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Time pressure changes how people 
explore and respond to uncertainty
Charley M. Wu1,2*, Eric Schulz3, Timothy J. Pleskac4 & Maarten Speekenbrink5

How does time pressure influence exploration and decision-making? We investigated this question 
with several four-armed bandit tasks manipulating (within subjects) expected reward, uncertainty, 
and time pressure (limited vs. unlimited). With limited time, people have less opportunity to perform 
costly computations, thus shifting the cost-benefit balance of different exploration strategies. 
Through behavioral, reinforcement learning (RL), reaction time (RT), and evidence accumulation 
analyses, we show that time pressure changes how people explore and respond to uncertainty. 
Specifically, participants reduced their uncertainty-directed exploration under time pressure, were 
less value-directed, and repeated choices more often. Since our analyses relate uncertainty to slower 
responses and dampened evidence accumulation (i.e., drift rates), this demonstrates a resource-
rational shift towards simpler, lower-cost strategies under time pressure. These results shed light on 
how people adapt their exploration and decision-making strategies to externally imposed cognitive 
constraints.

We have all experienced the pressure of making decisions under limited time. For instance, choosing what to 
order at a restaurant while the waiter waits impatiently behind your shoulder. Or deciding which analyses to run 
as a paper submission deadline looms near. With less time to think, we have less opportunity to perform costly 
computations. But does time pressure merely make us more noisy as we deal with the speed-accuracy trade-off1,2? 
Or are we able to adapt our decision-making processes, to make the best use of our cognitive resources given 
external constraints on our computational  capacity3–6?

Here, we are interested in the cognitive processes involved in navigating the exploration-exploitation 
 dilemma7–9, which plays a key role when learning through interactions with the environment, such as in rein-
forcement  learning10 (RL) problems. Should you exploit your usual menu option or should you explore something 
new? The usual option may yield a predictably rewarding outcome, but forgoes the opportunity of learning 
about other menu items. A new option could lead to either a pleasant or unpleasant surprise, but will likely be 
informative for future decisions and could improve future outcomes.

Since optimal solutions to the exploration-exploitation dilemma are generally  unobtainable11,12 except in 
limiting  cases13–15 (e.g., infinite time horizons among other assumptions), there is great interest in understand-
ing the strategies that humans  use16,17. Empirical evidence from a variety of  experiments8,18–21 and real-world 
consumer  data22 suggests people use a mix of two strategies: random and directed exploration. Random explo-
ration increases the diversity of choices by adding stochasticity to the agent’s behavioral policy, instead of only 
maximizing expected value. If you have only ever tried a handful of items on the menu, then you might have 
an imperfect picture of which options are good. Thus, adding more variability to your choices may give you a 
better perspective about which options you should value. In contrast, directed exploration adds an exploration 
bonus to each option, proportional to the agent’s level of  uncertainty23. Rather than simply behaving more 
randomly, directed exploration is more strategic, prioritizing choices with the highest uncertainty to gain more 
 information24,25. Perhaps there is an item on the menu you have never tried before. Directing your exploration 
to that novel item would be more effective at achieving an information maximization goal than choosing ran-
domly. But since representations of uncertainty need to be factored into the decision-making process, this may 
be computationally more costly.

Limiting decision time. We manipulate decision time as a method for imposing external limitations on 
cognitive resources, to better understand the differential cognitive costs associated with random and directed 
exploration. With less time “budgeted” for costly computations, resource-rational decision  makers4,5 might be 
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expected to choose cheaper strategies in order to achieve a better trade-off between the costs of computation and 
the benefits in terms of reward. One line of research on human decision-making commonly assumes that time 
pressure causes participants to rely more on “intuitive decision making”26, making immediate outcomes more 
 salient27, and making people more reliant on fast, recognition-based processes as compared to slower, more 
analytical  processes28. Research using formal computational models has also related time pressure to changes in 
the speed-accuracy trade-off29, yielding faster, less accurate decisions, but nevertheless still achieving an efficient 
rate of  rewards30,31. However, there is disagreement in the literature about how time pressure changes explora-
tion patterns.

