probability under the Gaussian. The variance of the Gaussian accounts for inter-rater
disagreements when comparing a model’s inferred edge probability with the mean edge
rating.

4. Linear Regression Coefficient between edge weights and the causal support (details are in
Sec. A.7.3) from node i to node k on correctness of k if having correct interactions on i. We
compute the causal support for transitions of every KC pair. However we remove the causal
support of pairs of KCs that have only one transition in the dataset to avoid adding noise to
our estimate.

A.7.2 QUANTITATIVE COMPARISON RESULTS ON THE JUNYI15 DATASET

Note that the graphs of baselines are based on KC embeddings (as in Sec. A.3), and thus there is no
edge directionality. For the baselines that have at least two embeddings for each KC, we can use
to compute the directed edges, since one embedding for KC will end up in a symmetric structure
adjacency matrix (DKT, DKTF, HKT, AKT). Thus, to conduct a fair comparison with the baseline
models, we leniently compute edge weights based on every combination of KC embeddings. For
example, in DKT, there are two embeddings uk,0, uk,1 ∈ RD representing incorrect interactions
and correct interactions on KC k, respectively, and embeddings are shared across all learners. We
compute the edge weights aik based on two different combinations here, both aik := ui,0⊺uk,1 and
aik := ui,1⊺uk,0, and report the graph with the best results. When extracting undirected graphs, we
concatenate all KC embeddings to compute aik := (ui,0 + uk,1)⊺(ui,0 + uk,1), in order to reflect all
available information from all KC embeddings. In the case of baselines with a single embedding per
KC, such as QIKT, or those using a parameterized undirected graph, like GKT, we allow their inferred
graphs to be less accurate. This means that for these models, the presence of an edge between two
KCs is deemed correct if there is a directed edge from either direction in annotated graphs, without
the necessity for these edges to accurately indicate the directionality. We then compute the weights
by min-max normalization. This normalization is necessary for computing the log-likelihood, where
we also use a threshold of 0.5 to determine whether there is an edge when the comparison requires
binary edges.

In Table 5, we show the comparison of ground-truth prerequisite graphs and inferred graphs from
our PSI-KT, and the best baseline models on the Junyi15 dataset under the different metrics. These
results demonstrate that our inferred prerequisite graph outperforms others when compared with
crowd-sourced and expert-annotated graphs under different metrics.

Here we show all of the comparison results, including a comparison of the similarity (undirected)
graphs and the prerequisite (directed) graphs on four metrics in Table 15. We do not report MRR
ranking scores for similarity graphs because the ground-truth similarity graph does not contain an
expert-annotated version.

A.7.3 CAUSAL SUPPORT

Causal induction is the problem of inferring underlying causal structures from data. Here, we use
a Bayesian framework (Griffiths & Tenenbaum, 2009; 2005) to infer a singular cause-and-effect
relationship between all pairs of KCs, asking how performance on one node influences performance on
another, and whether the strength of the causal relationship corresponds to our inferred prerequisite
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Table 15: Comparison between ground-truth graphs and inferred graphs in Junyi15 dataset. pre
indicates evaluation against a prerequisite graph and sim evaluation against a similarity graph.

DKT DKTF HKT AKT GKT QIKT PSI-KT

MRR ↑ expert pre .0069 .0067 .0074 .0075 .0082 .0073 .0086

JS ↑
expert pre 1.46e-3 1.37e-3 1.47e-3 1.44e-3 1.46e-3 1.19e-3 1.86e-3
crowd pre 4.60e-3 4.28e-3 4.66e-3 4.48e-3 3.44e-3 5.21e-4 9.48e-3
crowd sim 5.90e-4 0.00 0.00 5.18e-4 3.43e-3 0.00 4.66e-3

nLL ↓ crowd pre 5.735 5.580 6.092 5.677 3.033 4.228 4.106
crowd sim 6.598 4.039 4.042 9.100 9.028 10.622 2.352

graph. In this context, we model the relationship between a candidate cause C and a candidate
effect E (i.e., a pair of KCs), assuming an ever-present background cause B (i.e., the learner’s general
ability and the influence of other nodes). The objectives are to determine the probability of a causal
relationship between C and E, known as causal support (Eq. 27).

In our prerequisite graph scenario, we assume that if KC i is a prerequisite of KC k, the correctness on
KC i contributes to the correctness on KC k. This implies the presence of a prerequisite relationship
between KC i and KC k, signified by a causal link between their correctness levels. Consequently,
for every pair of nodes, a candidate cause C corresponds to performance yin = 1 at time tn, and an
effect E corresponds to ykn+1 = 1 at time tn+1, with inputs from all remaining nodes relegated to the
background cause B.

