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Abstract

Many aspects of human learning have been proposed as a pro-
cess of constructing mental programs: from acquiring sym-
bolic number representations to intuitive theories about the
world. In parallel, there is a long-tradition of using information
processing to model human cognition through Rate Distortion
Theory (RDT). Yet, it is still poorly understood how to apply
RDT when mental representations take the form of programs.
In this work, we adapt RDT by proposing a three way trade-off
among rate (description length), distortion (error), and compu-
tational costs (search budget). We use simulations on a melody
task to study the implications of this trade-off, and show that
constructing a shared program library across tasks provides
global benefits. However, this comes at the cost of sensitiv-
ity to curricula, which is also characteristic of human learners.
Finally, we use methods from partial information decomposi-
tion to generate training curricula that induce more effective
libraries and better generalization.

Keywords: program induction; curriculum learning; compres-
sion; compositional; resource rationality

Introduction
Human learning is not just the accumulation of knowledge,
but can be seen as a process of distilling experience into
compact, generalizable programs (Rule, Tenenbaum, & Pi-
antadosi, 2020). This process requires balancing the rich-
ness of our mental representations with the cognitive cost of
maintaining and processing them (Lieder & Griffiths, 2020).
For example, when learning music, people typically start by
learning to reproduce specific melodies verbatim, through
which we develop a general understanding of musical struc-
tures. Simultaneously, we need to develop compact represen-
tations, with seasoned musicians being able to utilize regular-
ities such as key or scale to more efficiently encode melodies
without needing to memorize each note. These dual aspects
of program learning and compression are crucial for efficient
recognition, recall, and creation of new melodies.

Program induction is the process of inferring rules or in-
structions that generate an observed pattern of data (Ellis et
al., 2021; Rule et al., 2020). Emerging from early computa-
tional theories (Gold, 1967; Solomonoff, 1964) formalizing
learning as an algorithmic process of inferring the program
that generated the observed data, it has since been refined
by cognitive scientists using symbolic reasoning and logi-
cal programming as a framework to model human learning
and thinking (Fodor, 1975). This approach offers a model
for understanding how humans, or machines, learn underly-
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Figure 1: (a) Program induction under resource constraints
using an encoder-decoder framework on melody data. The
encoder compresses melodies (piano rolls X) onto a latent
space (programs π), which are constrained by two bottle-
necks: description length Rl and search budget Rs. (b) Each
melody X (i) is assumed to be generated by program π(i),
which is defined by a program library L (solid arrows). When
inferring the program and library given observed melodies
(dashed arrows), the goal is to find a balance between com-
pact and easy-to-search programs, while minimizing recon-
struction error d(X , X̂). (c) Illustrative example of the tree
structure and routers used in a program.

ing rules, structures, or more broadly, generative program-
like representations from observed examples.

Rate distortion theory (RDT; Berger, 1971; Shannon,
1959) provides a normative framework for how to allocate
limited resources to encode information in settings where per-
fect (i.e., lossless) compression is not possible. Since humans
have limited cognitive resources, RDT has provided a pow-
erful framework for modeling how we develop informative
and structured mental representations, selectively ignoring ir-
relevant or redundant information to most effectively encode
the most useful and relevant information. Recently, RDT has
been applied to a wide number of cognitive phenomena, such
as memory (Bates & Jacobs, 2020; Gershman, 2021; Nagy,
Török, & Orbán, 2020), perception (Bates, Lerch, Sims, & Ja-
cobs, 2019; Sims, 2016), and decision-making (Bhui & Ger-
shman, 2018; Lai & Gershman, 2021).

However, it is not well understood how to apply the RDT
framework when mental representations take the form of pro-



grams, and what limitations might arise. In particular, pro-
gram induction implies path dependencies arising from the
iterative construction of a library of programs, and there are
open questions concerning how the curriculum order of learn-
ing materials influences the ease of generalizing to new data.

