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ABSTRACT

Human cognition is distinguished by our ability to adapt to different environments and circumstances. Yet the mechanisms
driving adaptive behavior have predominantly been studied in separate asocial and social contexts, with an integrated
framework remaining elusive. Here, we use a collective foraging task in a virtual Minecraft environment to unify these two
fields, by leveraging automated transcriptions of visual field data combined with high-resolution spatial trajectories. Our
behavioral analyses capture both the structure and temporal dynamics of social interactions, which are then directly tested
using computational models sequentially predicting each foraging decision. These results reveal that individual performance
(rather than social cues) drives adaptation of asocial foraging strategies, while also modulating the influence and selectivity of
social learning. These findings not only unify theories across asocial and social domains, but also provide key insights into the
adaptability of human decision-making in complex and dynamic social landscapes.

Humans have a unique capacity for social learning that
differentiates us from other animals1, 2. We are remarkably
flexible in how we learn from others3–5, dynamically inte-
grating personal and social information6–8, and selectively
favoring social learning when our own capabilities seem lack-
ing9, 10. And while a number of recent studies have begun
to bridge individual and social decision-making7, 11–13, they
either assume fixed strategies or arbitrary mixtures of social
and asocial learning. Thus, we still know very little about
the mechanisms driving adaptation to different environments
and circumstances, allowing us to dynamically arbitrate and
integrate both asocial and social learning strategies14–16.

Historically, research on asocial and social learning has
progressed largely independently from one another. Theo-
ries of asocial learning typically assume that decision makers
operate alone in a vacuum17, 18, while theories of social learn-
ing19–21 often greatly simplify—or entirely omit—individual
learning mechanisms. Early work investigated the trade-off
between individual and social learning through the lens of the
producer vs. scrounger dilemma22–25, assuming either pure in-
dividual learning (i.e., producing) or pure social learning (i.e.,
scrounging)26. In this setting, scrounging comes at the cost of
reduced opportunities for producing, with any strategy having
frequency-dependent fitness, meaning one’s performance de-
pends on the ratio of strategies in one’s group. This dynamic is
illustrated in Roger’s Paradox27, where too many imitators in a
group leads to both lower individual and group fitness. While

theoretical models often show that an intermediate balance
of social and asocial learners leads to the best outcomes28, 29,
it is still largely unknown how people dynamically negotiate
this balance under realistic conditions and how they adapt
to different environmental contexts. For instance, whether
adaptation is driven by asocial or social cues, and whether
these mechanisms operate independently or interactively with
one another. Modeling dynamic strategy selection in social
contexts is particularly difficult, because the availability and
quality of social information constantly changes as result of
both individual decisions and group dynamics30. Thus, this
gap represents both theoretical and empirical challenges, re-
quiring new methods to capture the complex and dynamic
nature of human adaptability, which we seek to address in this
current study.

Here, we use a collective foraging task programmed in an
immersive Minecraft environment (Fig. 1a-d) to study how
people adapt their asocial and social learning strategies to dif-
ferent resource distributions (random vs. smooth; Fig. 1e) and
to different dynamic contexts (e.g., individual performance
and social observations of success). The virtual environment
imposes a limited field of view, creating a natural trade-off
between allocating visual attention towards individual search
or towards peers for social imitation. Using a novel method
for automating the transcription of visual field data (Fig. 1c;
see Methods), we can identify which participants and which
elements of the environment were visible at any point in time.



This allows us to dynamically integrate visual attention with
spatial trajectories and foraging decisions, providing a unified
framework for studying the drivers of adaptive behavior.

Adaptive mechanisms have been independently studied in
both asocial foraging and social learning, however the two
approaches have yet to be integrated in a single framework15.
In asocial foraging, area-restricted search31 (ARS) has been
used to describe an adaptive search strategy from species
as diverse as bacteria32 to humans33, where the locality of
search is modulated by foraging success: rich rewards drive
local search, while poor rewards promote increased search dis-
tances. Although ARS is able to account for highly adaptive
search patterns, it has yet to be integrated with social learn-
ing15 or other asocial mechanisms of predictive reward gener-
alization34. Adaptive mechanisms have also been proposed
in social settings, based on context-dependent strategies that
compare the quality of individual vs. social information4, 9, 10.
Enquist et al.4 proposed two adaptive strategies: a critical
social learner that first tries social learning, but switches to
individual learning if social learning proves unsatisfactory,
and a conditional social learner, that conversely tries individ-
ual learning first, but switches to social learning if necessary.
While more flexible than strategies with a fixed level of so-
cial learning27, these approaches still lack an account of the
selectivity of social learning with respect to whom to learn
from5, 35 and have yet to be integrated with asocial foraging15

and reward prediction mechanisms36. Here, we bridge this
gap through integrative behavioral and model-based analyses.

Goals and scope
By combining visual field analysis with high-resolution spatial
trajectories, we provide new perspectives about how asocial
and social learning mechanisms complement one another in
a dynamic and integrative fashion. Our results show that
people dynamically adapt asocial and social learning mech-
anisms to both the environment and individual performance,
specialize their social attention patterns, and selectively direct
social learning towards successful individuals (Fig. 2). Our
behavioral analyses capture both the structure and temporal
dynamics of social interactions (Fig. 2-3), which are then
directly tested using computational models sequentially pre-
dicting each foraging decision (Fig. 4). Our winning model
integrates adaptive mechanisms of asocial and social learning
under a unified framework, revealing that individual success
(rather than social factors) drives changes in asocial foraging
patterns and increases both the influence and selectivity of
social learning.

Results
Participants (n“ 128) foraged for hidden rewards either alone
or in groups of four (solo vs. group; within-subject) in a vir-
tual environment with 20ˆ20 resource blocks (Fig. 1a-d). We
manipulated the reward distribution (random vs. smooth) to
modify the value of social learning (Fig. 1e). Smooth envi-
ronments had clustered rewards, making social observations

of successful individuals (visible as a blue splash; Fig. 1b)
predictive of other rewards nearby. In contrast, random envi-
ronments offered unpredictable rewards providing no benefits
for social learning. Agent-based simulations (see Methods)
confirm this intuition, with asocial learners dominating in
random environments, whereas selective, success-biased so-
cial learners performed best in smooth environments (Fig. 1f).
Thus, peers can be valuable sources of social information
(in smooth environments) but also competitors for the same
limited resources3, 37 (Fig. S1), creating similar real-world
dynamics as developing marketplace innovations or engaging
in scientific research38.

We start by exploring the influence of the environment and
social information on behavioral patterns (Fig. 2a-c). Yet,
only by analyzing the effects of network structure (Fig. 2d-f)
and the temporal dynamics of social interactions (Fig. 2g-i)
are we able to reveal the drivers of adaptive asocial and social
learning. Next, we analyze social influence events (“pulls”)
to ground our analyses in concrete leader-follower dynamics
(Fig. 3). Finally, we use computational models predicting
sequential foraging decisions to directly test for different com-
binations of adaptive individual and social learning mecha-
nisms (Fig. 4), integrating the rich spatial and visual dynamics
of the task. All results are compared to an asocial baseline,
allowing us to specify which mechanisms are uniquely social
phenomena.

Behavioral results
To compare solo and group conditions, we first computed
the normalized reward rate (dividing reward rate by expected
reward probability of remaining blocks; Fig. 2a) in order to
control for faster reward depletion with more people searching
for the same number of finite rewards (see Fig. S1). Using
a hierarchical Bayesian regression (see Methods), we find
that participants acquired greater rewards in smooth environ-
ments (posterior mean: 0.22, 95% Highest Density Interval:
[0.19, 0.24]), with no influence of social condition (0.002
[-0.02, 0.02]) nor interaction between condition and environ-
ment (-0.02 [-0.05, 0.01]). Thus, both individuals and groups
achieved higher foraging success in smooth environments.

