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Abstract

Generalization, defined as applying limited experiences to novel sit-

uations, represents a cornerstone of human intelligence. Our review

traces the evolution and continuity of psychological theories of gener-

alization, from origins in concept learning (categorizing stimuli) and

function learning (learning continuous input-output relationships), to

domains such as reinforcement learning and latent structure learning.

Historically, there have been fierce debates between rule-based mecha-

nisms, which rely on explicit hypotheses about environmental structure,

and similarity-based mechanisms, which leverage comparisons to prior

instances. Each approach has unique advantages: rules support rapid

knowledge transfer, while similarity is computationally simple and flexi-

ble. Today, these debates have culminated in the development of hybrid

models grounded in Bayesian principles, effectively marrying the pre-

cision of rules with the flexibility of similarity. The ongoing success of

hybrid models not only bridges past dichotomies but also underscores

the importance of integrating both rules and similarity for a compre-

hensive understanding of human generalization.
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1. INTRODUCTION

Generalization: The
process of applying

previously acquired

knowledge to new,
unfamiliar situations

Concept learning:
Learning to apply
discrete category

labels to objects or

events.

Function learning:
Learning to

understand and
predict the

continuous

relationship between
input and output

variables.

Rules: Explicit
hypotheses about

the structure of the
environment that

can guide

generalization.

Similarity: A
comparison of new

situations to
previous experiences,

as a basis for
generalization.

In the unending flux and flow of new experiences, the study of how people generalize

past experiences to novel situations is a testament to the flexibility of human intelligence

(Lake et al. 2017; Chollet 2019). Thus, it is no surprise that generalization has occupied a

central role in psychology (Shepard 1987; Chater & Vitányi 2003; Tenenbaum & Griffiths

2001; Wu et al. 2018), neuroscience (Taylor et al. 2021; Norbury et al. 2018), and machine

learning (Zhang et al. 2016; Geirhos et al. 2018). Here, we bridge traditional psychological

theories with modern computational approaches, providing new perspectives for both old

problems and enduring challenges. While the computational methods are certainly new,

the theoretical underpinnings and core questions are deeply familiar to psychology and can

be traced back to foundational research in concept and function learning.

Over the years, debates about the mechanisms underlying human generalization have

spanned multiple domains. Research in concept learning has studied how people generalize

learned category labels when asked to classify new instances, for example, identifying the

breed of a dog or deciding whether a hotdog is a sandwich. Meanwhile, research in function

learning has studied how people generalize by learning the relationship between inputs and

outputs, allowing for interpolation within and extrapolation beyond observed data, such

as predicting how much study time is needed to pass a test or anticipating how much you

will enjoy a new menu item at your favorite restaurant. In both domains, theories about

the underlying mechanisms of generalization have largely coalesced around two ingredients:

extracting regularities of the environment in the form of generic rules to apply in novel

settings and using similarity to compare new situations to previously encountered instances,

with the expectation that similar outcomes will result from similar situations.

While fierce historical debates have raged over which ingredient is more central, today

these arguments have largely been settled in favor of hybrid models, which have both rule-

and similarity-based interpretations and are frequently based on Bayesian principles (Tenen-

baum & Griffiths 2001; Lucas et al. 2015). While a duality of interpretations suggests an

exchangeability between rule- and similarity-based representations (Goodman et al. 2008),

the computations used by hybrid models typically operate over either one or the other—over
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hypothesized rules or over representations of similarity—each conferring distinct advantages.

Rules unlock compositionality and rapid transfer, while similarity is easy to compute and

can flexibly capture various relationships in the environment.

In this review, we revisit the distinction between similarity- and rule-based mechanisms

of generalization. Our approach seeks to bridge the past and the present, by emphasizing

the continuity of these two mechanisms in theories of generalization. We first explore the

development of theories of generalization in concept learning and function learning. Each

domain has seen converging trajectories toward hybrid models integrating both rule-based

and similarity-based approaches. Second, we connect classic theories of function learning

with contemporary methods for value generalization in reinforcement learning, thus inte-

grating a new dimension of uncertainty-directed exploration to guide adaptive learning when

acting on the world. Third, we highlight inherent relations between Bayesian concept learn-

ing and theories of structure induction, which support generalization by inferring hidden

environmental structure. We conclude by proposing new directions for further integrating

similarity and rules, combining their relative advantages to unlock faster and more efficient

generalization in increasingly complex problems.

2. COMMON PRINCIPLES FOR GENERALIZATION

We first review foundational theories of generalization in concept learning and function

learning, which broadly map onto the distinction between classification and regression

problems, as they are commonly referred to in statistics and machine learning. A child

distinguishing dogs from cats based on characteristics like barking or meowing is a type

of classification problem used in concept learning, while a teacher predicting students’ test

scores based on study habits and past performance is a type of regression problem used in

function learning. Research in these two domains has largely progressed in distinct, parallel

tracks. Yet they share a similar historical trajectory of debates about the main mechanisms

supporting generalization. The proposed mechanisms can be categorized as rule-based ap-

proaches, which focus on extracting regularities or generic ‘rules’ from the environment,

and similarity-based approaches, which compare new situations to past examples.

In this section, we examine the evolution of theories about generalization across concept

learning and function learning. In both domains, these theories have largely culminated in

hybrid models, often using Bayesian principles to unify rule-based and similarity-based

approaches. We then show how these hybrid approaches provide the foundations for scaling

up to increasingly more complex and real-world problems, drawing connections between

theories of function learning and modern approaches to value generalization in reinforcement

learning, and from Bayesian concept learning to theories of structure learning.

2.1. Concept Learning

A chief aim of psychology has been to understand how individuals categorize and differen-

tiate between different elements of the “blooming and buzzing confusion” (James 1890) of

the environment. Research in the domain of concept learning has long used classification

problems with discrete stimuli as a means to study generalization (Rosch 1973; Medin &

Schaffer 1978). For instance, learning the category “sandwich” from examples of paninis

and subs, and then generalizing confidently when shown a grilled cheese for the first time,

but perhaps hesitating when shown a hotdog (Figure 1a). Important debates in this field
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Figure 1

Generalization in Concept Learning and Function Learning. a) Concept learning is often studied based on

classifying discrete stimuli (e.g., sandwich vs. not sandwich). b) Rule-based methods describe explicit category boundaries

(rectangle), while c) similarity-based methods utilize similarity (arrows) to previous exemplars (data points) or learned
prototypes (centroid of colored oval). d) Bayesian concept learning (Tenenbaum & Griffiths 2001) provides a hybrid

approach by defining a distribution over rules (rectangles), which yield similarity-like patterns of generalization(Shepard

1987; Tversky 1977). The likelihood favors narrower hypotheses (shading of lines). e) Function learning is often studied
based on predicting outputs (e.g., enjoyment) given some input (e.g., spiciness). f) Rule-based methods describe specific

parametric families of functions (e.g., linear or polynomial), while g) similarity-based methods often use Artificial Neural

Networks (ANNs) to approximate nonlinear functions, where the influence of each data point is proportional to their
similarity (i.e., inverse distance; arrows). h) Gaussian Process regression provides a hybrid approach using kernel

similarity to describe a distribution over hypothesized functions (red lines), which are summarized in terms of an

expectation (blue line) and uncertainty (blue ribbon). Food images are from OpenClipArt under CC0 1.0.

have concerned which representations are learned and the mechanisms used for generalizing

about novel stimuli (Erickson & Kruschke 1998; Hahn & Chater 1998; Bowman et al. 2020).

Here, we broadly categorize different influential approaches into rule-based and similarity-

based approaches.

Rule-based Concept Learning. One influential class of theories proposed that concepts are

defined based on rules that describe the explicit boundaries of category membership (Bruner

et al. 1956; Ashby & Gott 1988; Rouder & Ratcliff 2006, rectangle in Fig. 1b). For instance,

one might describe the necessary and sufficient features (Smith & Medin 1981) of a sandwich

as “food flattened between two pieces of bread”, and thus classify any novel food that

satisfies this rule as a sandwich. The specificity of rules facilitates rapid generalization, while

their compositionality (i.e., the ability to combine multiple rules) makes them infinitely

productive (Goodman et al. 2008).