Goal and scope
Here, we model program induction under resource constraints
with RDT in the domain of learning musical melodies.
Through simulations, we show that two different dimensions
of compression are relevant to learning using adaptor gram-
mars (AGs; Johnson, Griffiths, & Goldwater, 2006). On
the one hand and consistent with past algorithmic RDT ap-
proaches, there is a bias towards learning simpler programs
Sablé-Meyer, Ellis, Tenenbaum, and Dehaene (2022); Sow
and Eleftheriadis (2003); Vereshchagin and Vitanyi (2005).
On the other hand, the amount of cognitive resources avail-
able to search for new programs adds a new dimension that
is not accounted for in RDT. Together, these two dimensions
influence path-dependent learning, where we show that build-
ing a more synergistic library of programs with greater over-
lap between stimuli allows for better generalization. Alto-
gether, this work provides the first steps towards integrating
program induction with RDT, showing new dimensions of
relevance and providing guidance for future work applying
this framework for modeling human learners.

Methods
In this paper, we study the interaction between compression
and program learning using simulations on a melody learning
task (Fig. 1). The model is presented with successive notes
from a melody, which needs to be encoded to minimize dis-
tortion (i.e., error), while subject to limitations on the descrip-
tion length of the program (i.e., memory) and resources avail-
able for searching over programs (i.e., computational costs).

Melody learning task
Music is a universal element of human culture, transcending
linguistic and cultural boundaries (Jacoby et al., 2024; Loui,
Wessel, & Kam, 2010; Mehr et al., 2019). The structured and
inventive nature of music makes it perfect for studying a com-
positional domain where simpler elements (notes, rhythms)
can be combined into more complex structures (melodies,
harmonies). Our dataset comes from real-world melodies in
the form of monophonic piano rolls (Fig. 1a; Garcia-Valencia,
Betancourt, & Lalinde-Pulido, 2020).

We first pre-process the piano rolls by 1) remov-
ing melodies with fewer than 10 notes, 2) normal-
izing notes into a single-octave range with 12 notes
[C,D,E,F,G,A,B,C,C#,D#,F#,G#,A#], and 3) denoting
pauses with a special symbol to exclude them from arith-
metic operations. After pre-processing, we randomly sam-
pled 1,000 melodies for a training set and 500 melodies for
an evaluation set, with mean lengths of 50 notes in each. We
then train probabilistic encoder-decoder models (Fig. 1a) to
compress melodies using program-like representations and

test how they generalize to new melodies. The model en-
codes each melody onto a latent space, by searching over dis-
crete programs, subject to constraints on memory and com-
putational costs. We first introduce a general Bayesian pro-
gram induction framework and provide details about these
constraints.

Bayesian program induction
Bayesian program induction (Correa et al., 2023; Goodman,
Tenenbaum, Feldman, & Griffiths, 2008; Lake, Salakhutdi-
nov, & Tenenbaum, 2015; Piantadosi, Tenenbaum, & Good-
man, 2012; Rule, Schulz, Piantadosi, & Tenenbaum, 2018)
provides a modern interpretation of Fodor’s 1975 Language
of Thought (LoT), allowing for both probabilistic represen-
tations of stimuli and the ability to simulate new scenarios
given a set of learned programs. In our melody task, the goal
is to find a program π that adequately represents each melody
X (i) ∈ {X (1), . . .X (N)}, described by a sequence of T notes
X (i) = [x(i)1 , . . . ,x(i)T ]. By specifying a prior probability dis-
tribution over all programs p(π), and the likelihood of the
observed melody under each program p(X |π), Bayes’ theo-
rem can be used to compute the posterior probability of the
encoding program conditioned on the observed melody:

p(π |X) ∝ p(X |π)p(π) (1)

