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2Centre for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, DE
3Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, DE
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ABSTRACT

Human cognition is distinguished by our ability to adapt to different environments and circumstances. Yet the mechanisms
driving adaptive behavior have predominantly been studied in separate asocial and social contexts, with an integrated
framework remaining elusive. Here, we use a collective foraging task in a virtual Minecraft environment to integrate these
two fields, by leveraging automated transcriptions of visual field data combined with high-resolution spatial trajectories. Our
behavioral analyses capture both the structure and temporal dynamics of social interactions, which are then directly tested
using computational models sequentially predicting each foraging decision. These results reveal that adaptation mechanisms
of both asocial foraging and selective social learning are driven by individual foraging success (rather than social factors).
Furthermore, it is the degree of adaptivity—of both asocial and social learning—that best predicts individual performance.
These findings not only integrate theories across asocial and social domains, but also provide key insights into the adaptability
of human decision-making in complex and dynamic social landscapes.

Introduction
Humans have a unique capacity for social learning that differ-
entiates us from other animals1, 2. We are remarkably flexible
in how we learn from others3–5, dynamically integrate per-
sonal and social information6–8, and selectively favor social
learning when our own capabilities seem lacking9, 10. And
while a number of recent studies have begun to bridge indi-
vidual and social decision-making7, 11–13, they either assume
fixed strategies or arbitrary mixtures of social and asocial
learning. Thus, we still know very little about the mecha-
nisms driving adaptation to different environments and cir-
cumstances, allowing us to dynamically arbitrate and integrate
both asocial and social learning strategies14–16.

Historically, research on asocial and social learning has
progressed largely independently from one another. Theo-
ries of asocial learning typically assume that decision makers
operate alone in a vacuum17, 18, while theories of social learn-
ing19–21 often greatly simplify—or entirely omit—individual
learning mechanisms. Early work investigated the trade-off
between individual and social learning through the lens of the
producer vs. scrounger dilemma22–25, assuming either pure in-
dividual learning (i.e., producing) or pure social learning (i.e.,
scrounging)26. In this setting, scrounging comes at the cost of
reduced opportunities for producing, with any strategy having
frequency-dependent fitness, meaning one’s performance de-

pends on the ratio of strategies in one’s group. This dynamic is
illustrated in Roger’s Paradox27, where too many imitators in a
group leads to both lower individual and group fitness. While
theoretical models often show that an intermediate balance
of social and asocial learners leads to the best outcomes28, 29,
it is still largely unknown how people dynamically negotiate
this balance under realistic conditions and how they adapt
to different environmental contexts. For instance, whether
adaptation is driven by asocial or social cues, and whether
these mechanisms operate independently or interactively with
one another. Modeling dynamic strategy selection in social
contexts is particularly difficult, because the availability and
quality of social information constantly changes as result of
both individual decisions and group dynamics30. Thus, this
gap represents both theoretical and empirical challenges, re-
quiring new methods to capture the complex and dynamic
nature of human adaptability, which we seek to address in this
current study.

Here, we use a collective foraging task programmed in an
immersive Minecraft environment (Fig. 1a-d) to study how
people adapt their asocial and social learning strategies to dif-
ferent resource distributions (random vs. smooth; Fig. 1e) and
to different dynamic contexts (e.g., individual performance
and social observations of success). The virtual environment
imposes a limited field of view, creating a natural trade-off
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Figure 1. Collective foraging task implemented in the Minecraft game engine. (a) Participants foraged for hidden
rewards in a field with 20x20 resource blocks. Each round took 120 seconds, with players starting from random locations
(crosses) and heading directions (arrows). (b) Screenshot from a player’s perspective. Rewards (blue splash) are visible to other
players, providing relevant social information for predicting nearby rewards in smooth—but not random—environments (Panel
e). (c) Automated transcription of each player’s field of view (FOV) used in visibility and model-based analyses (see Methods).
(d) Participants learned about the task in an interactive tutorial (Supplementary Video 1) before completing two practice rounds.
The main experiment consisted of 16 rounds (counterbalanced order), manipulated across condition (solo vs. group) and reward
structure (random vs. smooth) with four consecutive rounds of the same type (Supplementary Videos 2-4). (e) Random
environments had uniformly sampled rewards, while smooth environments had spatially clustered rewards. Each black pixel
indicates a reward from a representative sample, with both environments having the same base rate pprewardq “ .25. The
mapping to pumpkins and watermelons were counterbalanced between sessions. (f) Agent-based simulations (see Methods)
show a benefit for success-biased social learning over asocial learning in smooth, but not random environments, whereas
unbiased social learning performs poorly in both. Dots show the mean and error bars show the 95% CI over 10k simulations.
This study is not approved by or associated with Mojang or Microsoft. Screenshots and images are used according to the
Minecraft usage guidelines.

between allocating visual attention towards individual search
or towards peers for social learning (in contrast to REFs31, 32).
Using a novel method for automating the transcription of vi-
sual field data (Fig. 1c; see Methods), we can identify which
participants and which elements of the environment were
visible at any point in time. This allows us to dynamically
integrate visual attention with spatial trajectories and foraging
decisions, providing a common framework for studying the
drivers of adaptive behavior.

Adaptive mechanisms have been independently studied in
both asocial foraging and social learning, however the two
approaches have yet to be integrated in a single framework15.
In asocial foraging, area-restricted search33 (ARS) has been
used to describe an adaptive search strategy from species
as diverse as bacteria34 to humans35, where the locality of
search is modulated by foraging success: rich rewards drive
local search, while poor rewards promote increased search

distances. Although ARS is able to account for highly adap-
tive search patterns, it has yet to be integrated with social
learning15. Adaptive mechanisms have also been proposed
in social settings, based on context-dependent strategies that
compare the quality of individual vs. social information4, 9, 10.
Enquist et al.4 proposed two adaptive strategies: a critical
social learner that first tries social learning, but switches to
individual learning if social learning proves unsatisfactory,
and a conditional social learner, that conversely tries individ-
ual learning first, but switches to social learning if necessary.
While more flexible than strategies with a fixed level of so-
cial learning27, these approaches still lack an account of the
selectivity of social learning with respect to whom to learn
from5, 36 and have yet to be integrated with asocial foraging15

and reward prediction mechanisms37. Here, we bridge this
gap through integrative behavioral and model-based analyses.

In this study, we combine visual field analysis with high-
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resolution spatial trajectories to provide an integrative per-
spective on how asocial and social learning mechanisms com-
plement one another in a dynamic and integrative fashion.
Our results show that people dynamically adapt asocial and
social learning mechanisms to both the environment and in-
dividual performance and selectively direct social learning
towards successful individuals (Fig. 2). Our behavioral analy-
ses capture both the structure and temporal dynamics of social
interactions (Fig. 2-3), which are then directly tested using
computational models sequentially predicting each foraging
decision (Fig. 4). Our winning model integrates adaptive
mechanisms of asocial and social learning under a single
framework, revealing that individual success (rather than so-
cial factors) drives changes in asocial foraging patterns and
increases both the amount of social learning and selectivity
towards successful individuals. Furthermore, it is the degree
of adaptivity—of both asocial and social learning—that best
predicts individual performance.

Results
Participants (n“ 128) foraged for hidden rewards either alone
or in groups of four (solo vs. group; within-subject) in a vir-
tual environment with 20ˆ20 resource blocks (Fig. 1a-d). We
manipulated the reward distribution (random vs. smooth) to
modify the value of social learning (Fig. 1e). Smooth envi-
ronments had clustered rewards, making social observations
of successful individuals (visible as a blue splash; Fig. 1b)
predictive of other rewards nearby. In contrast, random en-
vironments offered unpredictable rewards that provide no
benefits for social learning.

Agent-based simulations (see Methods) support this intu-
ition, with asocial learners dominating in random environ-
ments, whereas selective, success-biased social learners per-
formed best in smooth environments (Fig. 1f). In contrast to
non-competitive contexts12, 38, where the social setting gener-
ally leads to better performance, here peers are both valuable
sources of social information (in smooth environments) but
also competitors for the same limited resources3, 39 (Fig. S1).
This emphasizes the need to adapt learning to a dynamically
changing information environment, with similar real-world
dynamics as developing marketplace innovations or engaging
in scientific research32, 40, 41.

We start by exploring the influence of the environment
and social information on behavioral patterns (Fig. 2a-d).
However, only by analyzing the effects of network structure
(Fig. 2e-g) and the temporal dynamics of social interactions
(Fig. 2h-k) are we able to reveal the drivers of adaptive asocial
and social learning. Next, we analyze social influence events
(“pulls”) to ground our analyses in leader-follower dynamics
(Fig. 3), which capture the active usage of social informa-
tion through concrete changes in spatial position. Finally, we
use computational models predicting sequential foraging de-
cisions to directly test for different combinations of adaptive
individual and social learning mechanisms (Fig. 4), integrating
the rich spatial and visual dynamics of the task. All results are

compared to an asocial baseline (using data from solo rounds),
allowing us to specify which mechanisms are uniquely social
phenomena.

Behavioral results
To understand how the environment and social interactions
impacted performance, we examine the normalized reward
rate (Fig. 2a), which controls for faster reward depletion in
group rounds with more individuals searching for the same
number of finite rewards (see Fig. S1). Using a hierarchical
Bayesian regression (see Methods), we find that participants
acquired greater rewards in smooth environments (posterior
mean: 0.22, 95% Highest Posterior Density Interval: [0.19,
0.24]), but with no reliable influence of social condition (0.002
[-0.02, 0.02]), nor interaction between condition and environ-
ment (-0.02 [-0.05, 0.01]). Thus, both individuals and groups
achieved higher foraging success in smooth environments,
whereas the simultaneous informational benefits and compet-
itive drawbacks of social foraging did not yield any reliable
changes to performance at the aggregate level. We also found
no reliable increases in foraging success over rounds (random:
0.00 [-0.01, 0.02]; smooth: 0.01 [-0.01, 0.04]), and thus have
no evidence of meta-learning during the task.

Yet, individual performance could be improved through
adaptive foraging. To test this hypothesis, we first measured
how foraging distance changes depending on whether the
previous block yielded a reward (Fig. 2b). In smooth envi-
ronments, participants foraged more locally after acquiring
a reward (-1.6 [-2.0, -1.3]; no effect of group, see Fig. S2a).
In contrast, this effect was reversed in random environments,
where participants foraged over larger distances after a reward
(0.3 [0.1, 0.6]; no effect of group). In turn, greater adaptivity
(i.e., difference in foraging distance) predicted better individ-
ual performance (Fig. S3) in smooth (solo: rτ “ .20, pă .001,
BF “ 32; group: rτ “ .18, p“ .003, BF “ 9.9; Kendall’s tau)
but not random environments (all pą .05; BF ă 1). We ob-
tained equivalent results when measuring the turning angle
between blocks (Figs. S2-S4), consistent with the theoretical
mechanisms of ARS15.

Next, as an initial analysis of social interactions, we com-
puted the average pairwise distance between participants
across conditions (Fig 2c). In solo rounds, the four partic-
ipants foraged on separate but identical fields, allowing us to
calculate an asocial baseline by superimposing their spatial
coordinates as if they were on the same field. This analy-
sis revealed greater social distancing in random compared
to smooth environments (0.6 [0.8,0.4]; Fig. S5a), which was
reliably larger when comparing group rounds to the asocial
baseline (0.3 [0.1, 0.5]), suggesting an active increase in avoid-
ance. In smooth environments, where participants generally
foraged in greater proximity to each other, social distance
was not reliably different from the asocial baseline (0.004
[-0.2,0.2]). Later, we show that this lack of difference in so-
cial distance at the aggregate level hides context-dependent
changes (see Temporal dynamics).
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Figure 2. Behavioral results. a) Normalized reward rate controlling for reward depletion (see Fig. S1). Lines are from a
generalized additive model (GAM) for the smoothing of binary data (group means and 95% CI). All CIs are over the n“ 128
participants. b) Foraging distance as a function of previous success. Dots show the group means, while error bars indicate the
95% CI. c) Average distance to peers over time (see Fig. S5a for regression results), with lines showing aggregate means
(ribbons are 95% CI). d) Average visibility, with the inset showing group means marginalized over time (see Fig. S5b for
regression). Both ribbons and error bars indicate 95% CI. Note that at the aggregate level, avg. visible peers (outbound) and
avg. observers (inbound) are equivalent. (e-g) Network analyses. Panel e shows examples of proximity and visibility networks.
Panel f shows average reward as a function of Eigenvector centrality computed on the proximity network. Each dot represents
one participant; lines and ribbons show the fixed effect of a hierarchical Bayesian regression (˘ 95% HPDI), with text labels
reporting the effect (group rounds in bold), where reliable effects (not overlapping with zero) are underlined. Panel g shows the
correspondence between in- and out-degree of the visibility network. Each dot represents one participant; the regression line is
the fixed effect of a hierarchical Bayesian regression (Fig. S6). (h-k) Temporal dynamics of reward rate and proximity/visibility
in group rounds (see Fig. S7 for comparison to solo rounds). Panel h provides a visual depiction of the analysis (see Methods
for details). Results are shown in Panels i-k, where the y-axis shows the sign and strength of the correlation (after chance
correction). Lines are group means and the ribbons show the 95% CI. Bold lines indicate significant clusters that survived a
permutation analysis (see Methods). Effects at negative offsets indicate that rewards predicts future proximity/visibility, while
effects at positive offsets indicate that proximity/visibility predicts future rewards. Positive effects indicate the rewards
increased together with behavior, and vice versa for negative effects.

Lastly, we used visual field transcription (see Methods) to
measure social visibility between each pair of participants at a
given time point. We first analyze the average number of visi-
ble peers (Fig. 2d), again computing an asocial baseline from

solo rounds as if they were on the same field. In general, par-
ticipants observed one another more in smooth environments
(0.01 [0.001, 0.02]; Fig. S5b), although there was no reliable
difference when comparing group rounds to the solo baseline
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(-0.0001 [-0.01, 0.01]). In contrast, participants reliably re-
duced social visibility in random environments compared to
the asocial baseline (-0.01 [-0.02, -0.00005]), again showing
active avoidance. Note that when comparing how visibility
changes across conditions at the aggregate level, inbound and
outbound social visibility are equivalent, masking individ-
ual differences and context-dependent adaptation. We now
turn to network analyses to provide a better understanding of
the structure and asymmetries of social interactions through
visibility.

Proximity and visibility networks. Next, we performed
social network analyses on spatial and visual interactions
(Fig. 2e). Proximity networks describe each participant as a
node with undirected edges weighted by the average proxim-
ity (i.e., inverse distance) between players. Visibility networks
were constructed similarly, but with directed edges weighted
proportional to the duration of time each target player was
visible to another player. Network weights are computed per
individual per round, and then averaged per individual (within
each condition), with the same analyses also applied to solo
rounds to provide an asocial baseline.

We first used the proximity network to compute the Eigen-
vector centrality for each participant, providing a holistic
measure of the influence each node exerts on the network.
Higher centrality corresponds to participants who maintain
close proximity to others, especially to those with high prox-
imity scores themselves. Whereas centrality did not predict
rewards in random environments (group: -7.6 [-16.6,0.6]; solo:
-7.6 [-16.1,0.8]; all slopes overlap with 0), we found a robust
inversion in smooth environments, where higher centrality pre-
dicted higher rewards in group rounds (7.9 [1.6,14.0]; Fig. 2f).
This effect disappeared in the asocial baseline (2.6 [-5.6,10.1]),
suggesting that the benefits of spatial centrality were due to
social dynamics. However, it is unclear whether being central
facilitated better performance (via access to social informa-
tion) or if centrality resulted from better performance (via
effective success-biased imitation), motivating the need for
dynamic analyses (see below).

Next, we examined the relationship between in- and out-
degree in the visibility network. In-degree is the sum of all
inbound edge weights, where being observed by more peers
and for longer durations both contribute to larger in-degrees.
Similarly, higher out-degree corresponds to observing other
peers with longer durations. This analysis revealed an asym-
metry in social attention, with a general inverse relationship
between in- and out-degree (Fig. 2g). Whereas this asymme-
try was also present in random and solo rounds, it was reliably
stronger when combining group rounds and smooth environ-
ments (group+smooth interaction: -0.49 [-0.89, -0.08]). This
suggests an increased specialization of social learning strate-
gies (i.e., “producers” with low out-degree and high in-degree
or “scroungers” with high out-degree and low in-degree) and
asymmetry of social attention in settings where social informa-
tion was useful. Thus, our network analyses provide insights
into asymmetric patterns that could not be detected at the

aggregate-level (Fig. 2d). However, neither in- or out-degree
predicted individual performance (Fig. S10). We now analyze
temporal dynamics to better understand how social interac-
tions change over time and in response to different contextual
factors.

Temporal dynamics. To analyze the dynamics of social
interactions, we searched for temporally predictive clusters
relating individual reward to our high-resolution spatial-visual
data (Fig. 2h-k; see Methods). More precisely, we computed
correlations between time-series at different temporal offsets
(Fig. 2h), and searched for temporally continuous clusters of
significance (indicated by bold lines in Fig. 2i-k) that survived
multiple forms of chance correction (see Methods). At nega-
tive offsets, these clusters indicate that reward predicts future
proximity/visibility (either positive or negative correlations
depending on the sign), while positive offsets indicate that
proximity/visibility predicts future reward.