On the one hand, taxing cognitive capacities has been shown to increase exploration, producing less consistent 
and fewer expected value-maximizing  decisions32,33. Similarly, people and monkeys placed under time pressure 
become more eager to select uncertain options, independent of outcome  value34,35. Time pressure has also been 
linked to making people become more risk-seeking36–38, although recent modeling work has challenged the reli-
ability of this shift in risk  preferences33. Nevertheless, a common thread is that limiting cognitive capacity reduces 
the scope or detail with which people evaluate different  options39–41, producing more impulsive decisions or a 
switch to simpler, heuristic decision-making  strategies42, both with similar patterns of increased exploration.

On the other hand, time pressure has also been shown to decrease exploration, leading to more repeat choice 
behavior and a reduced preference for uncertain options. Participants under time pressure are more likely to 
repeat previous  actions43, even to the detriment of producing more costly errors. This can also be related to a 
trade-off between reward and policy  complexity44, where less complex and cheaper-to-encode policies will lead 
to higher rates of choice perseveration (i.e., repeat choices). Time pressure has also been shown to increase 
participants’ preferences for a known payoff over an uncertain alternative in the domain of  gains45, although the 
inverse was true in the domain of losses. There are also similar findings from description-based gambles, where 
time pressure can increase risk aversion in the domain of  gains46.

These divergent results could be interpreted through the lens of early work on coping mechanisms people 
use when put to the limits of their cognitive  abilities47. One mechanism is acceleration, where information is 
processed at a faster rate. Combined with lower evidence thresholds, acceleration can lead to more frequently 
choosing options that would otherwise be ignored, consistent with increased random exploration. Recent work 
using drift diffusion models has supported this hypothesis by connecting random exploration to lowered evi-
dence thresholds and increased drift  rates48. Conversely, longer response times have been related to the ability 
to mentally simulate a greater number of future  outcomes49, producing more directed exploration but decreased 
random  exploration50. Acceleration as a response to time pressure could thus produce a trade-off between dif-
ferent forms of exploration.

Another potential mechanism is repetition, where previous actions are repeated or  recycled44,51, since it may 
not always be cost effective to simulate any future outcomes at all. This can be related to value-free  habits52, where 
not all decisions justify the cognitive costs of using value expectations (both rewards and uncertainty) to select 
new actions. Whereas you might normally enjoy exploring new restaurants in a new city, limits on decision time, 
such as an imminent departure at the airport, might motivate you to default to a previously visited restaurant, 
instead of weighing the alternatives and selecting a new option.

Goals and scope. We present a rich experimental setting, where we use a within-subject design manipulat-
ing the presence or absence of time pressure to gain insights into the cognitive processes underlying exploration. 
We use multiple four-armed bandit tasks, where across four payoff conditions (within-subject), we indepen-
dently manipulate reward expectations and uncertainty across different options (Fig. 1). This allows us to dis-
sociate value-directed and uncertainty-directed choices, where compared to previous studies with two-armed 
bandit  tasks19,24, the richer set of options makes efficient exploration more relevant and observable over more 
trials. Given less decision time, participants can be expected to have less access to costly computations, leading 
to less value-maximizing choices and more random exploration. Simultaneously, time pressure may limit the 
capacity for reasoning about the uncertainty of each option, thus leading to less uncertainty directed exploration.

As predicted, time pressure made participants less sensitive to reward values (more random exploration) and 
less likely to select options with high relative uncertainty (less directed exploration). We then estimated three 
hierarchical Bayesian models to understand how expectations of reward and subjective uncertainty influenced 
choices, reaction times (RTs), and evidence accumulation, which reaffirmed our behavioral analyses, with addi-
tional insights into the decision-making and evidence accumulation process. Time pressure diminished uncer-
tainty-directed exploration through several mechanisms: (i) reducing the selection of uncertain options during 
early trials, (ii) encouraging more aggressive exploitation of known options in later trials, and (iii) heightening 
the tendency to repeat previous choices.