Yet for the same reasons, rules are inflexible (what about open-faced sandwiches?) and

difficult to learn, since infinite productivity also implies an infinite hypothesis space of can-

didate rules to consider. Even with mechanisms for learning exceptions to rules for added

flexibility (Nosofsky et al. 1994), rule-based methods only seem to offer partial explana-
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tions of human category learning (Tenenbaum & Griffiths 2001), and perform best when

paired together with other learning mechanisms (Ashby et al. 1998; Erickson & Kruschke

1998; Love et al. 2004). Nevertheless, the basic mechanisms of rule-based generalization

(i.e., proposing explicit hypotheses) play an important role in modern theories of structure

learning (Kemp & Tenenbaum 2008) and program induction (Lake et al. 2015; Rule et al.

2020), which use a probabilistic framework to add flexibility to the rigid structure of rules.

Universal Law of
Generalization: The
probability of a

response for one

stimulus being
generalized to

another is a function
of the distance

between the two

stimuli in a
psychological space.

Bayesian concept
learning: A
probabilistic

approach to concept

learning, using a
distribution over

rule-like hypotheses

about based concept
boundaries,

producing

similarity-like
generalization

patterns.

Bayesian size
principle: Smaller,

more specific
hypotheses are

preferred over

broader ones, given
consistent evidence.

Similarity-based Concept Learning. Another class of theories uses similarity-based methods

for predicting the category of novel stimuli (Figure 1c). Early theories introduced the

notion of a psychological space (Torgerson 1952; Ekman 1954), where stimuli are embedded

as geometric coordinates and a measure of distance (e.g., Euclidean distance) serves to

represent the (dis-)similarity between stimuli. The most influential example is Shepard’s

(1987)“Universal Law of Generalization”, which used confusability (i.e., the probability

of responding to stimulus x when shown stimulus x′) to construct a psychological space

using Multidimensional Scaling (Shepard 1962; Kruskal 1964). Intuitively, stimuli producing

similar responses are embedded in similar locations, such that the same unit of distance in

any direction corresponds to the same level of generalization. Stimuli located further apart

in psychological space are thus less likely to yield the same response, becoming exponentially

less likely as their distance increases (Figure 2a).

At the core of Shepard’s theory is the assumption that representations about categories

correspond to a “consequential region” in psychological space (Figure 2a). Generalization

thus arises due to uncertainty about the extent of these regions. As the distance between

stimuli x and x′ increases, they are less likely to belong to the same region and therefore

less likely to produce similar outcomes. Other similarity-based approaches are consistent

with this notion of a psychological space, where comparison to either previously encoun-

tered exemplars (Medin & Schaffer 1978; Nosofsky 1986), or to a learned prototype (Rosch

1973; Smith & Minda 1998) aggregated over multiple experiences, provides the basis for

generalization (arrows in Figure 1c).

Yet the notion of similarity has been famously criticized for being too flexible, with

endless and arbitrary ways to define similarity for any pair of stimuli (Goodman 1972;

Medin et al. 1993; Hahn & Ramscar 2001). Modern theories address this challenge by pro-

viding new approaches for describing the psychological mechanisms people use to construct

context-relevant similarity representations (see Radulescu et al. 2021, for a review), forming

a rational rather than arbitrary basis for computing similarity. Furthermore, advances in

similarity-based approaches to generalization are now able to capture rich relational struc-

ture (Wu et al. 2021; Whittington et al. 2020) and represent the temporal dynamics of the

environment (Stachenfeld et al. 2017; Garvert et al. 2023).

Hybrid Concept Learning Using Bayesian Principles. Today, the most prolific theories of

concept learning are hybrids that have a duality of both rule- and similarity-based inter-

pretations (Pettine et al. 2023). One influential example is Bayesian concept learning (Fig-

ure 1d; Tenenbaum & Griffiths 2001), which uses a distribution over hypothesized category

boundaries (rectangles in Figure 1d) to categorize novel stimuli (Sidebar 2.1).

A key concept is the Bayesian size principle (Tenenbaum & Griffiths 2001), where under

the assumption of “strong sampling”, greater likelihoods are assigned to narrower hypothe-

ses consistent with the data (darker shading for smaller rectangles in Figure 1d). Strong

sampling assumes that rather than being completely random, the data X are explicitly

www.annualreviews.org • Unifying generalization 5



sampled from positive examples of the category C, as is commonly the case in pedagogical

settings (Csibra & Gergely 2009), where a parent or a teacher provides informative exam-

ples of categories, such as “plane”, “dog”, or “sandwich’. Consequently, the distribution of

the observed data X is expected to reflect the range of the category boundary, thus pre-

ferring narrower hypotheses consistent with the data, where the strength of this preference

increases with more observations.

Bayesian concept learning thus uses computations over rule-like category boundaries, yet

replicates behavioral patterns of similarity-based theories, such as Shepard’s (1987) general-

ization gradient and is equivalent to a special case of Tversky’s set-theoretic model (Tversky

1977). And while other hybrid models advocated for a “separate-but-equal” approach (Er-

ickson & Kruschke 1998) by incorporating rules and similarity as separate mechanisms,

Bayesian concept learning represents a “unified” approach, where rules and similarity are

seen as two sides of the same coin (Pothos 2005; Goodman et al. 2008; Austerweil et al.

2015). This core Bayesian framework—based on describing a distribution of hypotheses

and adapting them to new data—has since proliferated computational theories across a

wide range of phenomena, such as causal learning (Meder et al. 2014; Griffiths & Tenen-

baum 2005, 2009), word learning (Xu & Tenenbaum 2007), structure induction (Kemp &

Tenenbaum 2008), and the learning of compositional programs (Lake et al. 2017; Ellis et al.

2023; Fränken et al. 2022; Zhao et al. 2023). A distinct advantage of operating over rule-

based representations is the ability to reason compositionally, by syntactically manipulating

and combining multiple rules (Piantadosi et al. 2016). Yet given an expressive hypothe-

Bayesian Concept Learning

Bayes’ rule is used to describe the posterior probability that each hypothesis h captures category C given

a set of positive observations xi ∈ X :

p(h|X ) ∝ p(h)p(X|h), 1.

This posterior integrates prior beliefs p(h) and the likelihood of the data p(X|h), where the prior is usually

assumed to be uniform, while the likelihood makes use of the Bayesian size principle (Tenenbaum & Griffiths

2001) to favor narrower hypotheses that are still consistent with the data:

p(X|h) =

{
1

|h|n if x1, . . . ,xn ∈ h

0 otherwise
2.

Having defined the posterior probability of a single hypothesis h, the goal is to predict whether a novel

stimulus x∗ falls within the same category C as previously observed examples X . Bayesian concept learning

defines this probabilistically, by aggregating over all hypotheses h (i.e., category boundaries) consistent with

x∗ belonging to C:

p(x∗ ∈ C|X ) =
∑

h:x∗∈C

p(h|X ). 3.

This represents a sum of posterior probabilities p(h|X ) for different hypotheses that encapsulate x∗, where

the contribution of each hypothesis is weighted by the size principle (Eq. 2).
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sis space, exact Bayesian inference is usually intractable, with most approaches relying on

sample-based (Tenenbaum & Griffiths 2001; Kemp & Tenenbaum 2008; Ellis et al. 2023)

or variational approximations (Dasgupta et al. 2020). Thus, it remains an open question

how humans achieve the power and productivity of rule learning, but with limited cognitive

resources (Sanborn et al. 2010; Rubino et al. 2023; Zhou et al. 2024b).

2.2. Function Learning

Beyond discrete category membership, generalization has also been studied in the domain

of function learning (Figure 1e) based on inferring a continuous relationship between inputs

and outputs (Carroll 1963; Brehmer 1974; Lucas et al. 2015). For example, learning how

spiciness (input) relates to one’s enjoyment of a meal (output), or how the amount of time

spent studying (input) predicts test scores (output). Pioneering research by Carroll (1963)

used function learning to show that human generalization goes beyond merely predicting

previously observed outcomes, in contrast to the domain of concept learning, where partici-

pant responses are typically limited to previously learned category labels, even if the stimuli

presented are novel. Rather, Carroll’s (1963) work on function learning showed that people

can extrapolate beyond their past experiences, generalizing not only to new inputs but also

predicting new outputs (e.g., an off-the-charts food experience). While largely operating

along a separate research tradition, the domain of function learning is also characterized

by a parallel debate between rule- and similarity-based theories, which has culminated in

hybrid formalizations (Busemeyer et al. 1997; Kalish et al. 2007; Lucas et al. 2015).