First, the dynamics of individual reward (i.e., foraging
success) and spatial proximity to other players revealed a
pattern of success-dependent spatial cycling in smooth (but
not random) environments (Fig. 2i). The positive correla-
tion at offset -19s to -2s (bold line) indicates that greater
reward predicted greater proximity at long timescales into the
future. Since previous analyses showed that success corre-
sponded to reduced foraging distances (Fig. 2b) and increased
turning angles (Fig. S2b), the greater proximity predicted by
reward is more likely due to attracting peers when success-
ful. Subsequently, this creates a cyclical pattern, where the
negative correlation at offset 9s to 20s indicates that greater
proximity predicts lower future rewards, likely due to de-
pletion. Lower rewards then drives reduced proximity (i.e.,
rewardÑproximity effect at negative offsets), with reduced
proximity driving increased rewards, thus continuing the cy-
cle. Crucially, this pattern is absent in random environments
(flat effect) and qualitatively different in the asocial baseline
(unimodal positive correlations centered at 0s; see Fig. S7),
allowing us to rule out the role of the smooth resource distri-
butions. These dynamics reveal the mechanisms behind why
greater centrality was correlated with performance (Fig. 2f),
showing that success temporarily attracts imitators, who then
dissipate when resources are depleted.

Next, we looked at the dynamics of reward and visual field
data, where we analyzed the number of visible peers (out-
bound social attention towards others; Fig. 2j) and the number
of observers (inbound social attention; Fig. 2k) at every time-
point. Starting with outbound visibility of peers (Fig. 2j),
we found evidence for adaptive social attention. First, we
found several negative correlation clusters at negative offsets
for both environments, indicating that low rewards predicted
greater visual attention towards others (and vice versa). How-
ever, only the cluster in smooth environments survives (from
-2.85s to -0.45s) when computing the contrast between group
and solo rounds (Fig. S7). Thus, our comparison to the asocial
baseline allows us to identify that social attention adapts to
individual performance, above and beyond the generic effects
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of the task structure (i.e., reduced visibility when destroying
a block). Additionally, we also observe opportunity costs of
social attention in smooth rounds (1.3s to 2.3s), where the
negative correlation indicates that more visible peers predicted
lower rewards. This effect is absent in random environments
and reversed in the asocial baseline (Fig. S7), which accounts
for the shared reward structure, indicating it is a distinctly
social phenomenon.

Lastly, the dynamics of reward and inbound visibility (num-
ber of observers) indicate success-biased selectivity, where
participants who acquired higher rewards were the target of so-
cial attention (Fig. 2i). In smooth environments, we observed
two clusters at negative offsets (-13.6s to -3.7s and -3.0s to -
1.0s) with positive correlations, indicating that greater rewards
predicted more observers in the future. This success-biased
selectivity was absent in random environments and inverted
in the asocial baseline (Fig. S7). The strong dip approaching
offset = 0s is due to the visual dynamics of the task, since
the splash animation temporarily obscured the avatar when
acquiring a reward. Additionally, we observe another positive
correlation cluster at offsets 1.0s to 2.2s in smooth environ-
ments, indicating having more observers predicted greater
future rewards. This effect was again absent in random envi-
ronments and inverted in the asocial baseline (Fig. S7).

In sum, these temporal dynamics reveal how individual per-
formance is the key driver of adaptive mechanisms, driving
changes in social proximity (Fig. 2i) and social attention—
both when (Fig. 2j) and towards whom (Fig. 2k) it is directed.
We next relate these social attention processes to social inter-
actions characterized by concrete leader-follower dynamics.

Social influence and leadership. Inspired by methods
used to study collective decision-making in wild baboons42,
we analyzed the frequency of “pull” events that capture leader-
follower dynamics (see Methods). Each candidate event was
selected from min-max-min sequences in the pairwise dis-
tance between players (Fig. 3a) and then filtered by a number
of criteria including strength (change in distance relative to
absolute distance) and disparity (one player moves more than
the other). After filtering, we detected a total of 537 pull
events (see Fig. 3a for an example), where in each event, one
player is identified as a leader (moved more during rt1, t2s)
and the other as a follower (moved more during rt2, t3s).

We analyzed both solo and group rounds, with solo rounds
providing a benchmark for the sensitivity of these analyses by
accounting for the influence of the reward structure (Fig. 3b).
While random environments saw a reduction in pull events
from solo to group rounds (hierarchical Poisson regression:
-0.7 [-1.2, -0.1]), smooth environments saw a large increase in
pull events from solo to group rounds (1.4 [0.8, 2.0]). These
results were robust to different filter thresholds (Fig. S8) and
suggest participants not only adapted their social attention
(Fig. 2g,j) but also their susceptibility to social influence de-
pending on the relevance of social learning: following others
when adaptive (smooth), and actively avoiding others when
maladaptive (random).
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selected from min-max-min sequences in dyadic distance and
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points that define a pull, and show the state of the
environment at time t3. Note that t2 for the leader largely
overlaps with t3. (b) The average number of pull events per
round (error bars indicate 95% CI and each dot is a session).
We performed the same analysis on solo rounds as if
participants were on the same field to provide an asocial
baseline. (c) While leadership (nleader´nfollower) did not
predict performance, (d) leaders had higher instantaneous
rewards during pull events. Ribbons and error bars indicate
95% CI.

Next, we computed a leadership index for each participant
based on their frequency of being a leader vs. a follower:
nleader´ nfollower, using only smooth group rounds for inter-
pretability. Participants with a high leadership index were
observed more (i.e., higher in-degree) and observed others
less (i.e., lower out-degree), indicating a high correspondence
between our analysis of these non-overlapping aspects of the
data (i.e., visual field data vs. spatial trajectories; see Fig. S9).
Yet neither leadership (Fig. 3c) nor in/out-degree predicted
performance (Fig. S10f). However, when we focus on the
instantaneous reward rate during a pull event (Fig. 3d), we
found that leaders received more rewards than followers (0.6
[0.3,0.9]). Thus, social influence appears to be modulated by
success bias, although we find no long-term benefits of social
attention or leadership at the behavioral level, motivating the
need for more precise computational modeling (see below).

Behavioral summary. Overall, participants adaptively de-
ployed both asocial and social learning mechanisms according
to the environment and depending on individual performance,
and selectively directed social attention towards successful
individuals. These behavioral results provide a lens into the
dynamics of how asocial and social learning interact and feed-
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back onto each other. However, they only indirectly speak
to the individual-level cognitive processes that drive decision
making in our experiment. Therefore, we next turn to compu-
tational models integrating different combinations of asocial
and social learning mechanisms to predict individual foraging
decisions.

Computational modeling of choices
We use a computational modeling framework (Fig. 4a) to
sequentially predict which block participants will destroy next:

PpChoicek`1q9exppfk ¨wq (1)

Predictions are modeled as a softmax distribution over a linear
combination of block features f and weights w, where we
use the state of the world when the k-th block is destroyed in
order to predict the k`1-th block. Block features f capture
hypotheses about individual and social learning mechanisms
(see below), while weights w are estimated using hierarchi-
cal Bayesian methods, accounting for individual and group
variability as random effects (see Methods).

Asocial features. We first used a set of asocial features to
capture physical constraints of the task and individual learning
through reward prediction (Fig. 4a; see Methods). Locality
is the inverse distance to the player at time k, reflecting a ten-
dency to forage locally. Block Visibility captures which blocks
are within the player’s field of view at time k, and is set to 1 if
visible and 0 if not. Reward Prediction uses Gaussian Process
regression as a cognitive model of asocial reward generaliza-
tion in structured environments37, 43. Since each block can
only be destroyed once in each round, reward prediction relies
on value function approximation, as a common form of gener-
alization in reinforcement learning18, where past observations
are used to infer a value function over the search space. Here,
we implement this as a binary classification problem, where
based on the player’s reward history (until time k), we predict
the probability of each remaining block containing a reward
as a logistic sigmoid of an inferred latent variable z (Fig. 4a
Reward Prediction panel), with higher values corresponding
to higher probability of reward (see Methods).

Social features. We then incorporate social features based
on proximity to different subsets of players, motivated by
our results showing selective visual attention (Fig. 2j) and a
susceptibility to being “pulled” (Fig. 3d) towards successful
individuals. Successful Proximity is computed using players
who were visible and were observed acquiring a reward (i.e.,
visible splash) in the span of k´1 to k (using visual field tran-
scription). We used the last observed location of each player
to compute proximity (inverse distance), and use the centroid
if there were multiple successful players. Unsuccessful Prox-
imity is calculated the same way, but for visible players who
were not observed acquiring a reward. In separate models,
we also tested Social Proximity to all players (irrespective of
success) and Player-specific Proximity, with unique weights
for each target player (see Methods).