Our analysis of the RT data revealed how this shift in exploration is related to the computational costs of dif-
ferent exploration strategies. High reward expectations corresponded to faster choices, while high uncertainty 
(both relative and total) were associated with slower choices. Under time pressure, participants selected highly 
rewarding options even faster, but slowed down less when selecting highly uncertain options—independent of 
having faster choices in general. These changes in RT can be linked to the evidence accumulation process. While 
time pressure did not change how reward expectations influenced evidence accumulation (faster choices were 
due to lower decision-thresholds), it reduced the extent that relative uncertainty dampened the rate of evidence 
accumulation.

Our findings indicate that time pressure selectively impacts how uncertainty is integrated into decisions. 
Put under time pressure, people are less influenced by uncertainty, less value-directed, and more likely to repeat 
previous choices. This is a simpler strategy and comes at lower costs, representing a potentially resource-rational 
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adaptation to time pressure. These results enrich our understanding of human exploration strategies under 
changing task demands, providing insights into the cognitive costs of reasoning about and acting on uncertainty.

Results
We conducted an online experiment on MTurk ( n = 99 ; 36 female; Mage = 34.82; SDage = 10.1)) to study how time 
pressure influences exploration behavior (Fig. 1). Our “Time Bandit” experiment employed repeated four-armed 
bandit tasks, where we independently manipulated expected reward and uncertainty across four payoff condi-
tions (Fig. 1c; Table 1), along with time pressure (limited vs. unlimited time). This allowed us to disentangle how 
relative differences in reward expectations and uncertainty influence choices, and how time pressure modulates 
this influence, in a single within-subject design (see “Methods”).

Behavioral analyses. To analyze the influence of time pressure and payoff conditions on performance and 
choice behavior, we constructed a series of Bayesian mixed-effects regression models. Specifically, we estimated 
how average rewards (Fig. 2a), the entropy of choices (Fig. 2b), the number of repeat choices (Fig. 2c), and the 
probability of making a repeat choice conditioned on payoff (Fig. 2e), were influenced by time pressure and pay-
off conditions, whilst also accounting for individual differences in the random effects structure. This allows us 
to describe the influence of either time pressure or payoff conditions in terms of the estimated marginal means 

Figure 1.  Experimental design. (a) Time bandit task, where each option was randomly mapped to the 
[Q, W, O, P] keys on the keyboard, with a different mapping each round. Participants completed 40 rounds 
(each containing 20 trials), where we manipulated time pressure (b) and payoff conditions (c) in a crossed, 
within-subject design. (b) In unlimited time rounds, participants could take as long as they wanted to make each 
selection and received positive feedback (happy face) and were shown the value of the acquired payoff for 400 
ms (feedback period). In limited time rounds, participants were only given 400 ms to make each selection. If 
they exceeded the time limit, they earned no rewards and received negative feedback (sad face) with the value 
of the payoff they could have earned crossed out. We used the same feedback period duration of 400ms before 
the next trial automatically began and participants were shown the choice screen. Inputs during the feedback 
period had no effect. (c) Each payoff condition specifies a normal payoff distribution for each option, with 
the means and variances described numerically in Table 1. The reward distributions are designed to compare 
how differences in reward expectations and differences in uncertainty influence choices, where IGT refers to a 
payoff distribution inspired by the Iowa Gambling Task (see “Methods”). Dots and the Tukey boxplots describe 
100 randomly drawn payoffs, while the half violin plots show the generative distribution, with the diamond 
indicating the mean.

Table 1.  Payoff conditions. Means shown are unshifted. In the experiment, a random value between 30 and 60 
was added to all rewards of all options, and actual rewards were always positive. IGT refers to payoffs inspired 
by the Iowa Gambling  Task54,80.

Payoff conds Means ( µ) Variances ( σ 2)

IGT [−10,−10, 10, 10] [10, 100, 10, 100]

Low var [−10,− 1
3
, 1
3
, 10] [10, 10, 10, 10]

High var [−10,− 1
3
, 1
3
, 10] [100, 100, 100, 100]

Equal means [0, 0, 0, 0] [10, 40, 70, 100]
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( �EMM ), which uses contrast analyses to quantify differences in the dependent variable marginalized over the 
other independent variables. For instance, examining how average rewards were influenced by time pressure, 
marginalized over the four payoff conditions, or vice versa. The raw posterior estimates are provided in Table S1 
and visualized in Fig. S1, while Fig. S2 provides the raw data separated by payoff condition.

Learning curves. Looking first at average reward (Fig 2a), we find that time pressure played a reliable role 
in reducing rewards ( �EMM = −0.19 [−0.29,−0.10] ; all Bayesian estimates include the 95% Highest Density 
Interval in square brackets). There was also substantial variation across payoff conditions. Participants per-
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Figure 2.  Behavioral results. (a) Learning curves depicting average participant performance (lines) ± standard 
error of the mean (ribbons) over trials (using unshifted rewards), faceted by payoff condition. The inset figures 
show the expected reward ± standard deviation of each payoff condition for reference. IGT refers to payoffs 
inspired by the Iowa Gambling Task (see “Methods”). (b) Choice entropy in each round, where higher entropy 
corresponds to more diverse choices and dotted lines indicate random chance (i.e., playing each arm with 
uniform probability). Each connected dot represents a participant, and overlaid are Tukey boxplots with the 
diamond indicating the group mean. (c) The proportion of repeat clicks across time conditions, where each 
connected dot is a single participant, with overlaid Tukey boxplots and the diamond indicating the group mean. 
(d) Repeat choices as a function of the previous (unshifted) reward value. Each dot is the aggregate mean, and 
lines represent a locally smoothed Generalized Additive Model regression estimate, with the ribbon indicating 
the 95% confidence interval. (e) Aggregate choice proportions (normalized for chance) for each option, mapped 
to the canonical ordering shown in panel a (inset). Error bars indicate the 95% CI. The inset plots show a 
preference for the ‘P’ option over the ‘O’ option in the IGT condition, and a preference for the ‘P’ option over all 
others in the Equal Means condition. See Fig. S1 for a Bayesian mixed effects regression of the behavioral results, 
and Figs. S2–S4 for additional behavioral analyses.
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formed better in the IGT-like condition than in the Low Var condition ( �EMM = 0.12 [0.04, 0.20]). We see an 
even larger difference when comparing the Low Var and High Var conditions ( �EMM = 0.24 [0.15, 0.33]), where 
despite having the same expected rewards for each option, participants performed substantially better with lower 
variance. Lastly, participants performed better in High Var than in the Equal Means condition ( �EMM = 1.02 
[0.93, 1.11]), which is intuitive since improvement is not possible if all arms have the same expected reward.

Entropy and repeat choices. Next, we assessed the overall diversity of choices by calculating the Shan-
non  entropy53 of choice distributions in each round (Fig 2b). Participants made less diverse and lower entropy 
choices under limited time ( �EMM = −0.12 [−0.23− 0.01] ). This provides initial evidence for reduced explora-
tion under time pressure. We also find largely overlapping entropy levels among the different payoff conditions, 
but with Equal Means having the most diverse choices (compared against High Var: �EMM = 0.34 [0.27, 0.42]). 
This suggests that in the face of indiscernible differences in reward expectations, participants increased their 
exploration.

Additionally, we modeled the number of repeat choices in each round as a measure of sequential dependency 
between choices (Fig 2c). We used a Binomial regression, modeling the number of repeats as the result of 19 inde-
pendent Bernoulli trials, since the first choice cannot be a repeat by definition. Participants made overwhelmingly 
more repeat choices under time pressure (Odds Ratio (OR): �EMM = 1.40 [1.22, 1.58]). While we see relatively 
small variation across payoff conditions, the Low Var condition had more repeats than the High Var condition 
(OR: �EMM = 1.34 [1.23, 1.47]; see Fig. S1c), perhaps because participants were able to more quickly identify 
and exploit the highest rewarding arm with less variance in observed outcomes.

Lastly, we also included a variant of the repeat choice model, which included the (unshifted) value of the 
previous reward as an additional predictor (Fig. 2d). Here, we modeled the probability of each choice (after the 
first trial) being a repeat using logistic regression. We find the same influence of the experimental manipula-
tions on repeat behavior as above (see Table S1), but also find an interaction between time pressure and previ-
ous reward value. Participants were more likely to repeat a choice with higher rewards in unlimited time (OR 
= 1.24 [1.19, 1.29]). Put differently, time pressure reduced participants’ sensitivity to reward value in their repeat 
behavior, as evidenced by the flatter response curve in Fig. 2d.

Choice patterns. Figure  2e visualizes the aggregate choice proportions to get a better sense of patterns 
related to reward expectations and uncertainty. These bars indicate the aggregate choice frequency of each 
option relative to chance, where bars above zero indicate the option was chosen more frequently, and bars below 
zero indicate the option was chosen less frequently. The difference between the orange and green bars illustrates 
the differences in choice behavior as a function of time pressure. We aggregate the data using the canonical map-
ping of reward distributions (see inset plots in Fig. 2a for reference) to the [Q, W, O, P] keys, although the keys 
were randomly mapped in each round for participants. To provide statistical support for choice differences, we 
use Bayesian mixed-effects logistic regression to model how time pressure influenced the probability of choosing 
a given option. We focus on two informative cases.

In the IGT condition (named for mimicking the structure of the so-called Iowa Gambling  Task54), there were 
two high reward and two low reward options, with each pair having either a low or high variance. We focused on 
the two high reward options (indicated as ‘O’ and ‘P’ in Fig. 2e), and modeled whether time pressure influenced 
the likelihood of choosing the riskier, high variance option ‘P’ over the safer low variance option ‘O’, as a simple 
test of how decision time can influence the role of relative uncertainty (see Fig. 2e inset for the raw data). We 
found that overall, participants chose the high variance option (‘P’) more frequently in unlimited time (Odds 
Ratio: OR = 1.11 [0.80, 1.53]; Table S2), although the estimates overlapped with chance (OR = 1 ). However, there 
was also an interaction with round number, where the difference between time conditions widened over succes-
sive rounds. Participants in the unlimited time condition increased their likelihood of selecting the high variance 
option over rounds (OR = 1.39 [1.23, 1.57]). This effect tended towards the opposite direction for limited time 
rounds, where participants selected the high variance option less frequently over rounds (OR = 0.83 [0.68, 1.02]).

We find the clearest differences arising from the time-pressure manipulation in the Equal Means condition 
(Fig. 2e inset), where compared against all other options, participants were more likely to select the highest 
variance option (‘P’) in the unlimited time condition (OR = 1.44 [1.12, 1.86]; Table S2). This illustrates a clear 
shift in preferences away from uncertain options when time pressure is introduced. Whereas participants tend 
to be risk-seeking and choose more uncertain options under unlimited time, they become more risk-averse and 
choose them less often under time pressure.

Interim discussion. Altogether, we find behavioral evidence that time pressure reduced exploration. There 
were less diverse and more repeat choices, which ultimately resulted in lower reward outcomes. From these 
analyses, we find two important behavioral signatures of the underlying cognitive processes that produced this 
shift in exploration. First, time pressure reduced participants’ sensitivity to reward values in repeating previous 
choices, making them more likely to repeat a low-reward choice (Fig. 2d). Second, participants were less likely 
to select options with higher relative uncertainty under time pressure (Fig. 2e). In the next section, we employ 
model-based analyses, which use RL models to explicitly track expected reward and uncertainty estimates. We 
then use these estimates to model choice behavior, reaction times, and evidence accumulation (i.e., drift rate).

Model-based analyses. To model learning and decision making in our task, we use a Bayesian mean 
tracker (BMT) as an RL model for estimating expected rewards and associated uncertainties, which are then 
updated based on prediction errors (see “Methods”). The BMT is a special case of the Kalman filter, which 
assumes time-invariant reward distributions (as was the case in our experiment). The BMT provides a Bayesian 
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 analogue55 to the classic Rescorla-Wagner56 model of associative learning, and has described human behavior in 
a variety of multi-armed bandit and decision-making  tasks19,20,24,57–59.

We generated predictions from the BMT using participant choices and reward observations at each trial t to 
compute posterior distributions of the average reward of the options, and then using these as prior predictive 
distributions at trial t + 1 . These prior predictive distributions are all normally distributed, and we used the 
mean and standard deviation as measures of predicted reward and the associated uncertainty, respectively (see 
Figs. 4 and S5), which we use to conduct three model-based analyses predicting choices, reaction times, and 
evidence accumulation (Fig. 3).

Choices. In our first analysis, we assessed how reward expectations and uncertainty estimates influenced the 
likelihood of an option being chosen on each trial. We applied hierarchical Bayesian inference to estimate the 
parameters of a softmax policy (see “Methods”), under the assumption that a participant’s choice on each trial is 
influenced by both the predicted mean and uncertainty of an option. Each participant’s parameters are assumed 
to be jointly normally distributed and assumed to interact with time pressure. The probability of choosing option 
j on trial t is a softmax function of its decision value Qj,t:

The decision value Qj,t is a function of the prior predictive mean mj,t and uncertainty √vj,t  (standard devia-
tion) of each option according to the BMT, with an additional stickiness bonus for the most recently chosen 
option ( δj,t−1 = 1 if option j was chosen on trial t − 1 ; see “Methods”):

We computed hierarchical Bayesian estimates for the value-directed component α (factoring in both rewards 
and uncertainty), the uncertainty bonus β (governing the trade-off between exploitation and exploration), and 
the stickiness bonus γ , including interactions with the time pressure manipulation (limited vs. unlimited). Larger 
α estimates indicate more value-directed choices, whereas lower α suggest more random choices, which are not 
explainable by reward expectations or uncertainty estimates (i.e., random exploration). More positive β estimates 

(1)P(Ct = j) =
exp(Qj,t)

∑4
k=1 exp(Qk,t)

.

(2)Qj,t = α(mj,t + β
√
vj,t)+ γ δj,t−1.
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Figure 3.  Posterior estimates of model-based analyses. (a) Hierarchical softmax model. Expected rewards 
and uncertainties were regressed onto choice probability (Eqs. 1–2). The top row shows the value-directed 
component ( α ), the middle row shows the uncertainty bonus ( β ), and the bottom row shows stickiness ( γ ). 
(b) Hierarchical RT model. The influence of relative reward (top), relative uncertainty (middle), and total 
uncertainty (bottom) on RTs. (c) LBA drift regression. Relative reward (top), relative uncertainty (middle), and 
total uncertainty (bottom) were used to predict the drift rate of an LBA. In all plots, the vertical dashed line 
indicates an effect of 0, while the black dot indicates the mean effect and confidence intervals show the 66% 
(thick) and 95% (thin) highest density interval.
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indicate a higher level of uncertainty-directed exploration. Higher estimates of γ indicate more perseveration in 
choice behavior, with more frequent repetitions of previous choices. Figure  3a shows the posterior estimates of 
the model (see Figs. S7–S8 for comparison to alternative models).

We find less value-directed choice behavior under time pressure ( αUnlimited − αLimited = 1.90 [1.24, 2.56]), 
with positive estimates in both conditions ( αUnlimited = 9.21 [8.31, 10.1]; αLimited = 7.31 [6.23, 8.44]). This pattern 
can be seen in the raw BMT predictions (Fig. 4a), where chosen options had both higher relative reward expec-
tations and relative uncertainty in unlimited time. By definition, the inverse of the value-directed component 
defines the level of random exploration, with the interpretation that participants’ choices were less predictable 
and more random when given less time to deliberate (limited time). This may seem at odds with the behavioral 
results showing reduced entropy under time pressure, but the lack of correlation between α and choice entropy 
under time limitations (see Fig. S6b) suggests that participants consistently chose non-value maximizing options 
(i.e., repeating low-value choices; Fig. 2e). In contrast, α estimates were correlated with higher average rewards 
in both conditions (see Fig. S6a).

Time pressure also reduced uncertainty-directed exploration ( βUnlimited − βLimited = 0.09 [0.04, 0.15]), with 
positive estimates in both conditions ( βUnlimited = 0.26 [0.20, 0.32]; βLimited = 0.16 [0.08, 0.24]). Figure 4b pro-
vides additional clarity about this result. Participants with unlimited time experienced an early uptick in selecting 
relatively uncertain options around trial 3, suggestive of an “exploration phase”. Afterwards, there was a gradual 
shift towards exploitation, indicated by the monotonic decay of the relative uncertainty of chosen options, 
indicating an increasing preference for relatively less uncertain options. Under time pressure, there is a similar 
trend, yet the early exploration phase has almost vanished (the relative uncertainty of the chosen option on trial 
3 is indistinguishable from 0: t(98) = 0.9 , p = 0.387 , d = 0.1 , BF = 0.16 ) and later trials are associated with 
more strongly negative relative uncertainty. Thus, a reduced exploration bonus under time pressure appears to 
be a combination of less exploration in early trials, and more aggressive exploitation in later trials, which is also 
apparent in the higher levels of total uncertainty during limited time rounds (Fig. 4c). This reduction in directed 
exploration may also be related to the lower overall performance under time pressure, since higher β estimates 
in the limited time condition were associated with higher rewards (see Fig. S6a).

In addition to these changes in exploration, time pressure increased the stickiness of choices 
( γUnlimited − γLimited = −0.32 [−0.46,−0.19] ), with positive estimates in both conditions ( γUnlimited = 1.58 
[1.36, 1.80]; γLimited = 1.91 [1.64, 2015]). This increase in choice perseveration is consistent with the reduced 
entropy and higher repeat choice probabilities found in the behavioral data, but estimates of γ were unrelated 
to average reward (see Fig. S6).

Overall, time pressure reduced the value-directedness of choices, reduced uncertainty-directed exploration, 
and increased the stickiness of choices. We now turn to modeling reaction times (RTs) to better understand how 
reward expectations and uncertainty influenced the speed of decisions.

Reaction time. Our second analysis looked at how RTs (see Fig. S3 for raw RT analysis) were influenced by 
expectations of rewards and estimated uncertainties. We first computed the relative reward and relative uncer-
tainties of the BMT predictions using the difference between the chosen option and the average of the unchosen 
options on each trial. Thus, positive values indicate that the expected reward or uncertainty were larger than the 
mean of the unchosen options. We also computed total uncertainty, based on the sum of uncertainty estimates 
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Figure 4.  BMT predictions about the chosen option simulated for all participants (see Fig. S5 for more detailed 
plots, separated by payoff condition). Lines indicate group means, with ribbons showing the 95% CI. (a) Relative 
reward shows the difference between the posterior mean of the chosen option and the average posterior mean 
of the unchosen options. Relative reward is always valued positively (dashed line indicates 0). (b) Relative 
uncertainty shows the difference between the posterior uncertainty (stdev) of the chosen option and the average 
posterior uncertainty of the unchosen options. The early upticks indicates uncertainty-directed exploration 
(substantially less in limited time), followed by exploitation as this value decays below zero (dashed line). (c) 
Total uncertainty (average stdev) decays monotonically, with a faster decline in unlimited time due to more 
uncertainty directed exploration.
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across the four options on any given trial. We then regressed relative mean, relative uncertainty, total uncertainty, 
and round number onto log-transformed RTs in a Bayesian mixed effects regression (see “Methods”).

The resulting posterior parameter estimates (Fig. 3b) indicate that higher relative reward expectations pro-
duced faster choices under limited time ( bLimited = −0.08 [−0.11,−0.05] ), but with a weaker effect under unlim-
ited time ( bUnlimited = −0.02 [−0.04, 0.01] ) that overlapped with zero. In contrast, both relative and total uncer-
tainty slowed down choices (relative uncertainty: bUnlimited = 0.15 [0.10, 0.19]; total uncertainty: bUnlimited = 0.22 
[0.19, 0.26]), with the latter having a larger effect. In both cases, this uncertainty-related slowdown was reli-
ably less pronounced when placed under time pressure (relative uncertainty: bunlimited − blimited = −0.10 
[−0.14,−0.06] ; total uncertainty: bunlimited − blimited = −0.11 [−0.14,−0.08] ). Thus, higher reward expecta-
tions made people faster, whereas uncertainty (both relative and total) slowed them down. Both effects were less 
pronounced under time pressure.

There was also a notable interaction between predictors (see Fig. S9 for the full model and Figs. S10–S11 for 
interaction plots). While high relative reward expectations generally sped up choices, this pattern was inverted 
when high rewards were also accompanied by high relative uncertainty, with participants slowing down instead of 
speeding up ( b = 0.04 [0.001, 0.08]; no difference between time conditions). Thus, certainty about high rewards 
produced rapid decisions, whereas uncertainty about high rewards produced slower choices.

Overall, more exploitative choices (with higher relative reward expectations) were faster, while more explora-
tive choices (with both higher relative uncertainty or higher total uncertainty) were slower. This differs from 
previous findings using two-armed  bandits19, in which higher relative uncertainty was related to faster decisions. 
Here, we find that uncertainty is not just a bonus that adds to the decision signal, making choices easier and 
faster. Rather, grappling with uncertainty takes time.

Evidence accumulation. In our third analysis, we used a Linear Ballistic  Accumulator60,61 (LBA) to model 
choices and RTs simultaneously (see “Methods”). This model assumes that choices are the result of an evidence 
accumulation process, where evidence for each option accumulates as a function of drift rate, which is indepen-
dently estimated for each option. Whichever option first exceeds the decision threshold is chosen. The interplay 
between the drift rate and evidence threshold captures how participants trade response speed for accuracy, with 
higher thresholds requiring more evidence and producing more value maximizing choices, yet slower responses. 
Thus, we can use the LBA to separate out how time pressure impacts evidence accumulation in terms of the rate 
of evidence accumulation and the amount of evidence collected.

Consistent with the need to arrive at decisions more quickly, we observed both lower relative evidence 
thresholds k ( t(98) = −5.2 , p < 0.001 , d = 0.5 , BF > 100 ; Fig. S12) and higher mean drift rates ( t(98) = 7.1 , 
p < 0.001 , d = 0.7 , BF > 100 ) under time pressure. This suggests an accelerated processing of information (faster 
drift rates), which is also more prone to errors (lower threshold). The maximum pairwise difference between drift 
rates was also larger under limited time ( t(98) = 6.0 , p < 0.001 , d = 0.6 , BF > 100 ), suggesting larger separa-
tion between different options, which is also related to lower choice entropy and more frequent repeat choices 
(see Fig. S13). Additionally, participants had shorter non-decision times τ ( t(98) = −4.6 , p < 0.001 , d = 0.5 , 
BF > 100 ) and less maximum starting evidence A ( t(98) = −7.8 , p < 0.001 , d = 0.8 , BF > 100 ), when placed 
under time pressure. All parameters where strongly correlated across time conditions (Kendall rank correlations; 
all rτ > 0.40 ; BF > 100 ; