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4Excellence Cluster: Science of Intelligence, Technical University Berlin, DE
5Institute for Mind, Brain and Behavior, Department of Psychology, Health and Medical University, Potsdam, DE
6Department of Computer Science, Princeton University, Princeton NJ
*These authors contributed equally to this work
+Corresponding author: charley.wu@uni-tuebingen.de

ABSTRACT

Humans are uniquely capable social learners. Our capacity to learn from others across short and long timescales is a driving
force behind the success of our species. Yet there are seemingly maladaptive patterns of human social learning, characterized
by both overreliance and underreliance on social information. Recent advances in animal research have incorporated rich
visual and spatial dynamics to study social learning in ecological contexts, showing how simple mechanisms can give rise
to intelligent group dynamics. However, similar techniques have yet to be translated into human research, which additionally
requires integrating the sophistication of human individual and social learning mechanisms. Thus, it is still largely unknown how
humans dynamically adapt social learning strategies to different environments and how group dynamics emerge under realistic
conditions. Here, we use a collective foraging experiment in an immersive Minecraft environment to provide unique insights into
how visual-spatial interactions give rise to adaptive, specialized, and selective social learning. Our analyses show how groups
adapt to the demands of the environment through specialization of learning strategies rather than homogeneity and through the
adaptive deployment of selective imitation rather than indiscriminate copying. We test these mechanisms using computational
modeling, providing a deeper understanding of the cognitive mechanisms that dynamically influence social decision-making in
ecological contexts. All results are compared against an asocial baseline, allowing us to specify specialization and selective
attention as uniquely social phenomena, which provide the adaptive foundations of human social learning.

Humans have a unique capacity for social learning that
differentiates us from other animals1, 2. We are remarkably
flexible in how we learn from others3–5, dynamically integrate
personal and social information6, 7, and selectively favor social
learning when our own capabilities seem lacking8, 9. Yet there
are seemingly maladaptive patterns of human social learn-
ing, characterized by overreliance on uninformed individuals,
leading to information cascades and herding behavior10, 11,
but also underreliance and inefficient use of beneficial social
information12. Recent advances in animal research have in-
corporated rich behavioral data from visual field analysis13,
spatial trajectories14, and network dynamics15 to show how
simple (and sometimes seemingly maladaptive) social learn-
ing mechanisms can give rise to intelligent behavior in dy-
namic and ecological environments. Yet similar approaches
have yet to be translated into human research, which addition-
ally requires incorporating the complexities of human learning
mechanisms (e.g., strategic exploration16 and model-based
social learning17, 18). Thus, a better understanding of human
social learning in dynamic and ecological contexts can reveal
the extent of our adaptivity and the specific mechanisms that
give rise to group dynamics.

Here, we use an immersive collective foraging task (Fig. 1a-
d) to study how people dynamically adapt their social learn-
ing strategies to different resource distributions (random vs.
smooth; Fig. 1e). The virtual environment imposes a limited
field of view, creating a natural trade-off between allocating
visual attention towards individual search or towards peers
for social imitation. We used a novel method for automating
the transcription of visual field data (Fig. 1c; see Methods)
in order to identify which participants and which elements of
the environment were visible at any point in time. Combining
visual field analysis with high-resolution spatial trajectories,
we show how people dynamically adapt their social learn-
ing strategies to both the environments and individual perfor-
mance, specialize their learning strategies within groups, and
selectively direct social learning towards successful individ-
uals (Fig. 2). Our behavioral analyses capture both the dy-
namics and structure of social interactions (Fig. 3), where we
directly tested different learning mechanisms using computa-
tional models predicting sequential foraging decisions (Fig. 4).
All results are compared to an asocial baseline, allowing us to
specify our findings as uniquely social phenomena.



Figure 1. Collective foraging task implemented in the Minecraft game engine. (a) Participants foraged for hidden
rewards in a �eld with 20x20 resource blocks. Each round took 120 seconds, with players starting from random locations
(crosses) and gaze directions (arrows). (b) Screenshot from a player's perspective. Rewards (blue splash) are visible to other
players, providing relevant social information for predicting nearby rewards in smooth—but not random—environments (Panel
e). (c) Automated transcription of each player's �eld of view (FOV) used in visibility and model-based analyses (see Methods).
(d) Participants learned about the task in an interactive tutorial (Supplementary Video 1) before completing two practice rounds.
The main experiment consisted of 16 rounds (counterbalanced order), manipulated across condition (solo vs. group) and reward
structure (random vs. smooth) with four consecutive rounds of the same type (Supplementary Videos 2-4). (e) Random
environments had uniformly sampled rewards, smooth environments had spatially clustered rewards. Each black pixel indicates
a reward from a representative sample, with both environments having the same base ratepprewardq � :25. The mapping to
pumpkins and watermelons were counterbalanced between sessions. (f) Agent-based simulations (see Methods) show a bene�t
for success-biased social learning over asocial learning in smooth, but not random environments, whereas unbiased social
learning performs poorly in both.

Results

Participants (n � 128) foraged for hidden rewards either alone
or in groups of four, where we manipulated the resource dis-
tribution (random vs. smooth) to modify the value of social
learning (Fig. 1e). Smooth environments had clustered re-
wards, making social observations of successful individuals
(visible as a blue splash; Fig. 1b) predictive of other rewards
nearby. In contrast, unpredictable rewards in random environ-
ments offered no bene�ts for social learning. Agent-based
simulations (see Methods) demonstrate this intuition, with un-
biased social learners performing poorly due to maladaptive
herding, whereas selective, success-biased social learners per-
formed better than purely asocial learners in smooth but not
random environments (Fig. 1f). Thus, peers can be valuable
sources of social information (in smooth environments) but
also competitors for the same limited resources3,19 (Fig. S1-
S2), creating similar real-world dynamics as developing mar-
ketplace innovations or engaging in scienti�c research20.

We start with behavioral analyses examining the temporal

dynamics (Fig. 2a-c) and network structure (Fig. 2d-f) of
social interactions, followed by detecting social in�uence
events (“pulls”) from spatial trajectories to describe leader-
follower dynamics (Fig. 3). Finally, we use computational
models predicting sequential foraging decisions to directly test
for different combinations of individual and social learning
mechanisms (Fig. 4), incorporating the rich spatial and visual
dynamics of the task.

Temporal dynamics
To analyze the dynamics of visual-spatial interactions, we
leveraged the high-temporal resolution of reward, spatial prox-
imity, and visibility data (both seeing others and being seen)
to search for temporally predictive clusters (Fig. 2a-c; see
Methods). More precisely, we computed correlations between
time-series at different temporal offsets (with multiple forms
of chance correction), where signi�cant clusters (bold lines)
at negative offsets indicate that reward predicts future prox-
imity/visibility and clusters at positive offsets indicate that
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