Here, we use combinatory logic (CL; Liang, Jordan, &
Klein, 2010; Schönfinkel, 1924; Zhao, Lucas, & Bramley,
2023), which, although predating it, can be seen as a variant
of λ−calculus (Church, 1936; Ellis et al., 2021; Piantadosi
et al., 2012) that eliminates the need to keep track of vari-
able names and scopes. This crucial feature helps identify
shared substructures between programs (Liang et al., 2010).
A program π in CL can be represented as a binary tree, where
for example, the program for ascending by three semitones
can be described as π = [CB, [B,up,n],c] (Fig. 1c). There are
two arguments with different types, where the router CB di-
rects the first argument n to the left subtree [B,up,n] (orange
branch in Fig. 1c), and the second argument c to the right
subtree (green branch in Fig. 1c). The primitive up in the left
subtree defines the operation on the provided arguments (e.g.,
note 2 and count 3). We now provide a brief overview of the
various components; however due to space constraints, for a
more comprehensive explanation see Liang et al. (2010).

Routers. Whereas CL originally required only two elemen-
tary combinators (S and K) to sufficiently instantiate any
computable function, Liang et al. (2010) introduced higher-
order combinators called routers R to make computations
more practical. Routers R are finite sequences composed
of combinators (first-order routers) {B,C,S} and direct in-
coming variables to the corresponding subtrees. For instance,
in the generic program [R ,Γl ,Γr], the router B first directs
the variable to the right subtree Γr with the results then sent
to Γl ; the router C directs the variable first to the left tree;
and router S sends the variable to both trees. While abstract,



these routers can compose complex functions from simpler
ones, enabling infinitely productive program generation by
combining a small set of primitives (base and function terms).

Primitives. Primitives, consisting of base terms and func-
tion terms, are both pre-defined. In our melody task, we
define base terms as note n, count c, and time m by as-
suming learners have an initial library L over simple inte-
gers. Function terms are interpreted as functions that can take
typed arguments as input. For example, primitive rep(n,c)
takes two arguments, note n and count c, representing re-
peating note n for c times (e.g., rep([C],2) = [C,C]). An-
other example, get(n,m), takes two arguments, note n and
time index m, returning the first m notes in note array n
(e.g., get([C,D,D#],2) = [C,D]). Both base terms and func-
tion terms can work as inputs to other function terms, e.g.,
get(rep(n,c),m).

Types. Typed CL assigns different types t to the domain
(i.e., the set of possible inputs) and codomain (i.e., the set
of possible outputs) of primitives and programs, so that the
program’s syntactical correctness can be ensured. Base terms
(notes, counts, and times) are represented as distinct types
tn, tc, tm. This implies that, despite having identical numerical
values (e.g., piano note 1, repeat 1 time, the first time index in
an array), different integers have different physical meanings
due to their distinct types. The type of a function term is
denoted using a right arrow →. For instance, the type for the
function term get(n,m) is expressed as tn, tm → tn, indicating
the types of its input arguments and the type of its output.

Prior over programs. To define a prior over the tree repre-
sentation of CL programs, we follow Liang et al. (2010) and
introduce a probabilistic context-free grammar (PCFG). In-
tuitively, the nodes of the tree are successively expanded into
subtrees according to pre-defined rules, and the complexity
of the program is connected to the number of expansions,
as well as the likelihoods of the terms. In order to gener-
ate samples from the PCFG while also maintaining syntacti-
cal correctness through types, we follow the generative pro-
cess GENINDEP(t) in Liang et al. (2010) for each type t.
When sampling primitives and routers, the prior over differ-
ent primitives and routers are equiprobable conditioned on
types. Thus, the prior probability of a program π = [r,x,y]
given type t is

log p(π | t) = log p(x | t)+ log p(y | t)+ log p(r). (2)

There are two kinds of possible expansions. The first method
involves sampling a router (e.g., B) and a primitive (e.g.,
up(n)) that meets the type requirement based on prior p( f | t)
and p(r), resulting in a program [B,up,n]. The second
method recursively generates K intermediate types ti along
with their respective primitives and routers, ensuring the type
sequence ultimately conforms to tn → ti1 → . . . → tiK → tn,
thus yielding more nested programs.