Rule-based Function Learning. Early research on function learning proposed rule-based

theories, assuming people use a specific parametric model (e.g., a linear or polynomial

function), and then learn by optimizing the parameters to best explain the data (Carroll

1963; Brehmer 1976, Figure 1f). In function learning, rules correspond to a hypothesized

relationship between variables, like the law of gravity describing a polynomial relationship

between mass and distance, or the linear assumptions of a linear regression. While rule-

based methods capture the systematicity of human extrapolation patterns (i.e., strong linear

assumptions; DeLosh et al. 1997), they lack the flexibility of humans, who can learn to

interpolate almost any function with enough training (McDaniel & Busemeyer 2005).

Similarity-based Function Learning. To better account for the flexibility of human gener-

alization, similarity-based models (Figure 1g) of function learning were developed, often

using artificial neural networks (ANNs) to encode the generic principle that similar inputs

produce similar outputs (McClelland et al. 1986; Busemeyer et al. 1997). The influence of

previous observations decreases as a function of distance (arrows in Figure 1g) to a given

input, with nearby observations exerting a larger influence. ANNs are universal function

approximators (Cybenko 1989), and can approach arbitrarily low error in fitting a given

function, given sufficient neurons in the hidden layers. But while this flexibility aligns with

similar human capabilities in interpolation tasks, ANNs fail to match the specific inductive

biases humans exhibit when extrapolating beyond observed data (Schulz et al. 2017). For

instance, humans tend to extrapolate functions with strong linear expectations (Kalish et al.

2004), a tendency not inherently captured by standard ANNs. This distinction underscores

the need to further refine neural network models to more accurately mirror human cognitive

processes in both interpolation and extrapolation.

www.annualreviews.org • Unifying generalization 7



Hybrid Function Learning Using Bayesian Principles. To combine the rule-like systematicity

of human extrapolation with the similarity-like flexibility of interpolation, hybrid function

learning models were developed. One notable example is Gaussian Process regression (Fig-

ure 1h; Rasmussen & Williams 2005), which can account for many empirical patterns of

human function learning (Lucas et al. 2015) while using similar Bayesian computations as

hybrid models of concept learning (Sidebar 2.2).

Gaussian Process
regression: A
probabilistic

function learning

method, using a
distribution over

hypothesized
functions, with both

rule- and

similarity-based
interpretations.

Kernel function: A
similarity metric
defined for any pair

of stimuli, used in

Gaussian Processes.

Gaussian Process regression provides a Bayesian approach to function learning (see

Schulz et al. 2018, for a tutorial), based on a distribution over hypothesized functions

that explain the data (red lines in Figure 1h). In contrast to Bayesian concept learning,

Gaussian Process regression is analytically tractable, with a Gaussian posterior distribution

characterized by a mean (i.e., expected outcome; blue line in Figure 1h) and variance (i.e.,

uncertainty; blue ribbon in Figure 1h). These analytically tractable computations have

exact equivalencies to ANNs in the limit of an infinite number of hidden units (Neal 1996).

A key ingredient in Gaussian Process regression is the choice of kernel function, which

provides an explicit similarity metric between any pair of inputs x and x′ with desirable

mathematical properties (Schölkopf & Smola 2002). This can captures inductive biases

present in similarity-based theories (Figure 1g), such as the common radial basis function

(RBF) kernel (Eq. 5), which assumes similar inputs are likely to produce similar outcomes

(Figure 2b). However, there is a rich set of kernel functions to choose from, capturing

different forms of inductive biases (Duvenaud et al. 2013). For instance, linear kernels

Bayesian Function Learning

Gaussian Process regression (Rasmussen & Williams 2005) provides a Bayesian approach to function learn-

ing by mapping inputs X to real-valued outputs y through a distribution over hypothesized functions h. A

prior over functions takes the form of a multivariate Gaussian distribution:

p(h) ∼ GP
(
m(x), k(x,x′)

)
, 4.

defined by a prior mean m(x), which is typically set to 0 without loss of generality (Rasmussen & Williams

2005), and a covariance function k(x,x′), which is defined by a choice of kernel. A common choice is the

radial basis function (RBF) kernel:

k(x,x′) = exp

(
−||x− x′||2

2λ2

)
, 5.

capturing the inductive bias that similar inputs are expected to produce similar outputs, with similarity

defined as an exponentially decaying function of distance in feature space (Figure 2b). The posterior

distribution is then defined by conditioning on observed data D = {X ,y} of encountered inputs xi ∈ X and

outputs yi ∈ y. The posterior is also Gaussian, with predictions for any input x∗ characterized by posterior

mean m(x∗|D) and variance v(x∗|D):

p (h(x∗) |D) ∼ GP (m(x∗|D), v(x∗|D)) 6.

8 Wu et al.
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Figure 2

Principles of Generalization. a) Shepard’s (1987) Law of Generalization describes

generalization as a function of distance (dashed arrow) between stimuli in psychological space

(inset). The gradient of generalization arises due to uncertainty about the extent of a
consequential region, with more distant stimuli less likely to belong to the same region. b) An

RBF kernel provides a similarity metric based on the distance between stimuli in feature space

(inset: dashed arrow), producing similar generalization gradients as Shepard’s model (here
quantified using Pearson correlation between outputs sampled from a Gaussian Process prior).

The lengthscale λ governs the rate at which generalization decays as a function of distance. c) In

structured environments, a diffusion kernel (Kondor & Lafferty 2002; Wu et al. 2021) offers an
analogous similarity metric based on the connectivity structure of a graph, where the diffusion

parameter α governs the rate that previous observations “diffuse” over the graph.

make strong assumptions about linear relationships, periodic kernels encode cyclical trends,

and graph kernels capture relational structure between discrete nodes on a graph (e.g., a

diffusion kernel; Wu et al. 2021; Kondor & Lafferty 2002, Figure 2c).

Gaussian Process regression can also be considered a hybrid model due to both

similarity- and rule-based interpretations (Lucas et al. 2015; Austerweil et al. 2015). The

similarity-based interpretation is straightforward, since the kernel explicitly encodes simi-

larity between data points. However, the framework also lends support to two rule-based

interpretations. The first is based on a mathematical property known as Mercer’s (1909)

theorem, describing how any kernel can be decomposed into a combination of basis func-

tions (Lucas et al. 2015; Austerweil et al. 2015), each corresponding to an abstract rule.

Just as any color can be decomposed into RGB components, the basis functions that collec-

tively constitute a kernel form the rule-like building blocks that allow Gaussian processes

to express a potentially unlimited range of functions. A second rule-based interpretation,

is based on the compositionality of Gaussian Process kernels (Schulz et al. 2017; Duvenaud

et al. 2013). Multiple kernels can be combined via addition or multiplication operations

to produce new kernels. Since each kernel can be seen as providing rule-like biases about

the hypothesized form of a function (e.g., a linear kernel for linear relationships, or a peri-

odic kernel for periodic functions), compositional kernels thus allow for new compositional

biases (e.g., a linear periodic relationship describing our alarming climate trends), similar

to how rules can be combined to create new composite rules. Composing multiple kernels

thus allows for aggregating multiple hypotheses about the hidden structure of the environ-

ment. The Gaussian Process framework further formalizes this idea and injects the ability

to reason about compositional rules as well. Thus, inversely analogous to Bayesian con-

cept learning, Gaussian Processes operate on similarity-based computations but provide

equivalent rule-based interpretations.
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2.3. Converging Historical Traditions

Given the similar historical trajectories, there is much to be gained from integrating theo-

ries of generalization across domains. In concept learning (Figure 1a-d), Shepard’s (1987)

“Universal Law of Generalization” provides an influential similarity-based approach, where

generalization is characterized as distance in “psychological space”, with stimuli embedded

at closer distances are more likely to produce the same responses (Figure 2a). Yet through

a probabilistic application of rule-based mechanisms, a hybrid Bayesian concept learning

framework (Figure 1d; Tenenbaum & Griffiths 2001) can reproduce the same smooth gradi-

ent of generalization, showing how rule- and similarity-based mechanisms can be interpreted

as two sides of the same coin (Pothos 2005; Austerweil et al. 2015). In function learning,

there was an analogous trajectory of rule- and similarity-based theories culminating in hy-

brid approaches using Bayesian principles (Figure 1e-h). Current hybrid theories of function

learning based on Gaussian Process regression utilize similarity-based mechanisms imple-

mented through “kernel functions” that capture inductive biases (e.g., stimuli with similar

features will yield similar outputs), yet also provide rule-based interpretations and allow

for compositional operations over different kernels (Lucas et al. 2015; Schulz et al. 2017).