We then computed the average pairwise distance between
participants across conditions (Fig 2b). In solo rounds, the
four participants foraged on separate but identical fields, al-
lowing us to calculate pairwise distances “as-if” they were on
the same field. This analysis revealed closer foraging proxim-
ity in smooth than in random environments (-0.6 [-0.8,-0.4];
Fig. S2a). Comparing group to solo rounds, participants so-
cially distanced themselves in groups by actively avoiding
each other in random environments (0.3 [0.1, 0.5]), but not
in smooth environments (0.004 [-0.2,0.2]). While there was
no aggregate social distancing effect in smooth environments,
this does not negate the role of context-dependent changes in
social distance, as we show below.

Lastly, we used visual field transcription (see Methods)
to measure social visibility as the average number of visi-
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Figure 1. Collective foraging task implemented in the Minecraft game engine. (a) Participants foraged for hidden
rewards in a field with 20x20 resource blocks. Each round took 120 seconds, with players starting from random locations
(crosses) and gaze directions (arrows). (b) Screenshot from a player’s perspective. Rewards (blue splash) are visible to other
players, providing relevant social information for predicting nearby rewards in smooth—but not random—environments (Panel
e). (c) Automated transcription of each player’s field of view (FOV) used in visibility and model-based analyses (see Methods).
(d) Participants learned about the task in an interactive tutorial (Supplementary Video 1) before completing two practice rounds.
The main experiment consisted of 16 rounds (counterbalanced order), manipulated across condition (solo vs. group) and reward
structure (random vs. smooth) with four consecutive rounds of the same type (Supplementary Videos 2-4). (e) Random
environments had uniformly sampled rewards, while smooth environments had spatially clustered rewards. Each black pixel
indicates a reward from a representative sample, with both environments having the same base rate pprewardq “ .25. The
mapping to pumpkins and watermelons were counterbalanced between sessions. (f) Agent-based simulations (see Methods)
show a benefit for success-biased social learning over asocial learning in smooth, but not random environments, whereas
unbiased social learning performs poorly in both.

ble peers (or observers, equivalently) at a given time point
(Fig. 2c), again treating solo rounds “as-if” they were on the
same field. Participants observed one another more in smooth
environments (0.01 [0.001, 0.02]; Fig. S2b), but with no reli-
able difference between group and solo conditions (-0.0001
[-0.01, 0.01]). In random environments however, participants
observed each other less in group vs. solo rounds (-0.01 [-0.02,
-0.00005]). Thus, participants actively reduced social attention
in random environments (compared to the asocial baseline).
Note that at this aggregate level, inbound and outbound so-
cial visibility are equivalent, masking individual differences
and context-dependent adaptation. We now turn to network
analyses to provide a better understanding of the structure and
asymmetries of social interactions.

Proximity and visibility networks
Next, we performed social network analyses on spatial and
visual interactions (Fig. 2d). Proximity networks describe
each participant as a node with undirected edges weighted by
the average proximity (i.e., inverse distance) between play-

ers. Visibility networks were constructed similarly, but with
directed edges weighted proportional to the duration of time
each target player was visible to another player. The same
analyses were also applied to solo rounds “as-if” participants
had been on the same field.

We first used the proximity network to compute the Eigen-
vector centrality for each participant, providing a holistic mea-
sure of the influence each node exerts on the network. Higher
centrality corresponds to participants who maintain close prox-
imity to others, especially to those with high proximity scores
themselves. Whereas high centrality tended to correspond to
low rewards in random environments (group: -7.6 [-16.6,0.6];
solo: -7.6 [-16.1,0.8]; all slopes overlap with 0), we found a
robust inversion in smooth environments, where centrality pre-
dicted higher rewards in group rounds (7.9 [1.6,14.0]; Fig. 2e).
This effect disappeared in the asocial baseline (2.6 [-5.6,10.1]),
suggesting that the benefits of spatial centrality were due to
social dynamics. However, it is unclear whether being central
facilitated better performance (via access to social informa-
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Figure 2. Behavioral results. (a-c) Influence of the environment (random vs. smooth) and condition (group vs. solo) on
reward rate, spatial distance, and social visibility, with lines showing group-level means and ribbons indicating the 95% CI.
Panel a reports normalized reward rate to control for reward depletion (see Fig. S1) and uses a generalized additive model
(GAM) for smoothing of binary data. Panels b-c show the raw data (see Fig. S2 for regression results), with the inset in panel c
showing the raw data marginalized over time. (d-f) Network analyses. Panel d shows examples of proximity and visibility
networks. Panel e shows average reward as a function of Eigenvector centrality computed on the proximity network. Each dot
represents one participant; lines and ribbons show the fixed effect of a hierarchical Bayesian regression (reported above; group
rounds in bold). Reliable effects (not overlapping with zero) are underlined. Panel f shows the correspondence between in- and
out-degree of the visibility network. Each dot represents one participant; the regression line is the fixed effect of a hierarchical
Bayesian regression (Fig. S3). (g-i) Temporal dynamics of reward rate and proximity/visibility in group rounds (see Fig. S4 for
comparison to solo rounds), where the y-axis shows the sign and strength of the correlation (after chance correction). Bold
lines indicate significant clusters that survived a permutation analysis. Effects with negative offsets indicate that reward predicts
future proximity/visibility, while effects with positive offsets indicate that proximity/visibility predicts future rewards.

tion) or if centrality resulted from better performance (via
effective success-biased imitation), motivating the need for
dynamic analyses (see below).

Next, we examined the relationship between in- and out-
degree in the visibility network. In-degree is the sum of all
inbound edge weights, where being observed by more peers
and for longer durations both contribute to larger in-degrees.
Similarly, higher out-degree corresponds to observing other
peers with longer durations. This analysis revealed an asym-

metry in social attention, with a general inverse relationship
between in- and out-degree (Fig. 2f). Whereas this asymmetry
was also present in random and solo rounds, it was markedly
stronger when combining group rounds and smooth environ-
ments (group+smooth interaction: -0.49 [-0.89, -0.08]). This
suggests an increased specialization of social learning strate-
gies and asymmetry of social attention in settings where social
information was useful. Thus, our network analyses provide
insights into asymmetric patterns that could not be detected
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at the aggregate-level (Fig. 2c). We now analyze temporal
dynamics to better understand how social interactions change
over time and in response to different contextual factors.

Temporal dynamics
To analyze the dynamics of social interactions, we searched
for temporally predictive clusters relating individual reward
to our high-resolution spatial-visual data (Fig. 2g-i; see Meth-
ods). More precisely, we computed correlations between
time-series at different temporal offsets (with multiple forms
of chance correction), where significant clusters (bold lines in
Fig. 2g-i) at negative offsets indicate that individual reward
predicts future proximity/visibility, while positive offsets indi-
cate that proximity/visibility predicts future rewards.

First, the dynamics of individual reward (i.e., foraging suc-
cess) and spatial proximity to other players revealed a pattern
of performance-adaptive spatial cycling in smooth (but not
random) environments (Fig. 2g). The negative correlation
at offset -20s to -9s (bold line) indicates that poor rewards
predicted increased future proximity (i.e., reduced social dis-
tance), whereas high rewards predicted decreased proximity.
Subsequently, this creates a cyclical pattern, where the posi-
tive correlation at offset 2s to 19s indicates that high spatial
proximity predicts high future rewards. Crucially, this pat-
tern is distinct from smooth solo rounds (unimodal positive
correlations centered at 0s; see Fig. S4), where we computed
the same analysis “as-if” participants were on the same field,
allowing us to rule out the role of the environment. Thus,
participants closed their social distance when unsuccessful,
which then translated into higher future rewards. In turn,
higher reward rate predicted reduced proximity, creating a
cyclical pattern that was unique to the group condition in
smooth environments.

Next, we looked at the dynamics of reward and visual field
data, where we analyzed the number of visible peers (out-
bound social attention towards others; Fig. 2h) and the num-
ber of observers (inbound social attention; Fig. 2i) at every
timepoint. Starting with outbound visibility of peers (Fig. 2h),
we found evidence for adaptive social attention. Focusing on
smooth environments, a negative correlation at offset -2.3s to
-1.3s indicates that low reward predicted seeing more peers
in the immediate future, while high rewards predicted less
visual attention towards others. This indicates adaptive so-
cial learning, where poor individual outcomes promote the
acquisition of social information. This effect is reversed in
the asocial baseline (Fig. S4), providing evidence that it is a
distinctly social phenomenon. We also found several negative
correlation clusters at positive offsets for both environments,
indicating that the opportunity costs for social information
acquisition led to lower future rewards. These opportunity
cost clusters were different but also present in solo rounds
(Fig. S4), suggesting some generic influence of the task struc-
ture (i.e., reduced visibility when destroying a block).