Model comparison. We compared a series of models, each
using a different subset of features. The models fall under one
of two classes: static models in which the weights remain con-
stant over a round (i.e,. fixed strategy), and dynamic models
in which the weights adaptively change (Fig. 4a bottom left)
as a function of the elapsed time ∆t since the last individual
or socially observed reward (depending on the model):

w̃“ w`α ¨∆t (2)

In dynamic models, the weight estimate w acts as an intercept,
while α captures the degree of adaptivity as a slope. Since we
first normalize ∆t, weight estimates are comparable between
static and dynamic models. Model comparison is performed
separately for group and solo rounds, where we use Bayesian
model selection44 to compute the probability of the best model
(i.e., protected exceedance probability; Fig. 4b) and also report
individual WAICs relative to the best model (Fig. 4c) for more
fine-grained analysis.

Our static models include 1) an Asocial model using only
asocial features, 2) an Unbiased model that adds undiffer-
entiated Social Proximity across all players as a naïve form
of social imitation, 3) a Success-biased model using sepa-
rate weights for Successful vs. Unsuccessful players, and
4) a Player-specific model with separate proximity weights
for each player. Of these models, the Success-biased model
performed best in group rounds (Fig. 4c).

Our dynamic models are inspired by influential theories
of adaptivity in asocial and social foraging. 5) ARS is based
on past work using area-restricted search15, 33, and uses only
asocial features, but with the locality weight changing as a
function of time since the last individual reward. This corre-
sponds to the common finding40 that search distance adapts
to foraging success (Fig. 2b), and was the best model in solo
rounds and the second best in group rounds (Fig. 4b-c). We
also developed two adaptive social learning models inspired
by Enquist et al.4, both based on our success-biased model. 6)
The Critical learner adapts the reward prediction weight as a
function of time since the last socially observed reward, while
7) the Conditional learner adapts both the successful and
unsuccessful proximity weights as a function of time since
the last individual reward. Thus, the critical learner adapts
individual learning as a function of social learning success,
while the conditional learner adapts social learning as a func-
tion of individual success, with the latter performing better
(Fig. 4c). Finally, we combined ARS with the Conditional
learner to create 8) an ARS+Cond hybrid, where individual
performance drives adaptivity of both asocial (i.e., locality
weight) and social (i.e., success-biased imitation) mechanisms.
This ARS+Cond model vastly outperformed all other models
in group rounds (ppbestModelq ą .999; Fig. 4b) and was bet-
ter than the sum of its parts (i.e., ARS or Conditional learning
alone; Fig. 4c).

Model weights. We focus on interpreting the weights for
the best models in each condition (group: ARS+Cond; solo:
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ARS), but all models had similar weights for shared features
(Figs. S12-S13).

Locality and Block Visibility influenced choices in all con-
ditions, and were typically stronger in random than in smooth
environments (i.e., in the absence of reward-predictive cues).
The one exception is that in solo rounds, participants foraged
more locally in smooth than random environments (0.9 [0.8,
0.9]), suggesting greater local exploitation in the absence of
social competition. Reward Prediction weights were reliably
larger in smooth environments (0.41 [0.38, 0.45]; no reliable

difference between group-solo: 0.02 [-0.02, 0.06]), but over-
lapped with 0 (solo: 0.02 [-0.01, 0.04]) or were negligible
(group: 0.04 [0.01, 0.07]) in random environments. Thus,
participants adapted individual reward prediction based on the
environment, and this mechanism was unaffected by the social
context. Notably, we found adaptation in locality weights in
all conditions (i.e. ARS), with stronger adaptivity in smooth
environments (group:-0.91 [-1.05, -0.77]; solo: -0.68 [-0.76,
-0.60]) and in the group condition (-0.56 [-0.87, -0.23]). The
negative sign corresponds to a reduction of locality as the
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participant experienced longer durations without individual
rewards, consistent with past models of asocial foraging15.
Our results expand on these previous findings, by showing
that adaptation of local search increases (rather than dimin-
ishes) in social settings.

Social feature weights (ARS+Cond) show that participants
were strongly influenced by successful players in smooth en-
vironments (1.0 [0.8, 1.2]), and substantially less in random
environments (smooth - random: 0.7 [0.5, 0.9]). However,
even in random environments the effect was reliably different
from chance (0.29 [0.07, 0.53]), suggesting a persistence of
success-biased imitation even in environments where social
learning was irrelevant. In contrast, we found no effect of
unsuccessful players in neither smooth (0.004 [-0.14, 0.15])
nor random environments (0.10 [-0.07, 0.25]). We also only
observe adaptivity in the successful proximity weights for
smooth (0.4 [0.2, 0.5]) but not random environments (0.10
[-0.07, 0.25]). Thus, participants increased their reliance on
social information as they experienced longer periods without
individual reward, with increased selectivity towards success-
ful players.

Altogether, our modeling framework allows us to integrate
theories of asocial and social adaptation from past litera-
ture4, 15, made possible by our combination of visual and
spatial data. Here, we show that these adapative mechanisms
are driven by individual performance, and themselves adapt to
the context of different reward environments. Furthermore, we
can link individual weight and adaptability estimates to a num-
ber of behavioral signatures such as performance, centrality,
and visibility (see Fig. S14). Notably, greater social adap-
tation predicted better performance in group rounds (Adapt.
Success: 2.99 [0.41, 5.58]; smooth rounds), while greater aso-
cial adaptation weights predicted better performance in solo
rounds (Adapt. Prox: -2.34 [-3.72,-1.03]; smooth rounds).
Thus adaptivity of both social and asocial learning mecha-
nisms is what predicts individual performance.

Discussion
Collective foraging is a common metaphor for human social
learning40, 41, 45. With similar dynamics as marketplace inno-
vation or scientific research, peers can be both useful sources
of social information, but also competitors for the same lim-
ited resources. Here, we used an immersive virtual environ-
ment (Fig. 1), where each individual’s limited field of view
imposes a trade-off between allocating attention to individual
or social learning, while spatial proximity to others directly
shapes opportunities (and also costs) for social interactions.
With access to visual field data (Fig. 1c) and spatial trajec-
tories, our analyses provide insights into the structural and
temporal dynamics of social interactions, where we study how
people adapt to both different reward environments (smooth
vs. random; Fig. 1e) and to dynamically changing social
environments.

Our results shed light on the adaptive mechanisms driv-
ing collective human behavior, integrating past theories from

asocial foraging15 with context-dependent4, 9, 10 and selec-
tive5, 45, 46 mechanisms of social learning, which have yet
to be combined in a single framework. This integration re-
veals how these asocial and social mechanisms amplify one
another, and are driven by a common currency of individual
performance, instead of being governed by separate cues that
mutually compensate for one another. Furthermore, it is the
degree of adaptivity—for both social and asocial learning
mechanisms—that best predicts individual performance.

When rewards were smoothly clustered (offering traction
for social learning), participants specialized more strongly
with greater asymmetry of social attention (Fig. 2g), adap-
tively sought out social information depending on perfor-
mance (Fig. 2j), and selectively directed their social learning
towards successful individuals (Fig. 2k). Participants were
also more likely to be “pulled” into leader-follower dynam-
ics in smooth environments (Fig. 3b), which were selectively
directed towards “leaders” with higher instantaneous reward
rates (Fig. 3d). Our computational models (Fig. 4) combined
spatial and visibility data to account for both asocial and so-
cial learning mechanisms, which dynamically adapt over time.
Here, the winning model combined area-restricted search15

with conditional social learning4 (ARS+Cond), where individ-
ual performance was the key factor driving adaptivity of both
local foraging and selective social learning (Fig. 4d). Notably,
individual estimates of adaptivity of both asocial (i.e., ARS)
and social learning mechanisms (i.e., success-biased imita-
tion) predicted better individual performance (Figs. S3,S4, &
S14). Overall, this work integrates previously disparate the-
ories of adaptive mechanisms of asocial and social learning,
providing new evidence that they are driven by a common
mechanism of individual performance, with their interaction
yielding an amplification of adaptivity and selectivity.

A long tradition of research has successfully generalized
findings from spatial foraging to more abstract and general
settings, such as searching for information on the internet47 or
recovering internal memories48. Since then, recent advances
in animal research have incorporated rich behavioral data
from visual field analysis49, spatial trajectories50, and net-
work dynamics51 with important new implications, showing
how simple (and sometimes seemingly maladaptive) social
learning mechanisms can give rise to intelligent behavior in
dynamic and ecological environments. Yet, prior to this work,
we have lacked behavioral data from humans in an equally
immersive setting, which would allow us to account for simi-
lar mechanisms. Here, our immersive Minecraft setting has
allowed us to address this gap, linking asocial and social mech-
anisms of adaptive behavior with potential future implications
for human social learning52.

Limitations and future directions
While substantially reduced, success-biased social learning
was also present in random environments (Fig. 4d). Thus, de-
spite resources being distributed randomly, participants were
still somewhat drawn towards successful peers. One expla-
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nation is that success-biased copying is hard for people to
unlearn (e.g., similar to imitation53, 54), since it is beneficial
in many settings. Alternatively, participants may have be-
lieved there to be structure in random environments, as is
often the case when observing random events (e.g., the gam-
bler’s fallacy55). Either way, these results suggest potential
limitations to the degree of human adaptability and a lingering
bias towards social learning. However, even though social
information provided no benefits in random environments, it
may still offer a computationally cheap tool for engaging in
exploration11 (away from one’s current location). Individual
exploration is associated with cognitive costs and can be im-
paired by imposing memory load56 or time pressure57. Thus,
social imitation may act as an “exploration device” at a re-
duced cognitive cost relative to individual exploration11, 38, 58.
An extreme test could be to use anti-correlated environments
to observe if success-biased social learning still persists in
the most non-adaptive settings. Indeed, different environ-
ments could also yield greater evidence for critical social
learning over conditional social learning4, where costlier aso-
cial learning may prioritize using social cues to adapt learning
mechanisms.

The asymmetry of social attention (amplified in smooth
environments; Fig. 2g) may act as a safeguard against mal-
adaptive herding12, 59, where instead of copiers copying other
copiers, social learning is selectively directed towards indi-
vidual learners (low out-degree) and is selectively directed
towards successful individuals (Fig. 2k). In our study, suc-
cessful foraging outcomes were made salient by a visual cue
(i.e., splash), although people can also deploy metacogni-
tive strategies to infer latent performance or skill from overt
behavior5, 14, providing additional mechanisms for guiding
selective social learning. Future work can explore the extent
to which these mechanisms (together with our ability to dis-
count correlated social information60) may offer a degree of
natural protection against the spread of misinformation61 and
the formation of echo chambers through homophilic social
transmission62.

Future work may consider using a non-depleting reward
environment, where collective coordination can yield additive
benefits to individual search5, 63–65. Indeed, a better under-
standing of our ability to cumulatively innovate upon previous
solutions over long multi-generational timescales has been a
powerful motivating force in social learning research2, 27, 66.
Here, we have focused on understanding the temporal dynam-
ics of social learning over short timescales, which produced
novel insights into the cognitive mechanisms supporting flex-
ible and adaptive social learning. However, a more com-
plete understanding requires connecting social learning mech-
anisms observed at short timescales to adaptive outcomes over
long, cultural timescales. Our work provides the foundations
for this endeavor, by providing insights into the cognitive
mechanisms that make people such powerful social learners
in dynamic and more realistic contexts.

Our task was originally designed for data collection using

a virtual reality (VR) headset instead of a mouse and key-
board. However, preliminary testing revealed that locomotion
via teleportation (the preferred method to avoid VR motion
sickness) resulted in less naturalistic spatial trajectories and
interfered with visual field analyses due to the field of view
temporarily fading to black during movement. Several VR
treadmill products were also tested as an alternative form of
locomotion, but required substantial training and resulted in
large individual differences in navigation ability. In contrast,
the current computer-based modality captured naturalistic tra-
jectories in both space and heading direction. However, future
studies should continue to strive for greater ecological validity
using new advances in VR.

In conclusion, our study of collective foraging in an immer-
sive Minecraft environment integrated computer-transcribed
visual field data with high-resolution spatial trajectories to
provide a integrative perspective on the adaptive mechanisms
of asocial and social learning. Ultimately, this work advances
our understanding of the cognitive mechanisms underlying
adaptive learning and decision making in social contexts, and
provides the foundation for future investigations in non-spatial
domains of social interactions.

Methods
Participants and design
This research complies with all relevant ethical regulations
and was approved by the Institutional Review Board of the
Max Planck Institute for Human Development (MPIB; ap-
proval number: A 2019-05). Participants (n “ 128) were
recruited from the MPIB recruitment pool in Berlin (82 fe-
male; Mage “ 27.4, SDage “ 5.0) and participants signed an
informed consent form prior to participation. No statistical
method was used to predetermine sample size and no data
were excluded from the analyses. Participants received a base
payment of e12 plus a bonus of e0.03 per reward, spending
approximately one hour and earning on average e17.32 ˘
1.02 (SD).

Participants completed the task in groups of four. After
an in-game tutorial (Supplementary Video 1) and two prac-
tice rounds (see below), participants completed 16 2-minute
rounds of the task. Using a within-subject design, we manipu-
lated the reward structure (random vs. smooth; Fig. S15) and
search condition (solo vs. group). The order of round types
was randomly assigned and counterbalanced across groups,
with four consecutive rounds of the same type (Fig. 1d). The
study coordinator was blinded to the allocation during the
experiments. The reward structure and search condition for
each round was announced prior to the start of each round in
an onscreen notification.

The reward structure of a given round was made salient by
mapping each reward structure to either pumpkin or water-
melon blocks (counterbalanced across groups). In both reward
structures, 25% of blocks contained rewards, but rewards were
either randomly or smoothly distributed. The smooth environ-
ments were generated by sampling from a Gaussian process67
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prior, where we used a radial basis function kernel (Eq. 12)
with the lengthscale parameter set to 4 (similar to37). Sam-
pled reward functions were then binarized, such that the top
quartile (25%) of block locations were set to contain rewards.
We generated 20 environments for both smooth and random
conditions (Fig. S15), with each session (i.e., group) sam-
pling without replacement 1 (practice) + 8 (main task) = 9
environments of each class with pseudorandom assignments
that were pregenerated prior to the experiment. In the tutorial
(Fig. 1d), participants were given verbal descriptions of each
reward condition, saw two fully revealed illustrations of each
environment class from a bird’s-eye perspective, and inter-
actively destroyed a 3x3 patch of both smooth and random
environments (Supplementary Video 1).

The search conditions were made salient by having par-
ticipants stand on a teleportation block either by themselves
(solo) or with the other three participants (group) in order to
begin the round. In the solo condition, participants searched
on identical replications of the same environments but without
interacting with each other. In the group condition, partici-
pants searched on the same environment and could interact
with, compete against, and imitate one another.

Materials and procedure
The experiment was implemented as a computer-based exper-
iment, with each computer connected to a modified Minecraft
server (Java edition v.1.12.2). In the experiment, the sound
was turned off, participants could not see each other’s screens,
and task-irrelevant controls (e.g., jumping, sprinting, inven-
tory, etc) were made unavailable. The Minecraft world con-
sists of “blocks” that can be “mined” for resources by holding
down the left mouse button to hit them until they are de-
stroyed. In the experiment, participants controlled an avatar
that moved through our custom-made environment, defined as
a flat field containing a 20x20 grid of 400 pumpkin or water-
melon blocks (Fig. 1a) with a two block space between each
block. The field was bounded by an impassable fence. See
Supplementary Video 2 for a bird’s-eye illustration of a round,
and Supplementary Videos 3 and 4 for screen captures from
group rounds on smooth and random reward environments,
respectively.

Each resource block (either watermelon or pumpkin) could
be foraged by continually hitting it for 2.25 seconds until it
was destroyed, yielding a binary outcome of either reward or
no reward. Rewards were indicated by a blue splash effect,
visible by other players from any position if it was in their
field of view. Only resource blocks could be destroyed in the
experiment and destroyed block were not renewed. Blocks
did not possess any visual features indicating whether or not
they contained a reward. However, rewards in smooth envi-
ronments were better predictable, since observing a reward
predicted other rewards nearby. Participants were individually
incentivized to collect as many rewards as possible, which
were translated into a bonus payment at the end of the ex-
periment. The cumulative number of rewards (reset after the

practice rounds) was shown at the bottom of the screen.
After receiving verbal instructions, participants completed

an in-game tutorial to familiarize themselves with the con-
trols, how to destroy blocks, the difference between smooth
and random reward distributions, and the overall task struc-
ture (Supplementary Video 1). They then completed one solo
practice round in a smooth environment and one solo prac-
tice round in a random environment. These were identical to
the solo condition of the main task, but performance in these
rounds did not contribute to a participant’s bonus payment.
Each round lasted 120 seconds, with the end of the round
corresponding to the sun setting below the horizon. This
served as an approximate in-game timer for each round, and
was communicated to participants in the tutorial. A 3-second
countdown timer was also shown onscreen. At the end of
the round, participants were given an onscreen announcement
indicating the number of rewards they had earned and noti-
fying them of the reward structure and search condition for
the next round. Participants were then teleported into a lobby
(separate lobbies for solo rounds or a communal one for group
rounds), and were required to all stand on a “teleportation”
block to indicate readiness for the subsequent round. Prior to
the start of a social round, participants all stood on a commu-
nal teleportation block, while prior to solo rounds, participants
each stood on separate teleportation blocks, in order to induce
the social or asocial context. Once all players were ready, a
3-second countdown was displayed and they were teleported
into a random position in the next environment with a random
orientation direction.