Ultimately, this convergence of concept and function learning has leveraged the strengths of

both rule- and similarity-based approaches to illuminate the rich tapestry of human general-

ization. Building on these historical developments, we now turn to examine how principles

of concept learning and function learning have informed new domains of generalization,

tackling increasingly complex and challenging domains.

3. FROM LEARNING FUNCTIONS TO ACTING ON THE WORLD

Function learning has received relatively less attention and produced fewer experiments,

compared to concept learning. Yet there has been a revival of interest, given the impor-

tance of value function approximation for generalization in Reinforcement Learning (RL)

problems (Sutton & Barto 2018). RL provides a computational framework for understand-

ing learning in both biological and artificial systems, tracing its origins to early research on

associative and instrumental learning (Thorndike 1911; Pavlov 1927; Skinner 1938). Framed

as a trial-and-error process, RL agents learn to associate actions with expectations of re-

ward through feedback from the environment, leading to gradual improvements in selecting

reward-maximizing behaviors. However, no biological or artificial agent can try every possi-

ble action in most real-world settings, highlighting a growing impetus to better understand

how humans generalize in more real-world contexts, where the space of possible outcomes

is too vast to be experienced exhaustively (Wu et al. 2018).

RL researchers has long grappled with the need to generalize past feedback to novel

actions and states (Tesauro 1995). In complex games such as Go (Silver et al. 2016), the

number of possible game states vastly outnumbers the number of atoms in the known uni-

verse. Thus, in scaling up to solve increasingly complex tasks, most modern RL algorithms

commonly infer a value function mapping a vast space of potential actions or states to

expectations of reward (i.e., value) (Sutton & Barto 2018). This estimated value function

can then be used to generalize a limited number of experienced outcomes to a vast and

potentially infinite space of possibilities, guiding efficient exploration and action selection.

Here, we review recent advances in understanding human generalization in RL settings that

do not permit exhaustive exploration and connect these findings to theories from function

learning.
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3.1. Generalization in Reinforcement Learning Using Function Approximation
Reinforcement
learning: A
framework for

understanding

learning through
trial-and-error

feedback from the
environment.

Value function
approximation: A
key method for

generalization in

reinforcement
learning, by

expected value of

different states or
actions.

Bandit problem:
Experimental
paradigm used to

investigate the

trade-off between
exploration and

exploitation.

Decision-makers
repeatedly choose

among options to
accumulate payoffs,

where each option

yields probabilistic
rewards.

Directed exploration:
A strategic approach
in learning or

decision-making

where exploration is
guided by specific

goals or hypotheses,

such as reducing
subjective

uncertainty.

Several recent studies have investigated human generalization in RL problems with

structured rewards (Wimmer et al. 2012; Wu et al. 2018; Norbury et al. 2018; Stojić et al.

2020). Rather than each option having independent reward distributions—as is commonly

the case in bandit tasks—here, structured bandit problems use correlated rewards (Fig-

ure 3a). Thus, options in similar spatial locations (Wu et al. 2018), with similar abstract

features (Wu et al. 2020; Stojić et al. 2020; Norbury et al. 2018), or nodes that are well-

connected on a graph (Wu et al. 2021) will yield similar rewards. This correlated reward

structure provides traction for generalization, allowing participants to guide the selection

of actions toward promising regions of the search space. In this body of research, human

generalization is typically best characterized by the same Gaussian Process model as in

traditional function learning tasks, but based on the implicit learning of a value function,

which is then used to predict actions (Figure 3b).

One important distinction between generalization in RL settings compared to traditional

function learning is that the goal in RL is not necessarily to learn the true underlying value

function. Rather, one needs to balance the explore-exploit dilemma (Mehlhorn et al. 2015),

by both exploring uncertain options to acquire information, and exploiting options with

high expectations of reward to maximize immediate gains. Thus, a fundamental challenge

in RL is to determine what information should be acquired given current beliefs (i.e., active

learning; Nelson 2005). Two prominent mechanisms of exploration are random exploration

(e.g., flipping a coin to decide) and uncertainty-directed exploration (i.e., curiosity towards

subjective uncertainty), which play a dissociable role in human exploration (Wu et al.

2018; Wilson et al. 2014; Wu et al. 2022a; Cogliati Dezza et al. 2019) and different neural

signatures (Zajkowski et al. 2017). In RL settings, the Gaussian Process model addresses the

explore-exploit dilemma by making Bayesian predictions about expected rewards, including

quantifications of uncertainty (blue line and ribbons, respectively, in Figure 3a right). These

two components can be used to implement policies that both balance the exploration-

exploitation dilemma and predict human behavior.

Figure 3b illustrates how the reward expectations and uncertainty estimates of a

Bayesian function learning model are combined to predict choices in a spatially correlated

bandit problem (Wu et al. 2018). The best account of human choice behavior combines

Gaussian Process regression as a model of value generalization with Upper Confidence

Bound (UCB) sampling (Auer 2002), which quantifies the value of a choice option by

adding an uncertainty-based ”exploration bonus“ to reward expectations. Together, the

GP-UCB model demonstrates how generalization and exploration mechanisms interact to

guide decision-making in RL. Furthermore, additional studies have fit the GP-UCB model

on choices and then used it to predict out-of-sample judgments that participants made

about the expected reward of unexplored options along with subjective confidence ratings

(Wu et al. 2020, 2021). Thus, participants not only select actions “as-if” they are using a

form of Bayesian value function approximation, but the same computations can also be used

to predict their judgments, showing a correspondence between implicit value generalization

in RL with explicit function learning in psychology.

3.2. Developmental Changes in Generalization and Exploration

By integrating generalization as Bayesian function learning, the GP-UCB model has pro-

vided a powerful lens for understanding developmental changes in learning. Human de-

www.annualreviews.org • Unifying generalization 11



Va
lu

e

Input

Observation
Hypothesis

Exp. Reward
Uncertainty

Stripes Tilt

GraphSpatial Conceptual

a  Fully revealed environment b  Screenshot of search task c  Bonus round

53
43
50 41

40 12
48 58

51
38 51

49
59 39 32 21 41
68 24

37

0

25

50

75

Payoff

0

25

50

75

Variance

20

40

60

80

UCB

0.00

0.01

0.02

0.03

P(Choice)

a

Gaussian Process Upper Confidence Bound (GP-UCB) modelb

53
43
50 41

40 12
48 58

51
38 51

49
59 39 32 21 41
68 24

37

0

25

50

75

Payoff

0

25

50

75

Variance

20

40

60

80

UCB

0.00

0.01

0.02

0.03

P(Choice)

Expected reward

53
43
50 41

40 12
48 58

51
38 51

49
59 39 32 21 41
68 24

37

0

25

50

75

Payoff

0

25

50

75

Variance

20

40

60

80

UCB

0.00

0.01

0.02

0.03

P(Choice)

53
43
50 41

40 12
48 58

51
38 51

49
59 39 32 21 41
68 24

37

0

25

50

75

Payoff

0

25

50

75

Variance

20

40

60

80

UCB

0.00

0.01

0.02

0.03

P(Choice)
Uncertainty

v(x |𝒟)

53
43
50 41

40 12
48 58

51
38 51

49
59 39 32 21 41
68 24

37

0

25

50

75

Payoff

0

25

50

75

Variance

20

40

60

80

UCB

0.00

0.01

0.02

0.03

P(Choice)

53
43
50 41

40 12
48 58

51
38 51

49
59 39 32 21 41
68 24

37

0

25

50

75

Payoff

0

25

50

75

Variance

20

40

60

80

UCB

0.00

0.01

0.02

0.03

P(Choice)

Upper Confidence Bound

53
43
50 41

40 12
48 58

51
38 51

49
59 39 32 21 41
68 24

37

0

25

50

75

Payoff

0

25

50

75

Variance

20

40

60

80

UCB

0.00

0.01

0.02

0.03

P(Choice)

53
43
50 41

40 12
48 58

51
38 51

49
59 39 32 21 41
68 24

37

0

25

50

75

Payoff

0

25

50

75

Variance

20

40

60

80

UCB

0.00

0.01

0.02

0.03

P(Choice)
Softmax Predictions

53
43
50 41

40 12
48 58

51
38 51

49
59 39 32 21 41
68 24

37

0

25

50

75

Payoff

0

25

50

75

Variance

20

40

60

80

UCB

0.00

0.01

0.02

0.03

P(Choice)p(x)UCB(x)m(x |𝒟)