Lastly, the dynamics of reward and inbound visibility (num-
ber of observers) indicate success-biased selectivity, where
participants who acquired higher rewards were the target of so-

cial attention, both in the past and long into the future (Fig. 2i).
In smooth environments, the positive correlation at offset -
2.2s to -1.0s indicates that higher rewards predicted more
future observers within a short time period, which was absent
in random environments and inverted in the asocial baseline
(Fig. S4). The strong dip around offset = 0s is due to the visual
dynamics of the task, since the splash animation temporarily
obscured the avatar when acquiring a reward. However, more
notably, we observed two clusters with positive correlations in
smooth environments (1.0s to 3.0s and 3.7s to 13.6s), which
were again absent in random environments and inverted in the
asocial baseline (Fig. S4). Thus, participants were not only
selective in copying individuals who had been successful in
the past, they were also able to identify who would be suc-
cessful in the future (due to the clustered rewards in smooth
environments).

In sum, these temporal dynamics reveal how individual
performance is the key driver of adaptive mechanisms, driving
changes in social distance (Fig. 2g) and social attention—both
when (Fig. 2h) and towards whom (Fig. 2i) it is directed. We
next relate these social attention processes to social influence
events characterized by leader-follower dynamics.

Social influence and leadership
Inspired by methods used to study collective decision-making
in wild baboons39, we analyzed the frequency of “pull” events
that capture leader-follower dynamics (see Methods). Each
candidate event was selected from min-max-min sequences
in the pairwise distance between players (Fig. 3a) and then
filtered by a number of criteria including strength (change
in distance relative to absolute distance) and disparity (one
player moves more than the other). After filtering, we detected
a total of 537 pull events (see Fig. 3a for an example), where
in each event, one player is identified as a leader (moved more
during rt1, t2s) and the other as a follower (moved more during
rt2, t3s).

We analyzed both solo and group rounds, with solo rounds
providing a benchmark for the sensitivity of these analyses by
accounting for the influence of the reward structure (Fig. 3b).
While random environments saw a reduction in pull events
from solo to group rounds (hierarchical Poisson regression:
-0.7 [-1.2, -0.1]), smooth environments saw a large increase in
pull events from solo to group rounds (1.4 [0.8, 2.0]). These
results were robust to different filter thresholds (Fig. S5) and
suggest participants not only adapted their degree of social
attention (Fig. 2f,h) but also their susceptibility to social influ-
ence depending on the relevance of social learning: following
others when adaptive (smooth), and actively avoiding others
when maladaptive (random).

Next, we computed a leadership index for each participant
based on their frequency of being a leader vs. a follower:
nleader´ nfollower, using only smooth group rounds for inter-
pretability. Participants with a high leadership index were
observed more (i.e., higher in-degree) and observed others
less (i.e., lower out-degree), indicating a high correspondence
between our analysis of these non-overlapping aspects of the

5/26



a
t1 t2 t3

10
20
30
40
50

0 25 50 75 100 125
Time (s)

D
ya

di
c 

D
is

ta
nc

e

t1

t2t3

t1

t2

t3

0.0

0.5

1.0

1.5

solo group

Pu
lls

 p
er

 R
ou

nd
  Environment

random

smooth

b

0

5

10

15

−5 0 5
Leadership

Av
g.

 R
ew

ar
d

c

0.4
0.6
0.8
1.0
1.2

Fo
llow

er

Le
ad

er

R
ew

ar
ds

 D
ur

in
g 

Pu
lld

3

Block
Reward

Leader
Follower

0.1 [-0.5, 0.7]0.1 [-0.2, 0.4]

0.6 [0.3, 0.9]

Example of “Pull” Event

Figure 3. Social influence. (a) Example of a pull event,
selected from min-max-min sequences in dyadic distance and
filtered by a number of criteria (see Methods). The
trajectories at the bottom are labeled with the three time
points that define a pull, and show the state of the
environment at time t3. Note that t2 for the leader largely
overlaps with t3. (b) The average number of pull events per
round (˘95% CI). We performed the same analysis on solo
rounds “as-if” participants were on the same field to provide
an asocial baseline. (c) While leadership (nleader´nfollower)
did not predict performance, (d) leaders had higher
instantaneous rewards during pull events.

data (i.e., visual field data vs. spatial trajectories; see Fig. S6).
Yet neither leadership (Fig. 3c) nor in/out-degree predicted
performance (Fig. S7f). However, when we focused on the
instantaneous reward rate during a pull event (Fig. 3d), we
found that leaders received more rewards than followers (0.6
[0.3,0.9]). Thus, social influence appears to be modulated by
success bias, although we find no long-term benefits of social
attention or leadership at the behavioral level, motivating the
need for more precise computational modeling (see below).

Behavioral summary
Overall, social learning was highly adaptive to the environ-
ment and depending on individual performance, specialized
with asymmetry of social attention, and selectively directed to-
wards successful individuals and with low out-degree. These
behavioral results provide a lens into the dynamics of how
asocial and social learning interact and feedback onto each
other. However, they only indirectly speak to the individual-
level cognitive processes that drive decision making in our
experiment. Therefore, we next turn to computational mod-
els integrating different combinations of asocial and social
learning mechanisms to predict individual foraging decisions.

Computational modeling of choices
We use a computational modeling framework (Fig. 4a) to
sequentially predict which block participants will destroy next:

PpChoicek`1q9exppfk ¨wq (1)

Predictions are modeled as a softmax distribution over a linear
combination of block features f and weights w, where we
use the state of the world when the k-th block is destroyed in
order to predict the k`1-th block. Block features f capture
hypotheses about individual and social learning mechanisms
(see below), while weights w are estimated using hierarchi-
cal Bayesian methods, controlling for individual and group
variability as random effects (see Methods).

Asocial features. We first used a set of asocial features to
capture physical constraints of the task and individual learning
through reward prediction (Fig. 4a; see Methods). Locality
is the inverse distance to the player at time k, reflecting a ten-
dency to forage locally. Block Visibility captures which blocks
are within the player’s field of view at time k, and is set to 1 if
visible and 0 if not. Reward Prediction uses Gaussian Process
regression as a cognitive model of asocial reward generaliza-
tion in structured environments34, 36. Since each block can
only be destroyed once in each round, reward prediction relies
on value function approximation, as a common form of gener-
alization in reinforcement learning18, where past observations
are used to infer a value function over the search space. Here,
we implement this as a binary classification problem, where
based on the player’s reward history (until time k), we predict
the probability of each remaining block containing a reward
as a logistic sigmoid of an inferred latent variable z (Fig. 4a
Reward Prediction panel), with higher values corresponding
to higher probability of reward (see Methods).

Social features. We then incorporate social features based
on proximity to different subsets of players. Successful Prox-
imity is computed using players who were visible and were
observed acquiring a reward (i.e., visible splash) in the span
of k´ 1 to k (using visual field transcription). We used the
last observed location of each player to compute proximity
(inverse distance), and use the centroid if there were multiple
successful players. Unsuccessful Proximity is calculated the
same way, but for visible players who were not observed ac-
quiring a reward. In separate models, we also tested Social
Proximity to all players (irrespective of success) and Player-
specific Proximity, with unique weights for each target player
(see Methods).

Model comparison
We compared a series of models, each using a different subset
of features. The models fall under one of two classes: static
models in which the weights remain constant over a round
(i.e,. fixed strategy), and dynamic models in which the weights
can change (Fig. 4a bottom left) as a function of the elapsed
time since the last individual or socially observed reward
(depending on the model):

w̃“ w`α ¨∆t (2)
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In dynamic models, the weight estimate w acts as an intercept,
while α captures the degree of adaptivity as a slope. Since we
first normalize ∆t, weight estimates are comparable between
static and dynamic models. Model comparison is performed
separately for group and solo rounds, where we use Bayesian
model selection40 to compute the probability of the best model
(i.e., protected exceedance probability; Fig. 4b) and also report
individual WAICs relative to the best model (Fig. 4c) for more
fine-grained analysis.