Compression with programs
Here, we are interested in how program induction is shaped
by constraints on cognitive resources. To formalize this ques-
tion, we rely on rate distortion theory (RDT), which has been
proposed as a normative framework for incorporating mem-
ory and processing constraints for biological agents (Bates
& Jacobs, 2020; Nagy et al., 2020; Sims, 2016). RDT char-
acterizes the balance between minimizing distortion D (the
accuracy of the representation), while needing to keep the
rate R (the required resource) below a certain capacity limit.
Formally, RDT typically defines rate as the mutual informa-
tion I(X ,Z) between the input X and its encoding Z, and min-
imizes the distortion subject to a constraint R on this quantity:

D(R) = infQ DQ, s.t. I(X ,Z)≤ R, (3)

where Q represents the encoding function that defines the
mapping X 7→ X̂ , and D = E[d(X , X̂)] is the expected distor-
tion between the original observation X and the reconstruc-
tion X̂ . Equivalently, the rate can be minimized such that
the distortion is kept below the threshold D, and the mini-
mal achievable rate for each constraint value defines the rate
distortion function R(D) = infQ RQ s.t. E[d(X , X̂)]≤ D.

Description length. Here, we adapt RDT for programs
by measuring rate using the description length of the pro-
gram (Sablé-Meyer et al., 2022; Sow & Eleftheriadis, 2003;
Vereshchagin & Vitanyi, 2005), which can be seen as a gen-
eralization of Kolmogorov complexity K for imperfect recon-
struction. This approach aligns with past theories suggesting
human cognition has a preference for simpler representations
(Chater & Vitányi, 2003; Feldman, 2000; Rubino, Hamidi,
Dayan, & Wu, 2023) and allows us to define RD functions
for individual observations:

Rl(D) = min
Q

K(X̂ (i)) s.t. d(X (i), X̂ (i))≤ D. (4)

Under certain assumptions, these functions asymptotically
correspond to the Shannon RD curves (Vereshchagin & Vi-
tanyi, 2005). We assume that encodings of primitives are cho-
sen optimally, and therefore measure the description length of
a program π j as its negative log probability according to the
prior over programs l(π) =− log p(π) (Grünwald, 2007). For
the distortion function, following Vereshchagin and Vitanyi
(2005), we use Hamming distance, which counts how many
of the recalled notes differ from the observed ones.

Search budget. Program induction, together with the opti-
mization of the algorithmic RD objective (Eq. 4), implies a
search over the space of possible programs, necessitating the
use of approximations. We model constraints on this search
process by defining an upper limit on how many programs can
be considered, which we refer to as the search budget Rs. Ex-
tending Eq. 4 with this additional constraint provides a com-
putationally bounded version of the RD objective:

Dbounded(R) = inf
Q

DQ, s.t. K(X̂ (i))≤ Rl ∧ Ns ≤ Rs, (5)



where Ns is the number of considered programs.

Approximate inference
Having introduced both Bayesian program induction and a
computationally bounded version of algorithmic RDT, we
now connect the two frameworks through approximate infer-
ence. Intuitively, both frameworks imply searching for pro-
grams that can compactly represent the observed melodies.
In Bayesian inference, this is encouraged by the PCFG prior
(Eq. 2), which attaches higher probabilities to shorter pro-
grams, whereas Eq. 4 imposes a direct limit on program
length. To see how the search budget can be incorporated
into the inference, we approximate the posterior using Monte
Carlo (MC) methods via importance sampling. Here, pro-
posed programs are sampled according to the prior p(π), and
then weighted by their likelihoods p(X |π). This latter step
corresponds to evaluating how likely each proposed program
is to have generated observed melody, which from the RDT
view corresponds to evaluating the distortion function on the
reconstruction. Similar to other MC algorithms, the compu-
tational budget can be varied through the number of sampled
proposals, which we identify with Ns in Eq. 5.