Directed Exploration β Random Temperature τGeneralization λ

Simulated Annealing (SA) Stochastic Hill
Climbing (SHC)

0 500 1000 1500 0 500 1000 1500

0.7

0.8

Iteration

R
ew

ar
d

Cooling Schedule fast exponential linear

Algorithms and Cooling Schedulesa

5−67−8

9−10

11−13

14−17

18−24

25−55
0.1

0.3

1.0

0.1 0.3 1.0 3.0
Generalization λ [logscale]

Ex
pl

or
at

io
n 
β 

[lo
gs

ca
le

]

0.5
0.6
0.7
0.8
0.9

Reward

Human       vs.       SHC (fast cooling)b Developmental Trajectoryc
Humans (5-55 yrs)
Stochastic Optimization

Simulated Annealing (SA) Stochastic Hill
Climbing (SHC)

0 500 1000 1500 0 500 1000 1500

0.7

0.8

Iteration

R
ew

ar
d

Cooling Schedule fast exponential linear

Algorithms and Cooling Schedulesa

5−67−8

9−10

11−13

14−17

18−24

25−55
0.1

0.3

1.0

0.1 0.3 1.0 3.0
Generalization λ [logscale]

Ex
pl

or
at

io
n 
β 

[lo
gs

ca
le

]

0.5
0.6
0.7
0.8
0.9

Reward

Human       vs.       SHC (fast cooling)b

Generalization  (logscale)λ

Di
re

ct
ed

 E
xp

lo
ra

tio
n 

 (l
og

sc
al

e)
β

Generalization in RL using Value Function Approximation

Figure 3

Generalization in RL. a) Generalization as Value Function Approximation. Left: Bandit tasks with structured rewards,
where similar locations, feature combinations, or connected nodes generate similar rewards. Right: Generalization

modeled using Gaussian Process regression to infer a value function, mapping a potentially infinite range of actions or

states to probabilistic predictions about expected reward and subjective uncertainty. b) Overview of the Gaussian Process
Upper Confidence Bound (GP-UCB) model in a spatial bandit task. Conditioned on the observations in panel a (left), the

Gaussian Process model makes predictions about expected reward m(x) and uncertainty v(x), where the parameter λ

governs the extent that past observations generalize to new options. Upper confidence bound (UCB) sampling combines
the expected rewards m(x) and uncertainty v(x) using a weighted sum, where the parameter β defines the value of

exploring uncertain options relative to exploiting high reward expectations. Lastly, UCB values are transformed into

probabilistic predictions of where the participant will search next using a softmax function, where the temperature τ
governs the amount of random exploration. c) The developmental trajectory of human learners (5-55yrs) resembles

stochastic optimization over GP-UCB parameters. The labeled dots are the median parameter estimates from human

subjects, while the blue line is the trajectory of the best-performing stochastic optimization algorithm (Giron et al. 2023).

velopment is often likened to a “cooling off” process (Gopnik et al. 2015), in analogy to

mechanisms of stochastic optimization used in modern machine learning models. Like a

heated piece of metal that becomes harder to manipulate as it cools off, stochastic opti-

mization starts off highly flexible and open to solutions that might not seem very good at

first. But as it “cools down”, the algorithm become less flexible and more selectively favor-

ing only local improvements. This analogy is appealing, since children are highly stochastic

and flexible learners, with the randomness of their choices (Bonawitz et al. 2014) and hy-

potheses (Buchsbaum et al. 2012; Lucas et al. 2014; Gopnik et al. 2017; Denison et al. 2013)

gradually diminishing over the lifespan.

Yet, there is ambiguity in how to interpret this verbal analogy. The most common inter-

pretation is “cooling off” as a uni-dimensional transition from exploration to exploitation

(Gopnik 2020), focusing solely on a reduction in random exploration. While past work has

indeed found differences in random exploration between different age-groups (Somerville

et al. 2017a; Blanco & Sloutsky 2021; Schulz et al. 2019; Meder et al. 2021), this only

seems to be part of the picture. Developmental changes are also found in more systematic,
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uncertainty-directed exploration (Schulz et al. 2019; Blanco & Sloutsky 2021; Somerville

et al. 2017b), along with aspects of belief integration and generalization about novel op-

tions (Van den Bos et al. 2012; Blanco et al. 2016).

To provide a concrete test of the “cooling off” analogy, Giron et al. (2023) directly com-

pared the trajectory of human learners (aged 5 to 55) against that of various optimization

algorithms (Figure 3c). The results showed that “cooling off” does not only apply to the

single dimension of randomness. Rather, development resembles an optimization process in

the space of learning strategies: what begins as large tweaks in the parameters that define

learning during childhood, plateaus and converges in adulthood. While the developmental

trajectory of human learning strategies is strikingly similar to the best-performing algo-

rithms (Figure 3c), none discovered reliably better regions of the strategy space than adult

participants, suggesting a remarkable efficiency of human development.

In sum, integrating principles of generalization with the exploration-exploitation

dilemma from RL has proven to be a productive approach for understanding behavior in

increasingly complex scenarios. The use of structured reward environments constitutes an

important step towards characterizing the psychological mechanisms of adaptive behavior

in more complex and naturalistic settings (Wise et al. 2024), where the environment does

not permit exhaustive experience of all options. Here, generalization via Bayesian function

learning shines a guiding light by predicting both where to exploit and where to explore.

4. FROM LEARNING CONCEPTS TO LEARNING STRUCTURE

Human generalization is much deeper than just comparing features at face value. Rather,

generalization also depends on the relational structure and temporal dynamics of the envi-

ronment, which are often hidden and need to be inferred. Research on structure learning

can be broadly divided into two traditions. The first originates from Tolman’s (1948) pi-

oneering notion of a “cognitive map”. Research in this domain has extensively studied

spatial navigation in the hippocampal-entorhinal system (Whittington et al. 2022; Epstein

et al. 2017; Moser et al. 2014), which has since been extended to a wide range of nonspatial

modalities and domains (Behrens et al. 2018). The second tradition, known as Bayesian

structure induction (Kemp & Tenenbaum 2008), builds on a similar formalism as Bayesian

concept learning (Tenenbaum & Griffiths 2001), where explicit, rule-like hypotheses about

structure can be inferred from observed data, reflecting our ability to discern patterns and

regularities in the environment. While these traditions are based on different theoretical

foundations, here we show that they share a common framework of similarity-based mech-

anisms for learning rule-like hypotheses about structure.

4.1. Cognitive Maps

Cognitive Map: A
mental
representation of the

structure of the

environment, used
for navigation,

learning, and

generalization.

Structure induction:
The process of

inferring underlying
structure from

observed data, often

using Bayesian
principles.

Successor
representation: An
RL model using

anticipated future

states of the
environment for

predictive
generalization.

Originally proposed as an alternative to stimulus-response learning, Tolman (1948)

found that rats could rapidly adapt to new situations (e.g., choosing the second short-

est path in a maze when the shortest path is blocked) and to new goals (e.g., efficiently

navigating to food rewards placed in novel locations of a familiar maze). These results sug-

gested the rats had generalized their experiences based on establishing a “field map of the

environment” (Tolman 1948, p. 2), Today, this notion of a cognitive map is grounded in neu-

ral evidence (in humans and other animals) relating the activity of specialized cells in the

hippocampal-entorhinal system to computations facilitating navigation and self-location,
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such as encoding spatial orientations, boundaries, and distance to objects (see Moser et al.

2014; Peer et al. 2021; Epstein et al. 2017, for reviews). And as Tolman originally specu-

lated, cognitive maps are not only restricted to representing spatial structure. Rather, the

same neural machinery used for spatial navigation also encodes relational and structural

knowledge across a wide range of domains, including social relationships (Tavares et al.

2015), smells (Bao et al. 2019), abstract visual features (Constantinescu et al. 2016), and

the connectivity of hidden graph structures (Garvert et al. 2017).

One influential account of structure learning in the hippocampal-entorhinal system is the

Successor Representation (SR; Dayan 1993; Stachenfeld et al. 2017). Originally developed

as a method to improve the generalization of Temporal Difference (TD) learning (Sutton &

Barto 2018), the SR describes a decomposition of the value function into a similarity matrix

and the singular rewards of each state (Figure 4a). The similarity matrix quantifies the

similarity between each pair of states based on expected future state transitions, influenced

by both the structure of the environment and the agent’s behavioral policy (i.e., how the

agent moves around in the environment), and thus corresponds to an explicit, graph-like

representation of the environment (Peer et al. 2021). The value generalizations predicted by

the SR—taking the form of a linear function of state similarities and reward observations—

capture the underlying transition dynamics and connectivity structure of the environment,

with stronger generalizations between well-connected states. Related methods using kernel

similarity (Gershman et al. 2017; Wu et al. 2021, Figure 2c) rather than SR similarity,

operate on similar principles, with exact equivalencies in special cases (Machado et al.

2018). For example, Garvert et al. (2023) showed that a Gaussian Process kernel can be

approximated by the successor representation of visited states in an open environment and

then used to successfully predict human choices in a bandit task, illustrating a continuity

between cognitive maps and value generalization using function learning.

Overall, the SR provides an elegant and simple theory of structure learning within the

RL framework, where similarity-based representations acquired through associative learning

enable structure-informed generalization via value function approximation. However, the

slowness of this learning process may fall short of explaining the full efficiency with which

humans learn relational structure. Other recent theories of cognitive map learning such as

the Tolman Eichenbaum Machine (TEM; Whittington et al. 2020) combine path integration

with conjunctive memory to more efficiently learn latent structure. And while the TEM is

capable of transferring learned structures to new environments, it still cannot infer entirely

novel structures. In contrast, humans can reason compositionally about new relational

structures that they have never experienced before (Mark et al. 2020; Rubino et al. 2023).

Consider how you can imagine novel food combinations that have never been observed (e.g.,

tea-flavored jelly, Barron et al. 2013, or broccoli-flavored ice cream, Gershman et al. 2017)

or novel configurations of previously encountered structures, such as predicting where your

gate might be when racing through a foreign airport to catch a connecting flight. This

highlights the necessity for more explicit, rule-based theories of cognitive map learning,

which is an area ripe for further exploration.

4.2. Structure Induction

Structure induction (Kemp & Tenenbaum 2008; Meder et al. 2014; Lynn & Bassett 2020;

Zhou et al. 2024a) provides an alternative approach to inferring the underlying structure or

organizational pattern in a set of observations or data. For example, inferring the taxonomy
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Structure Learning. a) The Successor Representation (SR; Dayan 1993) defines a

decomposition of a TD-learning (Sutton & Barto 2018) value function V (x) into a similarity
matrix M(x,x′) based on expected future state transitions, and the singular rewards of each state

r(x′). The state similarities are a function of the underlying structure (left) and the agent’s

policy, and allow for generalization via a linear form of value function approximation. b) Bayesian
structure induction (Kemp & Tenenbaum 2008) uses Bayesian principles to infer the underlying

structure (e.g., a taxonomy) that gave rise to observed relational data (e.g., animals and their

shared features).

of different animals based on their shared features (Figure 4b). Animals with similar features

can be expected to occupy closely connected positions in a taxonomy, yet there is a large

hypothesis space of possible configurations. Here, Bayesian structure induction (Kemp

& Tenenbaum 2008) uses a similar mathematical formalism as Bayesian concept learning

(Tenenbaum & Griffiths 2001), based on describing a distribution of rule-like hypotheses,

which are evaluated based on their similarity to the observed data. Instead of defining

hypotheses about category boundaries, structure induction defines an inference process

operating on hypotheses about structural configurations (i.e., different graph structures).

A prior over hypothesized graphs encodes a preference for simpler structures, with each

hypothesis weighted according to its likelihood of generating the observed data (Kemp &

Tenenbaum 2008).

Although Bayesian inference about latent structure is often intractable when scaled

to complex problems, hybrid models of structure induction circumvent this problem by

incorporating similarity-based mechanism. One notable method (Kemp & Tenenbaum 2008,

2009) used to evaluate the likelihood of each candidate hypothesis is identical to a Gaussian

Process1. Here, each candidate hypothesis is used to parameterize a graph kernel (Figure 2c;

Zhu et al. 2003), and simulated observations are sampled from the Gaussian Process prior

(Eq. 4). Higher similarity between generated and observed data corresponds to a higher

likelihood for the hypothesized structure.

Thus, structure learning and function learning can be seen as complementary problems

to each other, with a hybrid approach to Bayesian structure induction relying on the same

Gaussian Process computations as in function learning (Lucas et al. 2015) and value gen-

eralization settings (Wu et al. 2021). Hypotheses about rule-like structures are used to

define a similarity metric based on a Gaussian Process kernel, and used to simulate data.

1The authors refer to this as a Gaussian Markov Random Field (Zhu et al. 2003), which is a
multivariate Gaussian distribution identical to a Gaussian Process prior (Eq. 4).

www.annualreviews.org • Unifying generalization 15



Comparisons between the simulated and observed data facilitates inference about which

structures are most likely. Once the structure has been inferred, these same computations

can then be reused to generalize about novel outcomes (Kemp & Tenenbaum 2008) and

guide exploration (Wu et al. 2021) in structured environments. For instance, this comple-

mentary relationship has also been leveraged to generalize about novel properties of the

data (i.e., property induction; Kemp & Tenenbaum 2009). Given a set of binary features

of various animals (Figure 4b), structure induction can be used to infer the underlying tax-

onomy structure. Once a posterior distribution over structured has been defined, the same

Gaussian Process function learning approach (with an additional binarization of outcome

variables) is used to infer the probability of novel features. If you were to learn a new fact

about squirrels (e.g., their front teeth never stop growing), you might be more likely to

generalize this fact to similar animals, such as mice, but less likely to generalize it to more

dissimilar animals, such as penguins.

In summary, structure induction offers a prime example of the complementarity between

rule- and structured-based mechanisms. Rule-based computations over a distribution of

hypothesized structures offer the possibility of rapid generalization. Yet the intractabil-

ity of Bayesian inference can be side-stepped through sample-based approximations, using

Bayesian function learning operating over similarity-based computations. Together, these

complementary approaches to generalization support both the inference of latent structure

and the use of this structure to infer new features and outcomes.

5. GENERAL DISCUSSION

We have traced the development of psychological theories of generalization, from founda-

tional research on concept learning and function learning to more modern domains of RL

and latent structure induction. Throughout this long history, continued debates between

rule- and similarity-based theories have been reconciled through the development of hybrid

models, often based on Bayesian principles. The ongoing success of hybrid models suggests

that accommodating both rule- and similarity-based representations is central to explaining

human generalization.

Yet, each approach makes computational commitments to a specific representational

format, offering distinct advantages. Similarity provides a flexible and efficient approach

to generalization, relating new situations to prior experiences, and leveraging relational

knowledge when the underlying structure is known. In turn, rules unlock compositionality,

facilitating generalization and inference about novel structures, which is exemplified in

Bayesian structure induction. However, there may also be exchangeability between rule-

based and similarity-based mechanisms of generalization, suggesting a dynamic interplay

that enables adaptive learning through hybrid approaches that blend both strategies. We

first explore these themes, before plotting out a trajectory for the future of research on

generalization.

Rules Unlock Compositionality, but Are Challenging to Learn. Rule-based mechanisms

are foundational to our understanding of generalization, drawing upon a rich history of

theoretical and empirical research (Bruner et al. 1956; Ashby & Gott 1988; see Ashby &

Maddox 2005, for a review). These mechanisms are particularly effective in structured

domains, where the precision of rules facilitates rapid, one-shot generalization (Dasgupta

et al. 2022). Whether taught pedagogically (e.g., “i before e except after c”) or learned
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through experience (e.g., “talking loudly in the library is forbidden”), rules represent ex-

plicit hypotheses about regularities of the environment extracted from data (Reber & Lewis

1977). In concept learning, rules can represent hypotheses about the boundaries between

categories, while in function learning, rules can represent hypotheses about the (paramet-

ric) relationship between inputs and outputs. Signatures of rule-based mechanisms can also

be seen in theory-based RL (Tsividis et al. 2021; Allen et al. 2020), where agents generate

hypotheses about the underlying rules governing its environment to inform learning and

exploration (e.g., “keys open doors, but only if the colors match” in game environments;

Pouncy et al. 2021).

This ability to reason about and use rules thus unlocks an unrivaled capacity of hu-

man intelligence, since rules allow for compositional and syntactic manipulation (Pianta-

dosi et al. 2016; Dehaene et al. 2022). Indeed, the power of logic and mathematics can

be thought of as nothing more than the manipulation of syntactic rules (Newell & Simon

1976). Thus, rule-based mechanisms unlock the ability to compositionally combine multiple

rules or substructures to generate an infinitely productive space of potential hypotheses.