When examining elemental causal induction, we adhere to the following two-step procedure: i)
We establish the nature of the relationship through causal graphical models, and ii) we quantify
the strength of the relationship, provided it exists, as a problem of inferring structural parameters.
In the subsequent text, C and E variables are denoted using uppercase letters, while their specific
instances are represented using lowercase letters. Specifically, c+ and e+ indicate the presence of the
cause and effect (i.e., correct performance), whereas c− and e− signify their absence (i.e., incorrect
performance).

Causal graphical models. Causal graphical models are a formalism for learning and reasoning
about causal relationships (Glymour et al., 2019). Nodes in the graph represent variables, and directed
edges represent causal connections between those variables. To identify whether a causal relationship
exists between a pair of variables, we consider two directed graphs denoted Graph 0 GC↛E : B → E
and Graph 1 GC→E : B → E ← C, as shown in Figure 5b. Thus, GC↛E represents the null
hypothesis that there is no relationship between C and E (i.e., the effect E can be accounted for by
background cause B), while GC→E represents the alternative hypothesis that the causal relationship
exists.

In our case, the cause C and the effect E are equivalent to KC i and KC k, respectively, for every
pair of KCs. The process of inferring the underlying structure between KC i and KC k, whether the
learners’ behavioral learning historyH are generated by Gi↛k or Gi→k, can be cast in a Bayesian
framework (Griffiths & Tenenbaum, 2009; 2005). Causal support quantifies the degree of evidence
present in the dataH that favors Graph 1 Gi→k over Graph 0 Gi↛k:

support = log
P (H |GC→E)

P (H |GC↛E)
= log

P (H |Gi→k)

P (H |Gi↛k)
. (27)

Intuitively, the joint presence of the cause and effect, i.e., correctness on KC i followed by correctness
on KC k, offers support for a causal link from node i to node k. Conversely, the absence of the cause,
i.e., incorrectness on KC i but is followed by correctness on KC k, presents evidence against the
notion that KC i is a prerequisite for KC k.

Causal support. Causal graphical models depict dependencies using conditional probabilities.
Defining these probabilities entails parameterizing each edge, and this parameterization determines
the functional expressions that govern causal relationships.

For Graph 0 Gi↛k and Graph 1 Gi→k, we define P0(y
k
n+1 = 1 |B) = ω0 and P1(y

k
n+1 = 1 | yin =

1) = ω1 respectively. In other words, the probability of correctness on KC k given just background
causes is ω0, and the probability of correctness on KC k given previous correctness on KC i is ω1; and
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when both prerequisite KC i and background causes are present, they have independent opportunities
to produce the effect.

For Graph 0 GC↛E , the sole parameter ω0 denotes the likelihood of the effect being present given
the background cause

P0(e
+ | b+;ω0) = ω0. (28)

The corresponding likelihood for the data H given Graph 0 Gi↛k is accomplished by integrating
over all possible parameters ω0 with a uniform prior over ω0:

P (H |Gi↛k) =

∫ 1

0

P0(H |ω0, Gi↛k)P (ω0 |Gi↛k)dω0

=

∫ 1

0

ω
N(e+)
0 (1− ω0)

N(e−)dω0

= Beta(N(e+) + 1, N(e−) + 1)

= Beta(N(ykn+1 = 1) + 1, N(ykn+1 = 0) + 1). (29)
Here Beta() is the beta function, and N(e+) and N(e−) are the marginal frequencies of the effects.

For Graph 1 Gi→k, the likelihood of the effect is given by:
P1(e

+ | b, c;ω0, ω1) = 1− (1− ω0)
b(1− ω1)

c, (30)
where ω0 again defines the influence of the background cause, and the additional parameter ω1 defines
the influence of the cause. Here b and c are binary, which means if cause C exists, then c = 1. We
compute the likelihood of the data P (H |Gi→k) by integrating over parameters ω0 and ω1. Each
parameter value is defined by a prior probability, which when combined with the likelihood of the
data, yields a joint posterior distribution over data and parameters for the structure. To determine the
observed data likelihood for Graph 1 Gi→k, we have

P (H |Gi→k) =

∫ 1

0

∫ 1

0

P1(H |ω0, ω1, Gi→k)P (ω0, ω1 |Gi→k)dω0 dω1

=

∫ 1

0

∫ 1

0

∏
e,c

P1(e | c,b+;ω0, ω1)
N(e,c)P (ω0, ω1 |Gi→k)dω0 dω1. (31)