Data collection
Experimental data was collected using a custom data logging
module programmed in Java, which were separated into map
logs and player logs. Map logs recorded information about
each block destruction event, including a timestamp, player
identifier, block position, and the presence or absence of re-
ward. Player logs contained each player’s position in the
horizontal XZ-plane together with the XYZ components of
their heading vector (i.e., where they were looking). Both
logs contained information sampled at Minecraft’s native 20
Hz tick-rate (i.e., once every 0.05s), providing high-resolution
data about spatial trajectories and heading directions.

Automated transcription of visual field data
We developed a custom tool built on the Unity game engine
(ver. 2019.3) for performing automated transcription of visual
field data (Fig. 1c). We first used data collected from the
experiments to simulate each round of the experiment from
each participant’s point of view. These simulations were then
used to automate the transcription of each participant’s field
of view (Supplementary Video 5).

Our Unity simulations assigned each entity in the exper-
iment (i.e., each block, player, and reward event) a unique
RGB value, which was drawn onto a render texture one tenth
the size of the player’s actual monitor (192x108 pixels as op-
posed to 1920x1080 pixels). Since the images were rendered
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without any anti-aliasing or transparency through a simple,
unlit color shader, the RGB value of any drawn pixel could
be uniquely related with a lookup table to the corresponding
entity. We then simulated each round of all experiment data
from each player’s perspectives within the Unity game engine,
using the map logs and player logs, which allowed us to fully
reconstruct the world state. Once all four player perspectives
were individually rendered, we could read out the pixels from
each player’s field of view, using the RGB colors of the simu-
lated pixels to determine whether an entity was visible at any
point in time (20 Hz resolution), and what proportion of the
screen it occupied.

In creating these simulations, a few approximations were re-
quired. In addition to the reduced resolution mentioned above,
player models were approximated by their directionally-
oriented bounding box and we ignored occlusion from the
heads up display and view-model (e.g., occlusion due to hand
position of the avatar). Additionally, some animations pro-
duced by the Minecraft game engine include inherent stochas-
tic processes that were approximated. Namely, the splash
particles used to indicate a reward event are generated in
Minecraft using a random process that spawns 300 particles at
predefined locations in a sphere around the player. Whilst the
starting locations are deterministic, small deviations in veloc-
ity and the lifetime of these particles are generated randomly.
Thus, we tuned the parameters of Unity’s particle system to
be as authentic as possible by comparing simulated splash
effects with video footage of splash effects generated by the
Minecraft game engine.

We used a similar procedure for the solo rounds to estab-
lish an asocial baseline for our analyses. Whereas all four
players searched on different replications of the same field,
we simulated the solo rounds as if they were superimposed on
the same field. Again, a few approximations were required.
In these solo simulations, we removed a block whenever any
of the four players destroyed it. Additionally, we generated
a splash for each reward event, meaning if multiple players
foraged the same block in a round, it would trigger a different
splash event each time.

Agent-based simulations
We implemented agent-based simulations to understand how
the different reward environments (smooth vs. random re-
wards) interact with individual-level learning strategies (aso-
cial learning vs. unbiased imitation vs. biased imitation) in
determining foraging success (see Fig. 1f). The simulations
uses the same features as the computational model, but are
defined for a simplified version of the task, capturing the key
visual-spatial dynamics of collective decision-making.

More precisely, our simulations modeled the foraging task
as a discrete-time sequential game with partial observabil-
ity, which generalizes Markov decision processes to incor-
porate multiple agents, partial observability, and separate re-
wards68. Formally, a task is a tuple, xI,S,A,O,T,R,Oy: an
agent index set, I; a set of environment states correspond-

ing to configurations of agent locations/directions and avail-
able/destroyed blocks, S; a set of joint actions corresponding
to agents moving in cardinal directions, A“

Ś

iAi; a set of
joint observations, O“

Ś

iOi, where each Oi is a subset of
events viewed from agent i’s perspective (i.e., other agents’
locations, reward reveal events, and available blocks); a en-
vironment transition function, T : SˆAÑ S; a joint reward
function R : SˆAˆSÑR|I|; and a joint observation function,
O : AˆSÑO.

Agents are modeled as selecting a destination to navigate
to, navigating to that destination, and then destroying the
target block (requiring k “ 9 timesteps in the simulation;
approximately equivalent to the 2.25 seconds required to
destroy a block and the maximum movement speed of 4.3
blocks/second). Agent policies consist of a high-level con-
troller that transitions among different modes of behavior
n P tSelectDest, NavTopxq, and foragepkqu, where
x is a target destination that a low-level navigation con-
troller moves towards and k is a counter for the number of
timesteps left to complete the destruction of a block. When
in SelectDest, the controller samples a destination from
Pwpxq9exptfpxq ¨w}, where f : X Ñ RK returns a real-valued
feature vector (incorporating both asocial and social mecha-
nisms, the same as in the computational models; see below)
for each destination block, and w P RK are feature weights.

We considered populations of three types of agents. Asocial
agents used a combination of locality (distance from current
location), block visibility (using a 108.5-degree field of view
as in the experiment), and asocial reward learning (see the
subsection “Gaussian process for binary reward prediction”
below). Unbiased social agents added an additional feature
using the average proximity from observed social partners
since the last choice, while biased social agents used a simi-
lar social proximity feature, but computed only from social
partners that were observed acquiring a reward since the last
choice. All feature weights were arbitrarily set to 1. For each
of 20 random/smooth environments, we generated 100 simu-
lations for each agent type in groups of four agents (for a total
of 20ˆ2ˆ100ˆ3“ 12,000 simulations). Each simulation
was run for 400 timesteps. Figure 1f provides the results of
the simulations, showing the average total reward collected
by agents by environment type (smooth/random) and strategy
(asocial/unbiased social/biased social).

Hierarchical Bayesian regressions
Statistical analyses were conducted using hierarchical
Bayesian regressions to simultaneously model the effects of
the experimental manipulations (smooth vs. random and solo
vs. group), while accounting for participant- and group-level
variability. All regression models used Hamiltonian Markov
chain Monte Carlo (MCMC) with a No-U-Turn sampler69 and
were implemented using brms70. For count-based variables
(e.g., blocks destroyed or pull events), we used Poisson re-
gression, but report the un-transformed regression coefficients
for simplicity. All models used generic, weakly informative
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priors „N p0,1q and all fixed effects also had corresponding
random effects following a maximal random-effects proce-
dure71. All models were estimated over four chains of 4,000
iterations, with a burn-in period of 1,000 samples. Effects
are reported as the posterior mean and 95% Highest Posterior
Density Interval (HPDI).

Temporal dynamics
Based on methods developed in neuroscience72, the tempo-
ral dynamic analyses (Fig. 2h-k and Fig. S7) use time-series
data from each participant in each round to discover temporal
structures in social interactions, where rewards predict fu-
ture spatial/visual patterns (negative offsets) and spatial/visual
patterns predict future rewards (positive offsets).

The time-series variables we used are reward (binary vec-
tor), spatial proximity (average inverse distance to all other
players), and both the number of visible peers and the num-
ber of observers (integer variables P [0,3]; acquired from the
automated transcription of visual field data) at every point in
time (20 Hz time resolution). For solo rounds, we computed
both spatial proximity and visibility as if participants were on
the same field to provide an asocial baseline.

We then computed correlations between each pair of vari-
ables cor(V1,V2), where we iteratively time-lagged V2
from -20 to +20 seconds, with non-overlapping regions of
each time series omitted from the data (see Fig. 2h). Each
correlation was then z-transformed and corrected for chance
using a permutation baseline (i.e., permutation chance cor-
rection). This chance correction is based on iteratively
permuting the order of V2 and computing the correlation
cor(V1,V2_permuted) over 100 different permutations
(for each correlation). We then subtracted the z-transformed
mean of the permutation correlations from the target correla-
tion. These permutation corrected correlations are reported
as a population-level mean (˘95% CI) in Figure 2i-k and
Figure S7.

Lastly, to provide better interpretability of these results,
we used a maximum cluster mass statistic72 to discover tem-
porally continuous clusters of significance at the population
level. For each pair of variables rV 1,V 2s and within each
combination of condition (solo vs. group) and environment
(random vs. smooth), we used a cluster permutation test
to find a threshold for random clusters. This analysis used
10,000 permutations, where for each, we iterated over each
individual time series of z-transformed (and chance-corrected)
correlations, randomly flipping the sign at each time point.
We then used a single-sample t-test with α “ .05 to compute
which time points (at the population level) were significantly
different from 0. This provided a distribution of the duration
of temporally continuous clusters of significance in the ran-
domly permuted data. We then used the upper 95% CI of
this distribution as a minimum threshold for the actual data,
where we applied the same significance testing procedure, but
discarded all clusters shorter in duration than the permutation
threshold. The surviving clusters are illustrated with bold

lines in Figure 2i-k and Figure S7.

Social influence
We used methods developed to analyze the movement pat-
terns of geotracked baboons in the wild42 to measure social
influence. This allows us to detect discrete “pull” events over
arbitrary time scales, where the movement patterns of one
participant (leader) pull in another (follower) to imitate and
forage in the same vicinity (Fig. 3).

We first computed the pairwise distance between all par-
ticipants (Fig. 3a) and defined candidate pull events from
min-max-min sequences, where we used a noise threshold
of 1 block distance to determine what corresponds to mini-
mum and maximum distances. These candidate sequences
were then filtered based on strength, disparity, leadership, and
duration in order to be considered a successful pull.

Strength Si, j defines the absolute change in dyadic distance
relative to absolute distance:

Si, j “
|di, jpt2q´di, jpt1q||di, jpt3q´di, jpt2q|
pdi, jpt1q`di, jpt2qqpdi, jpt2q`di, jpt3qq

, (3)

where di, jptkq is the dyadic distance between participants i
and j at time k P r1,2,3s (corresponding to the timepoints of
the min-max-min sequence). We required pull events to have
a minimum strength of Si, j ą .1, such that they correspond
to meaningful changes in spatial proximity rather than minor
“jitters” at long distance.

Disparity δi, j defines the extent to which one participant
moves more than the other in each segment, relative to the
total distance moved by both participants:

δi, j “
|∆xipt1, t2q´∆x jpt1, t2q||∆xipt2, t3q´∆x jpt2, t3q|
p∆xipt1, t2q`∆x jpt1, t2qqp∆xipt2, t3q`∆x jpt2, t3qq

, (4)

where ∆xipt1, t2q is the displacement between t1 and t2. We
filtered pull events to have a minimum disparity of δi, j ą .1,
such that changes in spatial proximity were asymmetrically
driven by one of the interaction partners. Figure S8 shows that
our results are robust to changes in the disparity threshold.

Leadership is a simple binary filter requiring that the par-
ticipant who moved more in the first segment (t1 to t2) moved
less in the second segment (t2 to t3). We refer to the participant
who moved the most in the first segment maxaPpi, jq∆xapt1, t2q
as the leader and the participant who moved the most in the
second segment maxbPpi, jq∆xapt2, t3q as the follower. Thus,
successful pulls are defined as a ‰ b, where the leader and
follower are separate participants.

Duration was the final filter, where we required pulls to be
at least 3 seconds in duration (since it takes 2.25 seconds to
destroy a block). After all filters were applied, the average
pull duration was 13.1 seconds ˘ 0.09 (SEM).

Computational modeling
To better understand individual foraging decisions at a mecha-
nistic level, we developed a computational modeling frame-
work that sequentially predicts each block participants destroy
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based on different combinations of asocial and social fea-
tures. We modeled the choice probabilities for each block
destruction using a linear combination of block features f and
regression weights w that represent the influence of each fea-
ture for participants’ block choices (Eq. 1). This was modeled
using a categorical likelihood function with Bk`1 possible
outcomes (i.e., the number of remaining blocks available for
choice at time k`1), with a softmax link function. Different
models incorporate different sets of features in f, while some
dynamic models additionally adapt the weights of specific
features as a function of the elapsed time (at time k) since the
last individually acquired reward or the last socially observed
reward (using visual field analysis), depending on the model
(see main text).

For interpretability of weight estimates and to allow for
identical prior distributions, we z-standardized all block fea-
tures within each choice, with the exception of block visibility,
which was coded as a binary indicator. We also omitted the
first choice in each round, since most features need to be com-
puted with respect to some previous block destruction. Thus,
we only started modeling from the second choice in each
round, conditioned on the first choice. Furthermore, while all
asocial features were included as predictors for each choice,
the social features could be undefined for some choices if the
conditions were not met (e.g., no visible players, or no visible
and successful players). In these situations, the feature values
were effectively set to 0 for all blocks.

All model weights were estimated in a hierarchical
Bayesian framework with random effects accounting for dif-
ferences in the importance of (asocial and social) features
among individuals and experimental groups. The models
were fit using Stan as a Hamiltonian Monte Carlo engine
for Bayesian inference73, implemented in R v.4.0.3 through
cmdstanr version 0.3.0.9. We used within-chain paralleliza-
tion with reduce_sum to reduce model run times through
parallel evaluation of the likelihood.

To minimize the risk of overfitting the data, we used weakly
informative priors for all parameters. We used weakly infor-
mative standard normal priors centered on 0 for all weight
parameters, exponential priors for scale parameters (with rate
parameter λ “ 1) and LKJ priors (with shape parameter η “ 4)
for correlations matrices74. To optimize convergence, we im-
plemented the noncentered version of random effects using a
Cholesky decomposition of the correlation matrix75. Visual
inspection of traceplots and rank histograms76 suggested good
model convergence and no other pathological chain behaviors,
with convergence confirmed by the Gelman-Rubin criterion77

R̂ď 1.01 . All inferences about weight parameters are based
on several hundred effective samples from the posterior78. We
provide additional details about some model features below.

Block visibility
Since block visibility only captures a static representation of
which blocks were visible at time k, we computed it with
permissive assumptions. Specifically, we assumed no object
or player occlusions (i.e., object permanence) and used only

the horizontal component of their heading vector to avoid
incorporating noise from vertical jitters. Visibility computa-
tions used the true horizontal viewing angle of 108.5 degrees,
corresponding to the 16:9 aspect ratio monitors used in the
experiment.

Gaussian process for binary reward prediction
Gaussian processes67 provide a Bayesian function learning
framework, which we use as a psychological model of reward
generalization for predicting search behavior37. Gaussian pro-
cesses are typically used to learn a function f : X Ñ Rn that
maps the input space X (i.e., the field of destructible blocks)
to real-valued scalar outputs, such as continuous reward val-
ues.

Here, we modify the Gaussian process framework to the bi-
nary classification case, where we want to make probabilistic
predictions about whether destroying some block x will yield
a reward ppr “ 1|xq. This can be described as a logistic sig-
moid function Sp¨q of some real-valued latent variable z, such
that ppr “ 1|zq “ Spzq “ 1

1`expp´zq . We set the prior mean

z0 “ logp .25
1´.25 q such that ppr “ 1|z0q “ 0.25, corresponding

to the true prior probability of rewards. Thus, larger values
of z correspond to higher-than-chance reward probabilities,
while lower values correspond to lower-than-chance reward
probabilities.

The latent variable z thus becomes the target of the Gaus-
sian process posterior predictive distribution, computed for
some location x˚ P X and conditioned on the past set of
observations Dk “ tXk,rku:

ppr˚ “ 1|Dkq “

ż

ppr˚ “ 1|z˚qppz˚|Dkqdz˚ (5)

This exact integral in Eq. 5 is analytically intractable, but (i)
assuming ppz˚|Dkq is Gaussian distributed (using the Laplace
approximation67; see below) and (ii) approximating ppr˚ “
1|z˚q “ Spz˚q with the inverse probit function79, 80 Φpz˚q, we
obtain a tractable approximation.

We start by defining a posterior on the latent variable z˚
corresponding to some unobserved block x˚:

ppz˚|Dkq “

ż

ppz˚|zkqppzk|Dkqdzk (6)

The first term ppz˚|zkq is a Gaussian distribution that can be
obtained using the standard GP posterior predictive distribu-
tion67, while ppzk|Dkq is intractable. However, the Laplace
approximation allows us to approximate the latter term using
a Gaussian distribution:

ppzk|Dkq “N pzk|ẑk,pK`W`σ
2
z Iq´1q, (7)

where ẑk is the posterior mode, W is a diagonal matrix with
diagonal elements Spẑkqp1´ Spẑkqq, K is the kˆ k kernel
matrix evaluated at each pair of observed inputs (see Eq. 12),
σ2

ε is the noise variance, and I is the identity matrix. We
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set σ2
ε “ .0001 as in the environment generating process.The

posterior mode ẑ can be obtained iteratively:

znew
k “KzpI`Kzq

´1pr´Spẑq`Wẑkq (8)

where Kz “K`σ2
z I, ẑk is the current estimate of the posterior

mode, znew
k is the new estimate, and ẑk “ znew

k at convergence.
Eq. 6 can now be derived analytically as a Gaussian

ppz˚|Dkq «N pz˚|µz˚ ,σ
2
z˚
q, with mean and variance defined

as:

µz˚ “ kT
˚prk´Spẑkqq (9)

σ
2
z˚
“ kpx˚,x˚q´kT

˚pW
´1`K`σ

2
z Iq´1qk˚ (10)

where k˚ applies the kernel to the target x˚ and all previously
encountered observations k˚ “ rkpx1,x˚q, . . . ,kpxk,x˚qs.

Lastly, we use the inverse probit function Φpz˚q as a com-
mon method79, 80 for approximating the reward probability
as a function of the mean and variance estimates described
above:

ppr˚ “ 1|Dkq « Spµz˚p1`
πσ2

z˚

8
q´1{2q (11)

As a kernel function, we use the radial basis function kernel,
which specifies that the correlation between inputs decays
smoothly as a function of distance:

kpx,x1q “ exp
ˆ

´
||x´x1||2

2l2

˙

(12)

The degree of smoothness is controlled by the length scale
l, which we set to l “

?
48. Note that this is equivalent to

the l “ 4 used to generate the environments, but accounts for
the scaling of the coordinate system in the experiment, where
each block has an empty tile on each side.
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Supplementary Information for
Adaptive mechanisms of social and asocial learning in immer-
sive collective foraging
Charley M. Wu, Dominik Deffner, Benjamin Kahl, Björn Meder, Mark H. Ho, & Ralf H.J.M.
Kurvers

Supplementary Videos
Movie S1. Tutorial. The original German text has been translated to English for better interpretability. https://www.
youtube.com/watch?v=QksKYOoElxg

Movie S2. Bird’s eye recreation of a group round with smooth rewards. https://www.youtube.com/watch?v=
vUHaAhjfFVo

Movie S3. Screen capture of a group round with smooth rewards (corresponds to Supplementary Video 2). All in-game
text was originally in German for all experiments, but have been translated here to English for interpretability. https:
//www.youtube.com/watch?v=wyk7RbmHiok

Movie S4. Screen capture of a group round with random rewards. https://www.youtube.com/watch?v=
mWe4CeLWdpg

Movie S5. Automated transcription of visual field using Unity simulations. https://www.youtube.com/watch?v=
iSZ-ewpiZWI

Supplementary Methods

Rewards
Smooth environments resulted in higher absolute rewards in both solo (0.5 [0.4,0.5]) and group conditions (0.3 [0.3, 0.4];
Fig. S1a,c). Within smooth environments, participants performed better in solo than in group rounds (-0.1 [-0.2, -0.1]).
However, this effect of solo vs. group condition disappears when we control for faster reward depletion in groups (Fig S1b) by
computing normalized reward rate as rewardRate{expectedRewardRate (Fig. 2a), where expectedRewardRate
is the marginal probability that any of the remaining blocks contains a reward. Thus, reward structure is the key driver of
performance (Fig S1d).

Turning Angle
Using methods developed for studying foragers in naturalistic settings83, we computed the average turning angle between block
destruction events δ . To do so, we first computed the heading angle θ based on the arctan of the displacement ratio between
consecutive block destruction events k and k´1:

θk “ arctan
ˆ

yk´ yk´1

xk´ xk´1

˙

. (13)

We then compute the turning angle δ as the difference in heading angle, which is normalized to unit scale by dividing by π:

δk “
|θk´θk´1|

π
. (14)

In Figure S2b, we show how turning angle is influenced by whether or not the previous block yielded a reward. In general,
turning angles were larger in smooth environments (0.04 [0.02, 0.06]; see Fig. S2c). The successful acquisition of reward
resulted in larger angles in smooth (0.03 [0.02, 0.05]), but not random environments (-0.004 [-0.014, 0.007]). These results are
consistent with the normative outcomes, since a greater degree of success-dependent adaptivity of turning angles corresponded
to better performance in smooth but not random environments (i.e., more negative values in Fig. S4, corresponding to larger
turning angles following success).
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Social distance
We then computed the average pairwise distance between participants (Fig. 2c; Fig S5a). Solo rounds provide an asocial
baseline by accounting for the influence of reward structure, which we calculated by simulating as if participants were on the
same field.

Foraging rate
We additionally looked at participant foraging rates, defined as the number of destroyed blocks per second. This analysis
revealed greater selectivity in smooth environments, corresponding to a slower rate of blocks destroyed (-0.04, [-0.07, -0.02];
Fig. S5c-d). The selectivity of smooth environments was further amplified in group rounds (-0.03, [-0.06, -0.005]), where
participants did not only need to contend with the structure of the environment, but also the structure and dynamics of social
interactions.
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Figure S1. Reward. a) Smoothed curves showing the average rate of rewards over time as a Generalized Additive Model
(GAM). Ribbons indicate 95% CI. b) Expected reward rate over time (used to compute normalized reward rate; Fig. 2a),
showing the probability that a randomly sampled block (from those remaining) contains a reward. Each line shows the
aggregated mean, which only diminished in smooth environments (due to predictable rewards) and much faster in group rounds
(due to more participants foraging for the same finite number of rewards). c) Coefficient plot of a hierarchical Bayesian Poisson
regression showing (absolute) rate of rewards. Each dot is the posterior mean and error bars show the 95% CIs. d) When
running a regression on the normalized rewards, only the effect of smooth environments remains.
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blocks). Each dot is the posterior mean and error bars show the 95% CIs. b) Turning angle (Eq. 14) as a function of success.
Each dot is a group mean with error bars indicating the SEM. c) Coefficient plot of a hierarchical Bayesian regression on
turning angle.
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Figure S3. Adaptive foraging distance and performance. Adaptive foraging distance is the mean difference of foraging
distance (i.e., between consecutive blocks) after a failing to acquire a reward and after successfully acquiring a reward (larger
values indicate a decrease of foraging distance after success). Rewards are averaged across the four rounds of each condition.
Rewards were correlated to the adaptive distance in smooth (solo: rτ “ .20, pă .001, BF “ 32; group: rτ “ .18, p“ .003,
BF “ 9.9; Kendall’s tau) but not random environments (solo: rτ “´.00, p“ .993, BF “ .12; group: rτ “´.06, p“ .328,
BF “ .19). Each dot is a participant, while the lines and ribbons are a linear regression (˘ 95% CI). A single outlier in
smooth:solo was omitted from the linear regression line (around 10 on the x-axis), but not from the rank correlations.
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Figure S4. Adaptive turning angle and performance. Turning angle (Eq.14) is commonly used to measure foraging
trajectories in the context of area restricted search15, 83, where greater angles correspond to more local search. We measured the
mean difference of turning angles after a failing to acquire a reward vs. after successfully acquiring a reward (more negative
values indicate a larger increase of turning angle after success, i.e., more local search following success). Rewards are averaged
across the four rounds of each condition. Rewards were correlated to the adaptive turning angle in smooth (solo: rτ “´.14,
p“ .020, BF “ 1.8; group: rτ “´.18, p“ .003, BF “ 10) but not random environments (solo: rτ “´.08, p“ .176,
BF “ .30; group: rτ “ .01, p“ .892, BF “ .12). Each dot is a participant, while the lines and ribbons are a linear regression
(˘ 95% CI).
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together in smooth environments and solo conditions. In random environments, participants in groups avoided each other
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environments and marginally less in the group condition for random, but not smooth environments. c) Foraging rate (i.e., the
number of blocks destroyed per second) plotted as smooth conditional means. d) Regression coefficients. Participants had a
lower foraging rate in smooth than in random environments, which was further amplified in group rounds.
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in-degree decreased out-degree, with a reliably stronger negative effect in smooth environments.
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Figure S9. Relating leadership to visibility (VisNet) and proximity networks (ProximityNet). Each dot is a participant,
with the line (and ribbon) showing the mean (˘95% CI) of a mixed-effects regression, with the fixed effect reported above. For
interpretability, we compute leadership only from group rounds in smooth environments. a) Participants with a higher
leadership score were observed more (i.e., higher in-degree), and b) observed others less (i.e., lower out-degree). c) Leadership
score also predicted the difference between in-/out-degree, and d) high leadership score also predicted lower spatial centrality,
suggesting leaders were at the frontiers of the group.
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Figure S10. Consistency of visibility and proximity networks and their relationship to performance (in group
rounds). Each dot is a participant, with the line and ribbon showing a linear regression. a) Eigenvector centrality was
consistent across visibility and proximity networks. b) A player’s in-degree was unrelated to their average spatial distance to
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regression predicting the influence of social network statistics on reward (smooth rounds only).
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Figure S12. Weights for all models in group rounds. Symbols show the posterior mean and error bars the 95% HPDI.

Locality Block Visibility Reward Prediction Adapt. Locality

0 2 4 6 0.0 0.5 1.0 0.0 0.1 0.2 0.3 0.4 −0.75 −0.50 −0.25 0.00
Estimates

Environment

random

smooth

Model

ARS

Asocial

Model Weights (Solo rounds)

Figure S13. Weights for all models in solo rounds. Symbols show the posterior mean and error bars the 95% HPDI.
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Figure S15. Reward distributions used in the experiment. Black squares represent blocks containing a reward, while
white squares represent boxes containing no reward. Note that these plots omit the spacing between resource blocks in the
experiment for readability.

29/29


	References