Recent advances in program induction (Ellis et al. 2023)—using similar computations as

Bayesian concept learning (Tenenbaum & Griffiths 2001) and structure induction (Kemp

& Tenenbaum 2008)—indicate a promising framework for modeling how humans infer gen-

erative rule-like structure from data, providing a modern interpretation of Fodor’s (1975)

Language of Thought (LoT). However, the compositionality of rules also creates a combi-

natorial explosion of possible hypotheses, making search and inference increasingly difficult

(Fränken et al. 2022; Zhou et al. 2024b). Thus, despite the utility of rule-based mechanisms,

open challenges lie in their complexity and the demands they place on cognitive resources

for generating and testing new hypotheses (Rubino et al. 2023).

Similarity Is Flexible, but Can Be Arbitrary. Similarity-based mechanisms for generalization

are ubiquitous in psychology (Tversky 1977; Shepard 1987; Tenenbaum & Griffiths 2001;

Chater & Vitányi 2003). The notion that stimuli with similar features or occurring in similar

contexts are more likely to belong to the same category or yield comparable outputs is a

powerful principle of generalization, and can be flexibly applied to a wide range of domains.

While historically defined based on feature comparisons or by appeal to some abstract

psychological space (Shepard 1987), recent advances have expanded these mechanisms to

capture rich relational structures (Wu et al. 2021) based on network connections (Lau et al.

2020; Tavares et al. 2015) or environmental dynamics (Stachenfeld et al. 2017; Garvert et al.

2023). Thus, similarity-based theories of generalization are being extended to increasingly

structured environments.

However, these mechanisms are not without drawbacks. It is far from straightforward to

simply go out into the world to measure how similar things are to one another. Consider how

naturalistic stimuli have a host of different features and relationships, offering a potentially

unlimited number of ways by which similarity can be computed (Goodman 1972). Should

an apple be compared to an orange on the basis of color, shape, taste, or country of origin?

Thus, one must specify with respect to which features (or via which relationships) the

stimuli are being compared (Medin et al. 1993). This is often dependent on the underlying

context: when at a fruit orchard, color might provide a useful comparison on the basis of

ripeness, whereas, at a customs office, country of origin is more relevant for determining the

amount of tax to levy. Thus, the endless ways in which different stimuli can be compared

has led to the criticism that similarity is too flexible (Murphy & Medin 1985), potentially
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undermining its utility as a concept in psychology. The context-dependent nature of human

similarity judgments can also lead to paradoxical conclusions, as illustrated by violations of

logical axioms like the law of triangle inequality (Tversky 1977). And while recent theories

of rational attention have proposed associative learning mechanisms for gradually ignoring

reward-irrelevant features (Radulescu et al. 2021), this approach is only feasible for simple

stimuli with a handful of predefined features. In more naturalistic settings, stimuli may have

a potentially innumerable set of features, making it infeasible to gradually prune irrelevant

features from an infinite set. These complexities illustrate the nuanced and sometimes

contradictory nature of similarity-based generalization in human cognition.

Similar challenges also apply when defining similarity representations over latent struc-

ture, which share context- and goal-dependent assumptions about which features are rele-

vant. For instance, the development of Darwin’s Tree of Life was rooted in targeted obser-

vations about features that were shared or differed between species (Doolittle & Bapteste

2007), while dimensional accounts of psychopathology similarly aim to capture shared symp-

tom patterns across mental illnesses based on a targeted subset of features (Kotov et al.

2021). Thus, while latent structure plays a pivotal role in generalization by complementing

similarity-based inferences, it shares some of the very same challenges that arise in defining

relevant features for computing similarity. This intertwined nature of similarity and struc-

ture highlights both their importance and the enduring challenges concerning their role in

human cognition and generalization.

Integrating Rules and Similarity. We have highlighted the relative advantages and disad-

vantages of rule- and similarity-based mechanisms of generalization. However, the success

of hybrid approaches suggests it is not one or the other. Rather, there is likely a degree of

exchangeability between rules and similarities, involving transformations from one currency

to the other (Cushman 2020). This is not a new concept. In RL, model-based represen-

tations of the environment can be used to rationally plan out actions (Miller et al. 2017),

but in the process, new value and policy representations are constructed, supporting fu-

ture model-free action selection (Kool et al. 2018). In social learning, observed actions can

be “unpacked” via inverse reinforcement learning (IRL; Jara-Ettinger 2019) to infer latent

model-free and model-based representations assumed to have generated the behavior (Wu

et al. 2022b). Thus, the caching of past computations (i.e., amortization; Dasgupta et al.

2018) and inference via IRL provide two mechanisms by which the representations involved

in model-free and model-based RL are exchanged and combined with one another (Cush-

man 2020; Wu et al. 2022b). Our current theories in this domain suggest that we use a

mixture of strategies, composing elements from each mechanism into an adaptive mixture

of representations (Russek et al. 2017; Keramati et al. 2016; Huys et al. 2015).

Model-free learning:
Category of RL
methods using

reward outcomes to

learn a behavioral
policy and value

function, without

simulating future
scenarios.

Model-based
learning: More
complex form of RL,

which builds a model

of the environment
to simulate and plan

future actions.

Are rules and similarity-based representations exchangeable in a similar sense? Rule-

based representations about category boundaries, functional forms, or the structure of the

environment can inform or be directly used to define similarity representations. We have

shown how rule-like hypotheses about the structure of some latent graph can be used to

define a similarity matrix using a graph kernel (Figure 2c), to infer rule-like representations

about the latent structure (Kemp & Tenenbaum 2008), predict novel features outside of

the training data (Kemp & Tenenbaum 2009), or to perform value generalization in an RL

setting (Wu et al. 2021). In the other direction, we have also shown how similarity-based

representations support the inference of rule-like hypotheses about latent structure. The

SR (Dayan 1993) leverages simple associative learning mechanisms to learn a similarity
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matrix, corresponding to a rule-like hypothesis about the underlying latent structure of the

environment. Even more directly, hybrid models of Bayesian structure induction (Kemp

& Tenenbaum 2008) have relied on similarity-based computations using Gaussian Process

kernels to simulate data under each hypothesized graph structure. Thus, learned rules

can be “cached” as similarity representations, facilitating rapid and efficient generalization.

Meanwhile, inferring rules and structure can be supported by sample-based approximations,

where each candidate hypothesis can be used to construct a similarity representation to

perform tractable inference.

SUMMARY POINTS

1. Rules and similarity are foundational concepts across the entire expanse of research

on how humans generalize from limited experiences to novel situations.

2. Hybrid models include elements of both rule- and similarity-based approaches, pro-

viding a unified computational framework for investigating human generalization

across diverse contexts.

3. Gaussian Process function learning coupled with uncertainty-directed exploration

provides a model of generalization and active learning in a wide range of reinforce-

ment learning problems with large decision-spaces.

4. Structure learning supports similarity-based generalization by representing latent

relational structure and the temporal dynamics of the environment, while con-

versely, similarity-based mechanisms may play a key role in learning latent struc-

ture.

5. Rule- and similarity-based representations have complementary advantages, with

an exchangeability between these representations offering insights into how humans

simultaneously display flexible and compositional generalization.

5.1. The Future of Generalization

Having surveyed the past and present, we now turn our attention to the future. First, we

propose a new integration of rule- and similarity-based mechanisms for structure learning

in RL settings, combining their relative strengths and leveraging the exchangeability of

representations to achieve more a comprehensive framework of generalization. Second, we

point out fundamental connections between Gaussian Process regression and theories of

episodic memory, which suggest the potential for developing boundedly rational models of

generalization to account for cognitive limitations. Third, there is still a need to explore

generalization in environments that more closely resemble real-world conditions, requiring

the integration of individual and social information. By addressing these issues, future

research will continue a long and always central line of research seeking to understand how

humans adapt and continually improvise and adapt to novel situations.

Combining Structure Learning and Function Learning. Rather than accepting a duality of

interpretation as the final synthesis of rule- and similarity-based mechanisms, we propose

that future models of generalization could provide a more complete unification, utilizing each

mechanism to its strengths. We have advocated for Gaussian Process function learning as a

candidate model of human value generalization in many domains, where the kernel provides
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Figure 5

Future Directions. a) Integrating structure learning with function learning under a common
framework. b) The Episodic RL framework provides a different conceptualization of the

computations in a Gaussian Process, with exact equivalencies to expected reward predictions (but
not uncertainty). Here, similarity is computed between new stimuli and past episodes, which are

then weighted by rewards and summed up.

a similarity metric based on a given representation of the environment. Yet we currently

lack a model that simultaneously infers structure while performing predictive generalization.