Here N(e, c) represents the number of occurrences. To compute
∏

e,c P1(e | c,b+;ω0, ω1)
N(e,c), we

iterate over all possible sets of (e, c). Based on Eq. 30, we get:∏
e,c

P1(e | c, b+;ω0, ω1)
N(e,c) =P1(e

+ | c+, b+;ω0, ω1)
N(e+,c+)P1(e

+ | c−,b+;ω0, ω1)
N(e+,c−)

=(ω0 + ω1 − ω0ω1)
N(e+,c+)ω

N(e+,c−)
0 . (32)

While Eq. 31 is not analytically tractable, it can be effectively approximated using Monte Carlo
simulations. With uniform priors on ω0 and ω1, a reliable estimation of P (H |Gi→k) can be obtained
by generating m samples of ω0 and ω1 from a uniform distribution spanning the interval [0, 1],
followed by computation of:

P (H |Gi→k) =
1

m

m∑
i=1

P1(H |ω0i, ω1i, Gi→k)

=
1

m

m∑
i=1

∏
e,c

P1(e | c, b+;ω0i, ω1i)
N(e,c)

=
1

m

m∑
i=1

(ω0i + ω1i − ω0iω1i)
N(e+,c+)ω

N(e+,c−)
0i

=
1

m

m∑
i=1

(ω0i + ω1i − ω0iω1i)
N(yk

n+1=1,yi
n=1) ω

N(yk
n+1=1,yi

n=0)

0i . (33)
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Assist12 Assist17 junyi15

PSI-KT .68.017 .63.015 .83.015
w/o Graph -.04.005 -.04.002 -.07.002
w/o Individual traits -.03.002 -.06.006 -.04.001
w/o Dynamic traits -.06.001 -.09.003 -.03.002

Table 16: The accuracy in three kinds of ablation study (mean ± SEM across random seeds). We
show the accuracy gap compared with the complete PSI-KT model.

A.8 ABLATION STUDY

To thoroughly examine the various elements of PSI-KT, including cognitive traits and the prerequisite
graph, we executed three distinct ablation studies:

• Without the graph inference (w/o graph): We omit the graph inference process and the
influence of prerequisite KCs on the long-term mean. Essentially, this approach treats each
KC independently.

• Without individual cognitive traits (w/o individual): We alter the variational inference
network in this scenario to produce a uniform distribution across all learners. This change
effectively removes the consideration of individual differences in learners’ cognitive traits.

• Without dynamic cognitive traits (w/o dynamics): We remove the dynamic transition
distribution over the traits in the generative model. This assumes that each learner has static
traits over time.

In Table 16 and Figure 13, we present the results of our three ablation studies. We observed that the
contribution of prerequisite graphs, individualized traits, and dynamic traits varied across the datasets.
These findings underscore the diversity inherent in educational datasets and simultaneously reinforce
the effectiveness of our unified framework.
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Figure 6: Histograms of key features in three datasets, including the number of interactions, KCs,
and assignments per learner, and the intervals between two interactions with any KC and with the
same KC.
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Figure 7: Inference model of PSI-KT with an example of a single learner’s history as the input. Note
that all parameters ϕ, θ are shared across learners. Grey backgrounds mark inputs. Right rectangles
are neural networks’ layers and rounded rectangles designate features. Layer fEmb

ϕ maps the input
features (time τ , KC u, and performance y, described in the text below) into embedding vectors.
Layers fs

ϕ and fz
ϕ output the parameters of the variational posterior distribution. These are all part

of the inference networks and parameterized by ϕ (surrounded by the grey box). The orange arrow
is only applicable for inference on entire learning histories. Blue arrows represent the prediction
stage, where during prediction M samples are drawn from the predicted distribution based on µzn+1

and log σzn+1
.
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Figure 8: The mixed-effect regressions of performance decay ∆yℓn vs. scaled interval τ ℓnα
ℓ
n (scaled

interval with the best dimension in baselines τ ℓn(v
∗)ℓn). The first row (a) shows the unscaled interval

in the raw data. The aggregate standard error over 10 bins (SE), the regression coefficient (coef), and
its p-value are reported in each panel.
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Figure 11: An example of inferred sequential knowledge states in the Junyi15 dataset.
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Figure 12: Linear regressions relating causal support to the inferred edges for baseline models
(a) DKT, (b) DKTF, (c) HKT, (d) AKT, (e) GKT, (f) QIKT, and (g) PSI-KT. The x-axis represents the
normalized edge weights inferred by the respective baselines. The coefficient (coef) and its p-value
are reported in the lower right of each panel.
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Figure 13: Mean accuracy of PSI-KT vs. ablations of a) the prerequisite structure (w/o graph), b)
individualized learner traits (w/o individual) and c) time-dependent learner traits (w/o dynamics).
Dashed lines indicate the accuracy of the two best-performing baselines.
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