If the search over programs fails to find a sufficiently short
candidate, we delete terms from the program in order of de-
creasing likelihood until the program satisfies the length con-
straint Rl , and then sample missing terms from the prior dur-
ing reconstruction. We interpret this process as analogous
to a human learner constructing an overly complex program
and forgetting parts of it, resulting in characteristic, structured
noise. For instance, for π = [CB, [B,up,n2],c3] (Fig. 1a),
the subject’s reconstruction might ascend by four notes (in-
stead of three). We introduce one additional approximation
to make inference more tractable, where similar to how hu-
mans might listen to music, each melody can be segmented
into subsequences represented by subprograms. Specifically,
the program π(i) for each melody X (i) can be composed
of M(i) ∈ N+ subprograms π(i) = {π1, . . . ,πM}. Each sub-
program π j ∈ π(i) ⊆ Π encodes a subsequence of the melody
X (i)

t j :t ′j
= [x(i)j , . . . ,x(i)j′ ], with the length determined by the sub-

program itself. We then evaluate proposals for these subpro-
grams successively based on the likelihood.

Results
We first extend the RDT framework to a program induc-
tion setting, where we examine the constraints of descrip-
tion length and search budget. Then we explore how adap-
tor grammars (AGs) provide a method to enhance computa-
tional efficiency within these constraints. However, AGs are
sensitive to order effects, resulting in large variations in gen-
eralization. Therefore, we develop a method to generate a
priori curricula that lead to improved generalization through
an information-theoretic definition of synergy.

To demonstrate how program induction is affected by the
constraints of program length Rl and search budget Rs, we
first compute the RD curve using a PCFG model for a range
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Figure 2: RD curves with (a-b) PCFGs and (c-d) AGs, given
different description lengths and search budgets (left) and un-
der different amounts of training data (right).

of settings (Fig. 2a). These curves show that lower distortion
is achieved through both longer programs and larger search
budgets. However, one limitation of using a PCFG is that it
relies on a set of pre-specified rules and primitives, without a
method for adapting them to new observations, treating each
new input as a separate task. In contrast, human learning is
cumulative and contextual, allowing us to build upon what
we have learned from past experiences. Figure 2b illustrates
how the RD curves are indifferent to different amounts of data
(aside from smoothness due to random variation), with per-
formance remaining stable (relative to different constraints).

Compression by updating the library

A key assumption of the information-theoretic notion of com-
pression that deviates from human learning is the invariance
of the compression model throughout the learning process.
One way of enabling the accumulation of knowledge from
past experiences is to adapt the language (i.e., compression
model) to observations through the ability to define new prim-
itives. These new primitives are composed of subprograms
that have been used successfully in previous tasks and cached
in a library that is shared across melodies.

For this goal, we use Adaptor Grammars (AGs; Johnson et
al., 2006), which augment PCFGs with a capacity for build-
ing a shared library of primitives, thus breaking the strong
assumptions of independence in PCFGs. Specifically, we use
an AG based on the Pitman-Yor process (Teh, 2006), as de-
fined in Liang et al. (2010). The AG model learns a distribu-
tion over grammars during training, and stores programs for
future use in its cached library L(i) given all tasks X{1:i} seen
so far, updating the prior (π|L(i)) for future observations.

Formally, for a collection of programs Ct of type t in the
library, AGs construct new programs with probability λ1 and
otherwise, it returns a cached program of type t with prob-
ability λ2. let Nt be the number of distinct elements in Ct ,



and Mπ be the number of times π occurs in Ct :

λ1 =
α+Ntd
α+ |Ct |

, λ2 =
Mπ −d

|Ct |−Ntd
(6)

Hyperparameters α > 0 and 0 < d < 1 govern the degree of
sharing and reuse, respectively. Smaller values for α and
d lead to increased sharing and reduced construction, as λ1
is proportional to α+Ntd. Similarly, λ2 is proportional to
Mπ, indicating that more frequently cached programs receive
higher weights, irrespective of their internal complexity.

Computational efficiency. We expect the augmentation of
PCFGs with a library to improve the efficiency of program in-
duction in terms of both search budget and description length.
For the search process, the iteratively refined prior p(π|L)
serves as the proposal distribution, leading to fewer rejected
samples in the MC algorithm as more data is acquired. For
description length, the introduction of new primitives can fa-
cilitate more compact representations, analogously to how
defining new functions that can be called later enables a pro-
grammer to reduce code length.

