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Tübingen, Baden-Württemberg 72076 Germany

Abstract
Efficiently prioritizing important information is crucial for
human memory function. Previous studies have demon-
strated that the value of stimuli can selectively influence
memory, with humans selectively remembering reward-
relevant information. Here, we add to this understanding
by decomposing reward-relevance to different composi-
tional features, which collectively define the value of a
stimulus with differing importance. Using combined re-
ward learning and recognition memory tasks operating
on the same set of stimuli, we investigate the impact of
feature importance on memory. Our findings suggest that
selective memory for the most rewarding feature is in-
fluenced by the depth of expertise during reward learn-
ing. This research adds to a growing body of research
on the mechanism of value-based memory, with novel in-
sights into how expertise influences selective memory for
reward-relevant features.
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Introduction
In an information-rich world, we are constantly bombarded
with overwhelming amounts of data. However, the human
memory system has limited capacity, making it impossible to
remember everything in a lossless manner (Baddeley, 2012;
Anderson & Hulbert, 2021). As a result, it is crucial to prior-
itize important information and allocate our limited cognitive
resources efficiently (Cowan, 2000; Nagy, Török, & Orbán,
2020). For example, when you visit a rental apartment, you
may remember the price and location, but not the color of the
doors or tiles on the staircase. This is because we prioritize
certain factors over others based on their significance.

Previous work has shown that the value associated with
stimuli can selectively influence memory (Knowlton & Castel,
2022; Schultz, Stoffregen, & Benoit, 2023; Middlebrooks, Kerr,
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Figure 1: Value-based Working Memory Experiment. a) Monster
stimuli. Each monster had four binary features, including feet, mouth,
eyes and head. b) Top: Reward learning task. Participants needed
to choose the “more powerful” monster in a series of fights between
monsters. Each choice was followed by feedback (correct vs. incor-
rect). Bottom: The “power” (i.e., value) of each monster was deter-
mined by weighted sum of its features. Each feature had a different
weight, with each feature type randomly assigned a value of either
1 or 0. c) Recognition memory task. Participants were shown two
randomly sampled monsters on the upper row for 5 seconds. Af-
ter a 0.5-second delay, a target monster was presented in one of
the bottom row slows. Participants were asked to whether the target
monster was identical to the monster directly above it.

& Castel, 2017). Thus, we tend to remember rewarding infor-
mation better than unimportant or less rewarding information
(Thomas, FitzGibbon, & Raymond, 2015). This phenomenon
can be explained by rate-distortion theory (Sims, 2016), which
suggests that memory capacity can be adaptively allocated to
minimize distortion (Gershman, 2021; Bates & Jacobs, 2020),
where reward-relevant distortions may have a larger impact
based on a cost-benefit trade-off (Bhui, Lai, & Gershman,
2021).

Internal representations of values guide many daily deci-
sions (De Martino & Cortese, 2023; Canas & Jones, 2010).
While previous studies suggest that reward-relevant choices
impact memory performance, it remains unclear whether this



also applies to how people selectively remember individual
features, which collectively define the value of a stimulus. For
example, in the apartment rental scenario, the price and lo-
cation may be more important than others. Therefore, the
objective of this study is to investigate whether the ability to
selectively remember stimuli is influenced by the hierarchy of
feature importance from a reward learning task.

In this work, we use a combined reward learning and recog-
nition memory task, both with the same set of stimuli. Dur-
ing reward learning, participants learned that features make
differing contributions to reward. In the memory task, per-
formed both before and after reward learning. Our results re-
vealed systematic differences in feature-specific recall, where
we found better selective memory for the most rewarding
feature—but only in the best performing reward learners. This
work provides important insights into the mechanisms of hu-
man memory and how we make the most out of limited cogni-
tive resources.

Methods

We designed a Value-based Working Memory experiment,
consisting of a reward learning task and a recognition mem-
ory task. Both tasks used the same monster stimuli (Fig. 1a),
each defined by a set of four binary features with 24 = 16
monsters in total. Each feature was comprised of six pixels
and with two pixels marking the difference between each fea-
ture value. The reward learning task required participants to
identify which pair of monsters was “more powerful” based on
a weighted-sum of features (Fig. 1b), while the memory task
had participants determine if a target monster was the same
or different from the probe above (Fig. 1c).

Participants and Design. We recruited 100 participants on
Prolific (Mage = 34.26; SD = 12.68; 49 female, 2 non-binary).
The task took on average 36.27 ± 13.41 minutes and partici-
pants earned £8.58 ± £1.13 on average.

Materials and procedure. Participants were first given in-
structions about the stimuli and completed a comprehension
check. They then performed 1 block of the memory task (“pre-
learning”), 4 blocks of the reward learning task, and then 1
final block of the memory task (“post-learning”).

In the memory task, participants completed 40 trials in
each block. On each trial, they were shown 2 monsters for 5
seconds as a probe, followed by a target monster directly be-
low. Participants were asked to respond ’Y’ if the monster was
the same as the one above, or ’N’ if it was different. Partici-
pants received feedback after every 10 trials. Probe monsters
were randomly sampled, while the target monster selectively
modified one of the four features with p(change| fi) = .5.

In the reward learning task, participants first completed
an interactive tutorial, before starting the main task consist-
ing of 240 trials across 4 blocks. On each trial, participants
were shown a pair of monsters (sampled without replace-
ment from all 240 pairwise combinations) and asked to pre-
dict which monster was “more powerful”. Participants were
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Figure 2: Results. a) Learning curve from the reward learning task.
Participants are separated (high vs. low performance) based on a
median-split of their accuracy on the last half of trials. b) Choice
probability as a function of value difference between monsters (us-
ing last half of trials), separated by high vs. low performance. As
the value-difference between monsters increases (x-axis), the likeli-
hood of selecting the monster with the higher value also increases
(y-axis). Participants in the high performance group (left) exhibit a
sharper slope near the inflection point compared to the low perfor-
mance (right). c) Memory performance in pre- and post-learning
blocks. We first normalized accuracy w.r.t., to each participant’s in-
dividual accuracy (y-axis), and the results across trials where each
target feature was modified. Then we arranged the features based
on their weight-rankings in the learning task (x-axis; highest weight
on the right). The star indicate significant differences from change
(p = .001). d) Memory difference in pre- and post-learning. The
high performance group (left) showed a significant improvement in
performance on the most important feature (p = .004), whereas the
low performance group (right) did not demonstrate any significant
changes in memory.

informed that the “power” of a monster is defined by their fea-
tures, with some features being more important than others.
We defined the power of each monster as a weighted sum
of features P(v) = ∑i fiwi, where the weights were the same
for all participants w = [0.62,0.24,0.09,0.03]. Participants
received truthful feedback after each trial and a summary of
their performance every block. Feature values (e.g., which
feet were assigned 0 or 1) and feature weights were randomly
counterbalanced across participants.

Results
We first present analyses of the reward learning task, before
looking at the pre- and post-learning effects on memory.

Learning performance
Overall, participants performed better than chance (t99 =
16.37, p < .001), with accuracy consistently improving over
trials (Pearson’s r = .65, p < .001; Fig. 2a). However, not all
participants performed equally well, and we separated partic-
ipants using a median split on their average accuracy in the
last half learning trials, creating high and low performance
groups (Nhigh = Nlow = 50). We also find that accuracy can
be described as a function of the value difference between
the two monsters (Fig. 2b), where larger value differences in-
creased the probability of choosing the higher-valued mon-
ster. This effect was stronger for the high performance group
(Sigmoid fit: r2

high = .92) than the low performance group



(r2
low = .62).

Selective memory

Next, we looked at memory performance, where overall, par-
ticipants performed better than chance in both pre- (high:
t49 = 12.07, p < .001; low: t49 = 11.60, p < .001) and post-
learning memory blocks (high: t49 = 14.34, p < .001; low:
t49 = 11.19, p < .001). Notably, the high performance group
demonstrated better performance in the post-learning mem-
ory block compared to the non-learning group (t98 = 2.52, p =
.013).

We then separated each trial based on the target feature
that was modified, arranging them based on their feature
weights in the reward learning task (Fig. 2c). We report the
normalized accuracy, where 0 corresponds to the average ac-
curacy of each participant across all memory trials where the
target did not match the probe. Thus, positive values corre-
spond to better than average memory performance, and neg-
ative values correspond to worse than average. These re-
sults reveal that the high performance group selectively re-
membered the highest weighted feature after exposure to the
reward learning task (t49 = 3.90, p = .001), but not for other
features (all p > .05). This selective memory effect was not
found in the low performance group.

In Figure 2d, we report the difference in normalized accu-
racy from pre- to post-learning, where we find that memory
for the highest weighted feature was significant improved, but
only in the high performance group (t49 = 3.01, p = .004).

Conclusion
We investigated whether exposure to reward learning influ-
enced selective memory of reward-predictive features. Our
results reveal that the highest performing reward learners se-
lectively remembered the most highly-weighted feature, but
not for all participants. These findings highlight the adaptive
selectivity of memory, which was modulated by the depth of
expertise in reward learning. These results contribute to a
growing body of research on value-based working memory
and provide insights into how learning feature importance for
reward prediction selectively influences memory.
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