Since Gaussian Processes play a key role in the computations of Bayesian structure

induction (Kemp & Tenenbaum 2008), a future model (Figure 5a) could simultaneously

perform inference over candidate structures and generate predictions about novel outcomes.

Rule-based mechanisms can be used to propose hypotheses about structure (e.g., proposing

different graph configurations by leveraging previously learned schemas; Wingate et al. 2013;

Kemp & Tenenbaum 2008; Ellis et al. 2023; Fränken et al. 2022; Rubino et al. 2023). Each

hypothesized structure can then be used to parameterize a graph kernel (Fig. 2c), where

a Gaussian Process using similarity-based mechanisms can be used to both predict new

outcomes and to evaluate the likelihood of a given hypothesis (as in Kemp & Tenenbaum

2008). Both sample-based (Doucet et al. 2009; Speekenbrink 2016) and neural network

approximations (Deleu et al. 2022) provide tractable computations of a Bayesian posterior

distribution over hypotheses (about structure), which adapt to new data and facilitate

active learning. With rules providing the structure and similarity providing the canvas,

generalization combining both mechanisms can achieve both flexibility and efficiency.

Episodic
reinforcement
learning: A
framework for value

function

approximation,
which compares

novel states, actions

or stimuli to
previously

encountered

episodes.

Generalization with Limited Resources. Although originating as a machine learning tech-

nique, Gaussian Process regression has direct links to psychological theories integrating RL

mechanisms with episodic memory (Lengyel & Dayan 2007; Gershman & Daw 2017). In

this light, Gaussian Processes can be understood as a Bayesian extension of Episodic RL

(Gershman & Daw 2017; Botvinick et al. 2019). In Episodic RL (Figure 5b), an agent

stores episodic memories about previously encountered stimuli and their associated re-

wards. To predict the value of some novel stimuli, one first computes similarity to each

previously encountered “episode”. Then, the reward value for each episode is multiplied by

its similarity to the novel stimuli and then summed up. In other words, generalization is

performed through inferring similarity-weighted expectations, where more similar episodes

exert more influence on how their rewards generalize to the novel stimuli (reminiscent of

classic exemplar-based theories of concept learning; Nosofsky 1986; Kruschke 1992).
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When using a kernel function to compute similarity (Gershman & Daw 2017), episodic

RL is equivalent to the posterior mean of a Gaussian Process (Jäkel et al. 2008; Wu et al.

2021). Furthermore, when using an RBF kernel (Figure 2b) as the similarity metric,

Episodic RL is equivalent to an RBF network, which has featured prominently in ma-

chine learning approaches to value function approximation (Sutton & Barto 2018; Jäkel

et al. 2008) and as a theory of human generalization in the visual and motor systems (Pog-

gio & Bizzi 2004). Thus, while the mathematics of Gaussian Process regression may seem

unfamiliar to psychology, the underlying computations reoccur in numerous psychological

theories of learning and generalization. However, a crucial difference is that the Gaussian

Process—being a Bayesian model—also makes predictions with uncertainty, which play an

essential role in describing human exploration (Wu et al. 2018; Giron et al. 2023; Wilson

et al. 2014; Gershman 2018) and subjective confidence judgments (Wu et al. 2020, 2021).

The relationships between Gaussian Process regression and Episodic RL provide path-

ways for further integrating psychological and computational theories. For instance, to

investigate the role of memory limitations in value generalization, one can induce memory

load by removing information about previous choices and their outcomes (e.g., withhold-

ing observations from the grid shown in Figure 3a; Breit et al. 2022). In this case, learners

would be reliant on episodic memory of past choices to generalize previous experiences, thus

offering opportunities for studying how forgetting distorts our patterns of generalization.

What Is Still Missing?. Here, we have explored an expanding core of research on human

generalization. From early work studying stimulus categorization and function learning,

we have traced a continuity of mechanisms to new domains, such as active learning in

RL and latent structure learning. However, the full scope of human generalization is still

clearly beyond our current theories. Consider a chef figuring out how to substitute a miss-

ing ingredient in a recipe or a biologist identifying new species in an unexplored habitat.

Generalization in both settings is informed by an interplay of rules and similarity—about

the interactions between different foods and cooking techniques or about the interplay of

biological traits, ecological niches, and reproductive success. Yet, the open-ended complex-

ity of features to evaluate (Wise et al. 2024) and actions to consider (Moskvichev et al.

2023) present open challenges for our current theories. Additionally, chefs, biologists, and

humans in all walks of life primarily learn from one another. While psychological research

has often focused on studying isolated individuals learning from the environment (imag-

ine a Skinner box as a canonical example), there is evidence of distinct mechanisms when

learning from other people (Ho et al. 2017), compared to learning from the environment.

Thus, future theories of human generalization must also account for more open-ended and

socially embedded problems.

On one hand, psychological research has been continually expanding to investigate learn-

ing and generalization in more complex, and open-ended problems. For instance, there

currently great interest in studying generalization in the Abstraction and Reasoning Cor-

pus (ARC; Chollet 2019). The ARC challenge is comprised of visual grids representing an

abstract concept (input), with the decision-maker tasked with constructing an output grid

corresponding to the input. This can be seen as type of function learning problem, requiring

strong inductive biases about the generative process, since one needs to generate solution

grids instead of only selecting from possible answers. These challenges may play a key role

in explaining why AI approaches, including Large Language Models (LMMs), have yet to

come close to human performance (Moskvichev et al. 2023). Thus, there is a promising
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future for efforts directed toward studies of generalization that integrate the complexity

and open-endedness inherent in real-world decision-making environments.

On the other hand, a promising yet under-explored area is the integration of individual

and social generalization mechanisms (Witt et al. 2023; Wu et al. 2023). Far from being a

peripheral feature, the capacity for social learning is often proposed as being the defining

characteristics of human intelligence (Henrich 2016; Heyes 2018), differentiating us from

other animals and AI (Wu et al. 2022b). Yet, research on generalization has commonly

focused on individual learning in a vacuum. In many real-world contexts, however, we are

surrounded by social information, which can greatly inform our generalization and decision-

making processes. For instance, observing which menu items other customers order in a

restaurant, and using that to inform your own choices. In such scenarios, individual and

social learning mechanisms exhibit a dynamic interplay (Wu et al. 2023), working in tandem

to achieve efficient generalization. Here, there are also new applications for familiar concepts

from individual generalization, since social information cannot always be taken verbatim,

but needs to account for differences in individual preferences, abilities, and goals (Witt et al.

2023). Additionally, our ability to communicate via language in social settings offers new

advantages for rule-based mechanisms, since they can be easily transmitted to one other

(Wu et al. in press). Such scenarios offer a promising avenue for investigating how humans

generalize and make decisions in real-world contexts, where social information plays a vital

role in shaping adaptive behavior.

5.2. Conclusions

Human generalization has long been considered a hallmark of our unique cognitive abil-

ities, with Roger Shepard famously proclaiming that the first general law of psychology

should be a law of generalization . Here, we have traced the development of theories

of generalization, illustrating a continuity of formerly competing mechanisms—rules and

similarity—culminating in hybrid approaches. Ultimately, the future of generalization will

hold new and exciting ideas, but still carry echoes of perennially reoccurring principles from

history.

FUTURE ISSUES

1. The mechanisms underlying the integration of rule- and similarity-based generaliza-

tion are still unknown, and the dynamic interplay between these processes should

be explored in different learning contexts.

2. Combining structure induction with models of active learning is a promising direc-

tion for developing more comprehensive models of generalization that leverage the

advantages of both rule- and similarity-based mechanisms.

3. Exploring the relationship between Gaussian Process regression and Episodic Re-

inforcement Learning provides a foundation for investigating how cognitive con-

straints, like working memory load, influence generalization under bounded ratio-

nality.

4. Investigating how humans and computational models navigate and generalize in

high-dimensional spaces will require new methods for identifying and prioritizing

relevant features and relevant hypotheses.

5. The role of social learning has been under-represented in theories of generalization,
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with a need for new research studying how social and cultural contexts influence

the mechanisms of generalization.
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