Compared to PFCG, AG achieves lower distortion with the
same resources, as well as being less sensitive to the search
budget (Fig. 2c; note the different range of the x-axes). Fur-
thermore, as the AG model acquires more data (Fig. 2d), the
new primitives added to the library facilitate even more effi-
cient and compact representations.

To explore the intuition that an adaptive library leads to a
more efficient search, we test one-shot generalization, where
for a new, unobserved melody, a single program is sampled
and evaluated. Figure 3a shows the results under different
search budgets and exposure to other melodies from the train-
ing data. Although both models perform similarly with very
little training, generalization error for PCFG is largely unaf-
fected by more training and a greater search budget. In con-
trast, the AG model improves substantially with both factors.

We then analyze the degree of unique subprograms across
melodies when increasing the search budget (Fig. 3b). The
results show that a greater search budget increases unique-
ness by developing melody-specific representations. How-
ever, greater exposure to training data decreases uniqueness,
by encouraging more reuse of subprograms across different
melodies. Across both patterns, AG has substantially more
shared subprograms during training (50%-80%) than PCFG
(20%-50%). These results suggest that the greater general-
ization accuracy of AG is due to developing a more domain-
adapted language.

Curriculum effects
We have demonstrated that augmenting the learner with a li-
brary enables it to adapt its language to the observed data,
making the AG model more efficient for both description
length and search constraints. However, this comes at the
cost of sensitivity to curriculum effects. Consider that the
augmented learning process is performing joint inference
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Figure 3: (a) Generalization performance given different
search budgets. (b) The ratio of unique subprograms used
in compressing different melodies.

over both programs and the library p(π,L |X{1:i}) given all
tasks X{1:i} seen so far (Fig. 1b). Ideally, the learner would
maintain a full posterior over possible libraries p(L |X{1:i}).
However, due to the combinatorial explosion of the hypoth-
esis space, this is not feasible. Typically the posterior is ap-
proximated with a single point estimate (or particle; Ellis et
al., 2021; Zhao et al., 2023). Without access to all previously
encountered tasks, this is no longer a sufficient statistic for
the past. Thus, there is sensitivity to the order in which train-
ing samples are encountered (Dekker, Otto, & Summerfield,
2022; Nagy & Orban, 2016; Zhao et al., 2023).

Due to factorial growth in the number of unique stim-
uli orderings (i.e., curricula) as a function of the number of
melodies, we ran simulations with 50 melodies across 1,000
randomly sampled curricula. Empirically, we observe high
variability of learned libraries across curricula, with an aver-
age of only 3.19%± 0.05% shared subprograms under dif-
ferent curricula. To disentangle curriculum effects from the
inherent stochasticity of the sampling during inference, we
ran the model twice for curricula. We then compared the gen-
eralization error between matched runs of the same curricu-
lum, compared against a random baseline with two different
curricula (Fig. 4a). Matched runs were positively correlated
(r(998)= 0.286, p< .001), whereas random runs were some-
what negatively correlated (r(998) =−0.052, p< .001), with
the difference in performance significantly larger in matched
vs. random runs (t(999) = 7.621, p < .001). These results
demonstrate that the curriculum effect cannot be accounted
for by stochasticity alone.

Having established that learned libraries are influenced by
different curricula, we compare generalization performance
between AGs’ curriculum-dependent libraries against ran-
domly generated libraries over 1,000 simulations (Fig. 4b).
The random libraries consisted of randomly sampled subpro-
grams, which are used to compress the same set of tasks.
While random libraries perform worse than AG libraries on
average in generalizing to new melodies, the variability of
performance is quite similar, meaning unfavorable learning
orders may potentially disadvantage AGs in some settings.

Synergistic curricula
While AGs have been used to explain curriculum effects in
human learning (Zhao et al., 2023), previous research has typ-
ically used simple tasks with orthogonal features (Dekker et
al., 2022; Rule et al., 2018), making curriculum design triv-
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ially easy. Here, we explore whether we can a priori generate
beneficial curricula for generalizing to new melodies.

We introduce a synergistic curriculum building method us-
ing principles from partial information decomposition (PID;
Luppi, Rosas, Mediano, Menon, & Stamatakis, 2024; Proca
et al., 2022; Williams & Beer, 2010). PID decomposes mul-
tivariate mutual information I(π1, . . . ,πM;X) between mul-
tiple sources (i.e., the programs πm ∈ L) and a target vari-
able (i.e., melodies X) into different components (Fig. 5a):
unique U(πm;X) information present in exactly one pro-
gram πm, redundant R(πi, . . . ,π j;X) information encoded by
separately in multiple programs, and synergistic informa-
tion S(π1, . . . ,πM;X) jointly encoded by multiple programs.
If the library L contains two programs, the synergy can be
represented as

S(L ;X) = I(π1,π2;X)−R(π1,π2;X)−U(π1;X)−U(π2;X)
(7)

Synergy and related quantities, such as integrated informa-
tion, have been found in complex information processing
(Mediano et al., 2021). We hypothesize that for both arti-
ficial and biological agents, a synergistic library is essential
for being able to flexibly learn and generalize across novel
problems. Here, we test whether synergy can guide the de-
sign of curricula for our AG model, with potential future ap-
plications for human learners (Zhou, Bamler, Wu, & Tejero-
Cantero, 2024). Specifically, we strategically select and or-
der melodies with the goal of maximizing synergy. Formally,
given the learned library L(n) at n-th step, we select the next
presented melody X∗ by maximizing the synergy of the po-
tential library S(L ;X)

X∗ = argmaxX(i)∈X S(L ;X) where L ∼ p(L(n+1) |L(n),X (n))

(8)

The aim is to construct a sequence of training data, where
each new melody is expected to add subprograms to the li-
brary that enhances the overall representational capacity. To
test this method, we show that generalization performance
under a synergistic curriculum is better than a random order-
ing (t(999) = 6.219, p < .001; Fig. 5b).
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Figure 5: (a) Example libraries learned by AGs with ran-
dom curricula (blue) and learned with synergistic curricula
(yellow; including Redundant, Unique, and Synergistic infor-
mation) learned under different curricula. (b) Generalization
performance given random and synergistic curricula.

Discussion
In this work, we integrated Rate Distortion Theory (RDT)
with Bayesian program induction to explore how the dual
constraints of description length and search complexity in-
fluence representation learning. Our simulations demonstrate
that creating a shared program library across tasks facilitates
more efficient learning and generalization, relative to both
constraints. We also demonstrated how partial information
decomposition provides an a priori method to design curric-
ula that foster the development of more effective program li-
braries in learners, with potential future applications for hu-
man learners.

We have only begun to explore the hypothesis space in this
domain, and there is still a large gap between our simulations
and being able to model human learners with similar models.
Nevertheless, this work presents one of the first attempts to
integrate two important principles of human learning and has
shed light on new patterns that were not obvious from existing
theories. An important limitation that needs to be addressed
for modeling human learning is that the greedy segmenta-
tion of melodies and subsequent independent generation of
programs does not allow for capturing long-range structure
within-melodies. This segmentation also makes targeting a
specific rate difficult. While we expect that the term deletion
process we introduced to enable fine-grained control over the
rate might have cognitive plausibility, it may overestimate the
distortion for some resource constraints. Furthermore, when
defining new primitives, our model only considers the cur-
rent task, and does not consider refactored versions of sub-
programs (Ellis et al., 2021), therefore missing chances for
further sharing of components. Finally, in future experiments,
we aim to explore how different design choices, such as al-
ternative distortion functions, prior distributions, and task do-
mains beyond melodies, would impact our results.

Overall, the integration between compression and program
learning is a very promising avenue for future research, and
here, we have taken the first steps in this direction.
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