Our static models include 1) an Asocial model using only
asocial features, 2) an Unbiased model that adds undiffer-
entiated Social Proximity across all players as a naïve form
of social imitation, 3) a Success-biased model using sepa-
rate weights for Successful vs. Unsuccessful players, and
4) a Player-specific model with separate proximity weights
for each player. Of these models, the Success-biased model
performed best in group rounds (Fig. 4c).

Our dynamic models are inspired by influential theories
of adaptivity in asocial and social foraging. 5) ARS is based
on past work using area-restricted search15, 31, and uses only
asocial features, but with the locality weight changing as a
function of time since the last individual reward. This cor-
responds to the common finding that search distance adapts
to foraging success38, and was the best model in solo rounds
and the second best in group rounds (Fig. 4b-c). We also
developed two adaptive social learning models inspired by
Enquist et al.4, both based on our success-biased model. 6)
The Critical learner adapts the reward prediction weight as a
function of time since the last socially observed reward, while
7) the Conditional learner adapts both the successful and un-
successful proximity weights as a function of time since the
last individual reward. Thus, the critical learner adapts indi-
vidual learning as a function of social learning success, while
the conditional learner adapts social learning as a function of
individual success, with the latter performing better (Fig. 4c).
We then combined ARS with the Conditional learner to create
8) an ARS+Cond hybrid, where individual performance drives
adaptivity of both asocial (i.e., locality weight) and social
(i.e., success-biased imitation) mechanisms. This ARS+Cond
model vastly outperformed all other models in group rounds
(ppbestModelq ą .999; Fig. 4b) and was better than the sum
of its parts (i.e., ARS or Conditional learning alone; Fig. 4c).

Model weights
We focus on interpreting the weights for the best models
in each condition (group: ARS+Cond; solo: ARS), but all
models had similar weights for shared features (Figs. S9-S10).

Locality and Block Visibility influenced choices in all con-
ditions, and were typically stronger in random than in smooth
environments (i.e., in the absence of reward-predictive cues).
The one exception is Locality in solo rounds, with partic-
ipants foraging more locally in smooth environments (0.9
[0.8, 0.9]). Reward Prediction weights were reliably strong
in smooth environments (0.41 [0.38, 0.45]; no difference be-
tween group-solo: 0.02 [-0.02, 0.06]), but were null (solo:
0.02 [-0.01, 0.04]) or negligible (group: 0.04 [0.01, 0.07]) in

random environments. Thus, participants adapted individual
reward prediction based on the environment, and this mecha-
nism was unaffected by the integration of social information.
We also found adaptation in locality weights in all conditions
(i.e. ARS), with stronger adaptivity in smooth environments
(group:-0.91 [-1.05, -0.77]; solo: -0.68 [-0.76, -0.60]) and in
the group condition (-0.56 [-0.87, -0.23]). The negative sign
corresponds to a reduction of locality as the participant experi-
enced longer durations without individual rewards, consistent
with past models of asocial foraging15. Our results expand on
these previous findings, by showing that adaptation of local
search increases (rather than diminishes) in social settings.

Social feature weights (ARS+Cond only) show that par-
ticipants were strongly influenced by successful players in
smooth environments (1.0 [0.8, 1.2]), and substantially less
in random environments (smooth - random: 0.7 [0.5, 0.9]).
However, even in random environments the effect was reli-
ably different from chance (0.29 [0.07, 0.53]), suggesting a
persistence of success-biased imitation even in environments
where social learning was irrelevant. In contrast, we found
no effect of unsuccessful players in neither smooth (0.004
[-0.14, 0.15]) nor random environments (0.10 [-0.07, 0.25]).
We also only observe adaptivity in the successful proximity
weights for smooth (0.4 [0.2, 0.5]) but not random environ-
ments (0.10 [-0.07, 0.25]). Thus, participants increased their
reliance on social information as they experienced longer pe-
riods without individual reward, with increased selectivity
towards successful players.

Altogether, our modeling framework allows us to unify the-
ories of asocial and social adaptation from past literature4, 15,
made possible by our unique combination of visual and spa-
tial data. Here, we show that these adapative mechanisms are
driven by individual performance, and themselves adapt to
the context of different reward environments. Furthermore,
individual weight and adaptability estimates can also be re-
lated to a number of behavioral signatures (Fig. S11-S13),
with greater adaptibility of locality (more negative estimates)
and successful proximity weights (more positive) predicting
performance, spatial centrality, and visual attention towards
peers.

Discussion
Collective foraging is a common metaphor for human so-
cial learning38, 41, 42. With similar dynamics as marketplace
innovation or scientific research, peers can be both useful
sources of social information, but also competitors for the
same limited resources. Here, we used an immersive virtual
environment (Fig. 1), where each individual’s limited field
of view imposes a trade-off between allocating attention to
individual or social learning, while spatial proximity to oth-
ers directly shapes opportunities (and also costs) for social
interactions. With unprecedented access to visual field data
(Fig. 1c) and spatial trajectories, our analyses provide unique
insights into the structural and temporal dynamics of social
interactions, where we study how people adapt to both differ-
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Figure 4. Computational model. (a) Left: Model illustration focusing on the player highlighted in the red dashed line.
Right: Different models incorporate different sets of features (see text for details), where we illustrate the five features of the
winning ARS+Cond model. Increasingly yellow colors correspond to higher feature values, with model predictions (bottom
right) shown using the posterior mean of population-level weight estimates, with the red cross indicating the actual choice.
ARS+Cond is a dynamic model, where locality and successful/unsuccessful proximity weights (bottom left) change as a
function of time since the last individual reward. (b) Model comparison using protected exceedance probability40 to describe
the posterior probability of the best model. (c) Individual model fits showing relative WAICs to the winning model (in each
condition), showing the group means (dot) and 95% CIs (error bars). (d) Population-level weight estimates of the best models
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vertical dashed line at 0.

ent reward environments (smooth vs. random; Fig. 1e) and to
dynamically changing social environments.

Our results shed light on the adaptive mechanisms driving
collective human behavior, integrating theories from asocial
foraging15 with context-dependent4, 9, 10 and selective5, 43, 44

social learning. When rewards were smoothly clustered (of-
fering traction for social learning), participants specialized
more strongly with greater asymmetry of social attention
(Fig. 2f), adaptively sought out social information depend-
ing on individual performance (Fig. 2g-h), and selectively

directed their social learning towards successful individuals
(Fig. 2i). Participants were also more susceptible to measur-
able social influence events (“pulls”) in smooth environments
(Fig. 3b), which were selectively directed towards individ-
uals with higher instantaneous reward rates (Fig. 3d). Our
computational models (Fig. 4) combined spatial and visibility
data to account for both asocial and social learning mecha-
nisms, which dynamically adapt over time. Here, the winning
model combined area-restricted search15 with conditional so-
cial learning4 (ARS+Cond), where individual performance
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was the key factor driving adaptivity of both local foraging
and selective social learning (Fig. 4d). Individual estimates
of adaptive local search and success-biased imitation can also
be related to better performance, greater spatial centrality,
and visual attention towards peers (Fig. S11-S13). Overall,
this work integrates previously disparate theories of adaptive
mechanisms of asocial and social learning, with their interac-
tion revealing an amplification of adaptivity and selectivity.

Limitations and future directions
While substantially reduced, success-biased social learning
was also present in random environments (Fig. 4d). Thus, de-
spite resources being distributed randomly, participants were
still somewhat drawn to successful others, suggesting limi-
tations to the degree of human adaptability and a lingering
bias towards social learning. However, even though social
information provided no benefits in random environments, it
may still offer a computationally cheap tool for engaging in
exploration11 (away from one’s current location). Individual
exploration is associated with cognitive costs and can be im-
paired by imposing memory load45 or time pressure46. Thus,
social imitation may act as an “exploration device” at a re-
duced cognitive cost relative to individual exploration11, 47, 48.

The asymmetry of social attention (amplified in smooth
environments; Fig. 2f) may act as a safeguard against mal-
adaptive herding12, 49, where instead of copiers copying other
copiers, social learning is selectively directed towards individ-
ual learners (low out-degree) and is predictive of successful
individuals at long timescales in the future (Fig. 2i). In our
study, successful foraging outcomes were made salient by
a visual cue (i.e., splash), although people can also deploy
metacognitive strategies to infer latent performance or skill
from overt behavior5, 14, providing additional mechanisms for
guiding selective social learning. Future work can explore the
extent to which these mechanisms (together with our ability to
discount correlated social information50) may offer a degree
of natural protection against the spread of misinformation51

and the formation of echo chambers through homophilic so-
cial transmission52.

Future work may consider using a non-depleting reward
environment, where collective coordination can yield additive
benefits to individual search5, 53. Indeed, a better understand-
ing of our ability to cumulatively innovate upon previous solu-
tions over long multi-generational timescales has been a pow-
erful motivating force in social learning research2, 27, 54. Here,
we have focused on understanding the temporal dynamics of
social learning over short timescales, which produced novel
insights into the cognitive mechanisms supporting flexible
and adaptive social learning. However, a more complete un-
derstanding requires connecting social learning mechanisms
observed at short timescales to adaptive outcomes over long,
cultural timescales. Our work provides the foundations for
this endeavor, by providing new perspectives about the cog-
nitive mechanisms that make people such powerful social
learners in dynamic and more realistic contexts.

Conclusions
In conclusion, our study of collective foraging in an immer-
sive Minecraft environment integrated computer-transcribed
visual field data with high-resolution spatial trajectories to
provide a unified perspective on the adaptive mechanisms of
asocial and social learning. Ultimately, this work advances
our understanding of the cognitive mechanisms underlying
adaptive learning and decision making in social contexts, and
provides the foundation for future investigations in non-spatial
domains of social interactions.

Methods
Participants and design
Participants (n “ 128) were recruited from the Max Planck
Institute for Human Development (MPIB) recruitment pool
in Berlin (82 female; Mage “ 27.4, SDage “ 5.0). The study
was approved by the Institutional Review Board of the MPIB
(number: A 2019-05) and participants signed an informed
consent form prior to participation. Participants received
a base payment of e12 plus a bonus of e0.03 per reward,
spending approximately one hour and earning on average
e17.32 ˘ 1.02 (SD).

Participants completed the task in groups of four. After
an in-game tutorial (Supplementary Video 1) and two prac-
tice rounds (see below), participants completed 16 2-minute
rounds of the task. Using a within-subject design, we manipu-
lated the reward structure (random vs. smooth; Fig. S14) and
search condition (solo vs. group). The order of round types
was counterbalanced across groups, with four consecutive
rounds of the same type (Fig. 1d). The reward structure and
search condition for each round was announced prior to the
start of each round in an onscreen notification.

The reward structure of a given round was made salient by
mapping each reward structure to either pumpkin or water-
melon blocks (counterbalanced across groups). In both reward
structures, 25% of blocks contained rewards, but rewards were
either randomly or smoothly distributed. The smooth environ-
ments were generated by sampling from a Gaussian process55

prior, where we used a radial basis function kernel (Eq. 12)
with the lengthscale parameter set to 4 (similar to36). Sampled
reward functions were then binarized, such that the top quar-
tile (25%) of block locations were set to contain rewards. We
generated 20 environments for both smooth and random con-
ditions (Fig. S14), with each session (i.e., group) subsampling
1 (practice) + 8 (main task) = 9 environments of each class
with pseudorandom assignments that were pregenerated prior
to the experiment. In the tutorial (Fig. 1d), participants were
given verbal descriptions of each reward condition, saw two
fully revealed illustrations of each environment class from a
bird’s-eye perspective, and interactively destroyed a 3x3 patch
of both smooth and random environments (Supplementary
Video 1).

The search conditions were made salient by having par-
ticipants stand on a teleportation block either by themselves
(solo) or with the other three participants (group) in order to
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begin the round. In the solo condition, participants searched
on identical replications of the same environments but without
interacting with each other. In the group condition, partici-
pants searched on the same environment and could interact
with, compete against, and imitate one another.

Materials and procedure
The experiment was implemented as a computer-based exper-
iment, with each computer connected to a modified Minecraft
server (Java edition v.1.12.2). The task was originally de-
signed to also allow for data collection in VR using the Vive-
craft mod, which could be done seamlessly by having a par-
ticipant use a VR headset instead of a mouse and keyboard,
without any modifications to the experiment. However, pre-
liminary testing revealed that locomotion via teleportation
(the preferred method to avoid VR motion sickness) resulted
in less naturalistic spatial trajectories and also interfered with
the visual field analyses due to the field of view temporarily
fading to black during movement. In contrast, the computer-
based modality captured naturalistic trajectories in both space
and gaze direction.

In the experiment, the sound was turned off, participants
could not see each other’s screens, and task-irrelevant con-
trols (e.g., jumping, sprinting, inventory, etc...) were made
unavailable. The Minecraft world consists of “blocks” that
can be “mined” for resources by holding down the left mouse
button to hit them until they are destroyed. In the experi-
ment, participants controlled an avatar that moved through our
custom-made environment, defined as a flat field containing a
20x20 grid of 400 pumpkin or watermelon blocks (Fig. 1a)
with a two block space between each block. The field was
bounded by an impassable fence. See Supplementary Video
2 for a bird’s-eye illustration of a round, and Supplementary
Videos 3 and 4 for screen captures from group rounds on
smooth and random reward environments, respectively.

Each resource block (either watermelon or pumpkin) could
be foraged by continually hitting it for 2.25 seconds until it
was destroyed, yielding a binary outcome of either reward or
no reward. Rewards were indicated by a blue splash effect,
visible by other players from any position if it was in their
field of view. Only resource blocks could be destroyed in the
experiment and destroyed block were not renewed. Blocks
did not possess any visual features indicating whether or not
they contained a reward. However, rewards in smooth environ-
ments were predictable, since observing a reward predicted
other rewards nearby. Participants were individually incen-
tivized to collect as many rewards as possible, which were
translated into a bonus payment at the end of the experiment.
The cumulative number of rewards (reset after the practice
rounds) was shown at the bottom of the screen.

After receiving verbal instructions, participants completed
an in-game tutorial to familiarize themselves with the con-
trols, how to destroy blocks, the difference between smooth
and random reward distributions, and the overall task struc-
ture (Supplementary Video 1). They then completed one solo

practice round in a smooth environment and one solo prac-
tice round in a random environment. These were identical to
the solo condition of the main task, but performance in these
rounds did not contribute to a participant’s bonus payment.
Each round lasted 120 seconds, with the end of the round
corresponding to the sun setting below the horizon. This
served as an approximate in-game timer for each round, and
was communicated to participants in the tutorial. A 3-second
countdown timer was also shown onscreen. At the end of
the round, participants were given an onscreen announcement
indicating the number of rewards they had earned and noti-
fying them of the reward structure and search condition for
the next round. Participants were then teleported into a lobby
(separate lobbies for solo rounds or a communal one for group
rounds), and were required to all stand on a “teleportation”
block to indicate readiness for the subsequent round. Prior to
the start of a social round, participants all stood on a commu-
nal teleportation block, while prior to solo rounds, participants
each stood on separate teleportation blocks, in order to induce
the social or asocial context. Once all players were ready, a
3-second countdown was displayed and they were teleported
into a random position in the next environment with a random
orientation direction.

Data collection
Experimental data was collected using a custom data logging
module programmed in Java, which were separated into map
logs and player logs. Map logs recorded information about
each block destruction event, including a timestamp, player
identifier, block position, and the presence or absence of re-
ward. Player logs contained each player’s position in the
horizontal XZ-plane together with the XYZ components of
their gaze vector (i.e., where they were looking). Both logs
contained information sampled at Minecraft’s native 20 Hz
tick-rate (i.e., once every 0.05s), providing high-resolution
data about spatial trajectories and gaze directions.

Automated transcription of visual field data
We developed a custom tool built on the Unity game engine
(ver. 2019.3) for performing automated transcription of visual
field data (Fig. 1c). We first used data collected from the
experiments to simulate each round of the experiment from
each participant’s point of view. These simulations were then
used to automate the transcription of each participant’s field
of view (Supplementary Video 5).

Our Unity simulations assigned each entity in the exper-
iment (i.e., each block, player, and reward event) a unique
RGB value, which was drawn onto a render texture one tenth
the size of the player’s actual monitor (192x108 pixels as op-
posed to 1920x1080 pixels). Since the images were rendered
without any anti-aliasing or transparency through a simple,
unlit color shader, the RGB value of any drawn pixel could
be uniquely related with a lookup table to the corresponding
entity. We then simulated each round of all experiment data
from each player’s perspectives within the Unity game engine,
using the map logs and player logs, which allowed us to fully
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reconstruct the world state. Once all four player perspectives
were individually rendered, we could read out the pixels from
each player’s field of view, using the RGB colors of the simu-
lated pixels to determine whether an entity was visible at any
point in time (20 Hz resolution), and what proportion of the
screen it occupied.

In creating these simulations, a few approximations were re-
quired. In addition to the reduced resolution mentioned above,
player models were approximated by their directionally-
oriented bounding box and we ignored occlusion from the
heads up display and view-model (e.g., occlusion due to hand
position of the avatar). Additionally, some animations pro-
duced by the Minecraft game engine include inherent stochas-
tic processes that were approximated. Namely, the splash
particles used to indicate a reward event are generated in
Minecraft using a random process that spawns 300 particles at
predefined locations in a sphere around the player. Whilst the
starting locations are deterministic, small deviations in veloc-
ity and the lifetime of these particles are generated randomly.
Thus, we tuned the parameters of Unity’s particle system to
be as authentic as possible by comparing simulated splash
effects with video footage of splash effects generated by the
Minecraft game engine.

We used a similar procedure for the solo rounds to establish
an asocial baseline for our analyses. Whereas all four players
searched on different replications of the same field, we simu-
lated them “as if” they were on the same field. Again, a few
approximations were required. In these solo simulations, we
removed a block whenever any of the four players destroyed
it. Additionally, we generated a splash for each reward event,
meaning if multiple players foraged the same block in a round,
it would trigger a different splash event each time.

Agent-based simulations
We implemented agent-based simulations to understand how
the different reward environments (smooth vs. random re-
wards) interact with individual-level learning strategies (aso-
cial learning vs. unbiased imitation vs. biased imitation) in
determining foraging success (see Fig. 1f). The simulations
uses the same features as the computational model, but are
defined for a simplified version of the task, capturing the key
visual-spatial dynamics of collective decision-making.

More precisely, our simulations modeled the foraging task
as a discrete-time sequential game with partial observabil-
ity, which generalizes Markov decision processes to incor-
porate multiple agents, partial observability, and separate re-
wards56. Formally, a task is a tuple, xI,S,A,O,T,R,Oy: an
agent index set, I; a set of environment states correspond-
ing to configurations of agent locations/directions and avail-
able/destroyed blocks, S; a set of joint actions corresponding
to agents moving in cardinal directions, A“

Ś

iAi; a set of
joint observations, O“

Ś

iOi, where each Oi is a subset of
events viewed from agent i’s perspective (i.e., other agents’
locations, reward reveal events, and available blocks); a en-
vironment transition function, T : SˆAÑ S; a joint reward

function R : SˆAˆSÑR|I|; and a joint observation function,
O : AˆSÑO.

Agents are modeled as selecting a destination to navigate
to, navigating to that destination, and then destroying the
target block (requiring k “ 9 timesteps in the simulation;
approximately equivalent to the 2.25 seconds required to
destroy a block and the maximum movement speed of 4.3
blocks/second). Agent policies consist of a high-level con-
troller that transitions among different modes of behavior
n P tSelectDest, NavTopxq, and foragepkqu, where
x is a target destination that a low-level navigation con-
troller moves towards and k is a counter for the number of
timesteps left to complete the destruction of a block. When
in SelectDest, the controller samples a destination from
Pwpxq9exptfpxq ¨w}, where f : X Ñ RK returns a real-valued
feature vector (incorporating both asocial and social mecha-
nisms, the same as in the computational models; see below)
for each destination block, and w P RK are feature weights.

We considered populations of three types of agents. Asocial
agents used a combination of locality (distance from current
location), block visibility (using a 108.5-degree field of view
as in the experiment), and asocial reward learning (see the
subsection “Gaussian process for binary reward prediction”
below). Unbiased social agents added an additional feature
using the average proximity from observed social partners
since the last choice, while biased social agents used a simi-
lar social proximity feature, but computed only from social
partners that were observed acquiring a reward since the last
choice. All feature weights were arbitrarily set to 1. For each
of 20 random/smooth environments, we generated 100 simu-
lations for each agent type in groups of four agents (for a total
of 20ˆ2ˆ100ˆ3“ 12,000 simulations). Each simulation
was run for 400 timesteps. Figure 1f provides the results of
the simulations, showing the average total reward collected
by agents by environment type (smooth/random) and strategy
(asocial/unbiased social/biased social).

Hierarchical Bayesian regressions

Statistical analyses were conducted using hierarchical
Bayesian regressions to simultaneously model the effects of
the experimental manipulations (smooth vs. random and solo
vs. group), while controlling for random effects of partici-
pants and the group they were assigned to. All regression mod-
els used Hamiltonian Markov chain Monte Carlo (MCMC)
with a No-U-Turn sampler57 and were implemented using
brms58. For count-based variables (e.g., blocks destroyed or
pull events), we used Poisson regression, but report the un-
transformed regression coefficients for simplicity. All models
used generic, weakly informative priors „N p0,1q and all
fixed effects also had corresponding random effects follow-
ing a maximal random-effects procedure59. All models were
estimated over four chains of 4,000 iterations, with a burn-in
period of 1,000 samples.
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Temporal dynamics
Based on methods developed in Neuroscience60, the temporal
dynamic analyses (Fig. 2g-i and Fig. S4) use time-series data
from each participant in each round to discover temporal
structures in social interactions, where rewards predict future
spatial/visual patterns and where spatial/visual patterns predict
future rewards.

The time-series variables we used are reward (binary vec-
tor), spatial proximity (average inverse distance to all other
players), and both the number of visible peers and the num-
ber of observers (integer variables P [0,3]; acquired from the
automated transcription of visual field data) at every point in
time (20 Hz time resolution). For solo rounds, we computed
both spatial proximity and visibility “as-if” participants were
on the same field to provide an asocial baseline.

We then computed correlations between each pair of vari-
ables cor(V1,V2), where we iteratively time-lagged V2
from -20 to +20 seconds, with non-overlapping regions of
each time series omitted from the data. Each correlation was
then z-transformed and corrected for chance using a permuta-
tion baseline. This chance correction is based on iteratively
permuting the order of V2 and computing the correlation
cor(V1,V2_permuted) over 100 different permutations
(for each correlation). We then subtracted the z-transformed
mean of the permutation correlations from the target correla-
tion. These permutation corrected correlations are reported
as a population-level mean (˘95% CI) in Figure 2g-i and
Figure S4.

Lastly, to provide better interpretability of these results,
we used a maximum cluster mass statistic60 to discover tem-
porally continuous clusters of significance at the population
level. For each pair of variables rV 1,V 2s and within each
combination of condition (solo vs. group) and environment
(random vs. smooth), we used a cluster permutation test
to find a threshold for random clusters. This analysis used
10,000 permutations, where for each, we iterated over each
individual time series of z-transformed (and chance-corrected)
correlations, randomly flipping the sign at each time point.
We then used a single-sample t-test with α “ .05 to compute
which time points (at the population level) were significantly
different from 0. This provided a distribution of the duration
of temporally continuous clusters of significance in the ran-
domly permuted data. We then used the upper 95% CI of
this distribution as a minimum threshold for the actual data,
where we applied the same significance testing procedure, but
discarded all clusters shorter in duration than the permutation
threshold. The surviving clusters are illustrated with bold
lines in Figure 2g-i and Figure S4.

Social influence
We used methods developed to analyze the movement pat-
terns of geotracked baboons in the wild39 to measure social
influence. This allows us to detect discrete “pull” events over
arbitrary time scales, where the movement patterns of one
participant (leader) pull in another (follower) to imitate and

forage in the same vicinity (Fig. 3).
We first computed the pairwise distance between all par-

ticipants (Fig. 3a) and defined candidate pull events from
min-max-min sequences, where we used a noise threshold
of 1 block distance to determine what corresponds to mini-
mum and maximum distances. These candidate sequences
were then filtered based on strength, disparity, leadership, and
duration in order to be considered a successful pull.

Strength Si, j defines the absolute change in dyadic distance
relative to absolute distance:

Si, j “
|di, jpt2q´di, jpt1q||di, jpt3q´di, jpt2q|
pdi, jpt1q`di, jpt2qqpdi, jpt2q`di, jpt3qq

, (3)

where di, jptkq is the dyadic distance between participants i
and j at time k P r1,2,3s (corresponding to the timepoints of
the min-max-min sequence). We required pull events to have
a minimum strength of Si, j ą .1, such that they correspond
to meaningful changes in spatial proximity rather than minor
“jitters” at long distance.

Disparity δi, j defines the extent to which one participant
moves more than the other in each segment, relative to the
total distance moved by both participants:

δi, j “
|∆xipt1, t2q´∆x jpt1, t2q||∆xipt2, t3q´∆x jpt2, t3q|
p∆xipt1, t2q`∆x jpt1, t2qqp∆xipt2, t3q`∆x jpt2, t3qq

, (4)

where ∆xipt1, t2q is the displacement between t1 and t2. We
filtered pull events to have a minimum disparity of δi, j ą .1,
such that changes in spatial proximity were asymmetrically
driven by one of the interaction partners. Figure S5 shows that
our results are robust to changes in the disparity threshold.

Leadership is a simple binary filter requiring that the par-
ticipant who moved more in the first segment (t1 to t2) moved
less in the second segment (t2 to t3). We refer to the participant
who moved the most in the first segment maxaPpi, jq∆xapt1, t2q
as the leader and the participant who moved the most in the
second segment maxbPpi, jq∆xapt2, t3q as the follower. Thus,
successful pulls are defined as a ‰ b, where the leader and
follower are separate participants.

Duration was the final filter, where we required pulls to be
at least 3 seconds in duration (since it takes 2.25 seconds to
destroy a block). After all filters were applied, the average
pull duration was 13.1 seconds ˘ 0.09 (SEM).

Computational modeling
To better understand individual foraging decisions at a mecha-
nistic level, we developed a computational modeling frame-
work that sequentially predicts each block participants destroy
based on different combinations of asocial and social fea-
tures. We modeled the choice probabilities for each block
destruction using a linear combination of block features f and
regression weights w that represent the influence of each fea-
ture for participants’ block choices (Eq. 1). This was modeled
using a categorical likelihood function with Bk`1 possible
outcomes (i.e., the number of remaining blocks available for
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choice at time k`1), with a softmax link function. Different
models incorporate different sets of features in f, while some
dynamic models additionally adapt the weights of specific
features as a function of the elapsed time (at time k) since the
last individually acquired reward or the last socially observed
reward (using visual field analysis), depending on the model
(see main text).

For interpretability of weight estimates and to allow for
identical prior distributions, we z-standardized all block fea-
tures within each choice, with the exception of block visibility,
which was coded as a binary indicator. We also omitted the
first choice in each round, since most features need to be com-
puted with respect to some previous block destruction. Thus,
we only started modeling from the second choice in each
round, conditioned on the first choice. Furthermore, while all
asocial features were included as predictors for each choice,
the social features could be undefined for some choices if the
conditions were not met (e.g., no visible players, or no visible
and successful players). In these situations, the feature values
were effectively set to 0 for all blocks.

All model weights were estimated in a hierarchical
Bayesian framework with random effects accounting for dif-
ferences in the importance of (asocial and social) features
among individuals and experimental groups. The models
were fit using Stan as a Hamiltonian Monte Carlo engine
for Bayesian inference61, implemented in R v.4.0.3 through
cmdstanr version 0.3.0.9. We used within-chain paralleliza-
tion with reduce_sum to reduce model run times through
parallel evaluation of the likelihood.

To minimize the risk of overfitting the data, we used weakly
informative priors for all parameters. We used weakly infor-
mative normal priors centered on 0 for all weight parameters,
exponential priors for scale parameters and LKJ priors for
correlations matrices62. To optimize convergence, we imple-
mented the noncentered version of random effects using a
Cholesky decomposition of the correlation matrix63. Visual
inspection of traceplots and rank histograms64 suggested good
model convergence and no other pathological chain behaviors,
with convergence confirmed by the Gelman-Rubin criterion65

R̂ď 1.01 . All inferences about weight parameters are based
on several hundred effective samples from the posterior66. We
provide additional details about some model features below.

Block visibility
Since block visibility only captures a static representation of
which blocks were visible at time k, we computed it with per-
missive assumptions. Specifically, we assumed no object or
player occlusions (i.e., object permanence) and used only the
horizontal component of their gaze vector to avoid incorporat-
ing noise from vertical jitters. Visibility computations used the
true horizontal viewing angle of 108.5 degrees, corresponding
to the 16:9 aspect ratio monitors used in the experiment.

Gaussian process for binary reward prediction
Gaussian processes55 provide a Bayesian function learning
framework, which we use as a psychological model of reward

generalization for predicting search behavior36. Gaussian pro-
cesses are typically used to learn a function f : X Ñ Rn that
maps the input space X (i.e., the field of destructible blocks)
to real-valued scalar outputs, such as continuous reward val-
ues.

Here, we modify the Gaussian process framework to the bi-
nary classification case, where we want to make probabilistic
predictions about whether destroying some block x will yield
a reward ppr “ 1|xq. This can be described as a logistic sig-
moid function Sp¨q of some real-valued latent variable z, such
that ppr “ 1|zq “ Spzq “ 1

1`expp´zq . We set the prior mean

z0 “ logp .25
1´.25 q such that ppr “ 1|z0q “ 0.25, corresponding

to the true prior probability of rewards. Thus, larger values
of z correspond to higher-than-chance reward probabilities,
while lower values correspond to lower-than-chance reward
probabilities.

The latent variable z thus becomes the target of the Gaus-
sian process posterior predictive distribution, computed for
some location x˚ P X and conditioned on the past set of
observations Dk “ tXk,rku:

ppr˚ “ 1|Dkq “

ż

ppr˚ “ 1|z˚qppz˚|Dkqdz˚ (5)

This exact integral in Eq. 5 is analytically intractable, but (i)
assuming ppz˚|Dkq is Gaussian distributed (using the Laplace
approximation55; see below) and (ii) approximating ppr˚ “
1|z˚q “ Spz˚q with the inverse probit function67, 68 Φpz˚q, we
obtain a tractable approximation.

We start by defining a posterior on the latent variable z˚
corresponding to some unobserved block x˚:

ppz˚|Dkq “

ż

ppz˚|zkqppzk|Dkqdzk (6)

The first term ppz˚|zkq is a Gaussian distribution that can be
obtained using the standard GP posterior predictive distribu-
tion55, while ppzk|Dkq is intractable. However, the Laplace
approximation allows us to approximate the latter term using
a Gaussian distribution:

ppzk|Dkq “N pzk|ẑk,pK`W`σ
2
z Iq´1q, (7)

where ẑk is the posterior mode, W is a diagonal matrix with
diagonal elements Spẑkqp1´ Spẑkqq, K is the kˆ k kernel
matrix evaluated at each pair of observed inputs (see Eq. 12),
σ2

ε is the noise variance, and I is the identity matrix. We
set σ2

ε “ .0001 as in the environment generating process.The
posterior mode ẑ can be obtained iteratively:

znew
k “KzpI`Kzq

´1pr´Spẑq`Wẑkq (8)

where Kz “K`σ2
z I, ẑk is the current estimate of the posterior

mode, znew
k is the new estimate, and ẑk “ znew

k at convergence.
Eq. 6 can now be derived analytically as a Gaussian

ppz˚|Dkq «N pz˚|µz˚ ,σ
2
z˚
q, with mean and variance defined

as:
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µz˚ “ kT
˚prk´Spẑkqq (9)

σ
2
z˚
“ kpx˚,x˚q´kT

˚pW
´1`K`σ

2
z Iq´1qk˚ (10)

where k˚ applies the kernel to the target x˚ and all previously
encountered observations k˚ “ rkpx1,x˚q, . . . ,kpxk,x˚qs.

Lastly, we use the inverse probit function Φpz˚q as a com-
mon method67, 68 for approximating the reward probability
as a function of the mean and variance estimates described
above:

ppr˚ “ 1|Dkq « Spµz˚p1`
πσ2

z˚

8
q´1{2q (11)

As a kernel function, we use the radial basis function kernel,
which specifies that the correlation between inputs decays
smoothly as a function of distance:

kpx,x1q “ exp
ˆ

´
||x´x1||2

2l2

˙

(12)

The degree of smoothness is controlled by the length scale
l, which we set to l “

?
48. Note that this is equivalent to

the l “ 4 used to generate the environments, but accounts for
the scaling of the coordinate system in the experiment, where
each block has an empty tile on each side.
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Supplementary Information for
Visual-spatial dynamics drive adaptive social learning in im-
mersive environments
Charley M. Wu, Dominik Deffner, Benjamin Kahl, Björn Meder, Mark H. Ho, & Ralf H.J.M.
Kurvers

Supplementary Videos
Movie S1. Tutorial. The original German text has been translated to English for better interpretability. https://www.
youtube.com/watch?v=QksKYOoElxg

Movie S2. Bird’s eye recreation of a group round with smooth rewards. https://www.youtube.com/watch?v=
vUHaAhjfFVo

Movie S3. Screen capture of a group round with smooth rewards (corresponds to Supplementary Video 2). All in-game
text was originally in German for all experiments, but have been translated here to English for interpretability. https:
//www.youtube.com/watch?v=wyk7RbmHiok

Movie S4. Screen capture of a group round with random rewards. https://www.youtube.com/watch?v=
mWe4CeLWdpg

Movie S5. Automated transcription of visual field using Unity simulations. https://www.youtube.com/watch?v=
iSZ-ewpiZWI

Supplementary Results
Rewards, social distance and foraging rate
Smooth environments resulted in higher rewards in both solo (0.5 [0.4,0.5]) and group conditions (0.3 [0.3, 0.4]; Fig. S1a,c).
Within smooth environments, participants performed better in solo than in group rounds (-0.1 [-0.2, -0.1]). However, this
effect of solo vs. group condition disappears when we control for faster reward depletion in groups (Fig S1b) by comput-
ing normalized reward rate as rewardRate{expectedRewardRate (Fig. 2a), where expectedRewardRate is the
marginal probability that any of the remaining blocks contains a reward. Thus, reward structure is the key driver of performance
(Fig S1d).

We then computed the average pairwise distance between participants (Fig. 2b; Fig S2a). Solo rounds provide an asocial
baseline by accounting for the influence of reward structure, which we calculated by simulating as if participants were on the
same field.

We additionally looked at participant foraging rates, defined as the number of destroyed blocks per second. This analysis
revealed greater selectivity in smooth environments, corresponding to a slower rate of blocks destroyed (-0.04, [-0.07, -0.02];
Fig. S2c-d). The selectivity of smooth environments was further amplified in group rounds (-0.03, [-0.06, -0.005]), where
participants did not only need to contend with the structure of the environment, but also the structure and dynamics of social
interactions.

In sum, smooth environments increased reward rate (Fig. S1a), brought participants closer together (Fig. S2a), and slowed
the rate of foraging (Fig. S2c). Groups performed on par with solo rounds when controlling for depletion (Fig. S1d), avoided
each other in random environments (Fig. S2a), and foraged slower in smooth environments (Fig. S2c-d).
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Figure S1. Reward. a) Smoothed curves showing the average rate of rewards over time as a Generalized Additive Model
(GAM). Ribbons indicate 95% CI. b) Expected reward rate over time (used to compute normalized reward rate; Fig. 2a),
showing the probability that a randomly sampled block (from those remaining) contains a reward. Each line shows the
aggregated mean, which only diminished in smooth environments (due to predictable rewards) and much faster in group rounds
(due to more participants foraging for the same finite number of rewards). c) Coefficient plot of a hierarchical Bayesian Poisson
regression showing (un-normalized) rate of rewards. Each dot is the posterior mean and error bars show the 95% CIs. d) When
running a regression on the normalized rewards, only the effect of smooth environments remains.
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together in smooth environments and solo conditions. In random environments, participants in groups avoided each other
compared to the solo condition. b) Visibility regression coefficients. Participants observed each other more in smooth
environments, marginally less in the group condition for random, but not smooth environments. c) Foraging rate (i.e., the
number of blocks destroyed per second) plotted as smooth conditional means. d) Regression coefficients. Participants had a
lower foraging rate in smooth than in random environments, which was further amplified in group rounds.
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Figure S3. Relationships between environment, out-degree, in-degree, blocks destroyed and reward rate in groups.
a-b) In smooth environments, participants with a higher out-degree (i.e., observing other players) destroyed fewer blocks
(Poisson regression coefficients shown in panel b). c-d) This did not translate into an effect on the reward rate. e) Rank
ordering participants in each group according to their in- and out-degree showed a negative correlation between participants’ in-
and out-degree. f) Regression coefficients predicting out-degree. Smooth environments increased out-degree, while higher
in-degree decreased out-degree, with a reliably stronger negative effect in smooth environments.
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Figure S4. Temporal dynamics. Full set of temporal dynamic analyses, including solo rounds. Bold lines indicate
significant clusters that survived the permutation analysis (see Methods).
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Figure S6. Relating leadership to visibility (VisNet) and proximity networks (ProximityNet). Each dot is a participant,
with the line (and ribbon) showing the mean (˘95% CI) of a mixed-effects regression, with the fixed effect reported above. For
interpretability, we compute leadership only from group rounds in smooth environments. a) Participants with a higher
leadership score were observed more (i.e., higher in-degree), and b) observed others less (i.e., lower out-degree). c) Leadership
score also predicted the difference between in-/out-degree, and d) high leadership score also predicted lower spatial centrality,
suggesting leaders were at the frontiers of the group.
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Figure S7. Consistency of visibility and proximity networks and their relationship to performance (in group rounds).
Each dot is a participant, with the line and ribbon showing a linear regression. a) Eigenvector centrality was consistent across
visibility and proximity networks. b) A player’s in-degree was unrelated to their average spatial distance to other players in
smooth environments, and negatively correlated in random environments. c) Average distance to other players was always
negatively correlated to out-degree. d) Out-degree was positively correlated with centrality, with a stronger effect in smooth
environments. e) In-degree was negatively correlated with centrality in both environments. f) Bayesian mixed-effects
regression predicting the influence of social network statistics on reward (smooth rounds only).
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Figure S8. Histograms of elapsed time between previous individual/social reward events, computed at each block
destruction. These values are used in the adaptive models. Note that solo rounds don’t have access to social reward information.
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Figure S9. Weights for all models in group rounds. Symbols show the posterior mean and error bars the 95% HDI.
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Figure S11. Individual model and Avg. Score (group rounds).
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Figure S12. Individual model weights and spatial centrality (group rounds).
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Figure S13. Individual model weights and out-degree (group rounds).
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Figure S14. Reward distributions used in the experiment. Black squares represent blocks containing a reward, while
white squares represent boxes containing no reward. Note that these plots omit the spacing between resource blocks in the
experiment for readability.
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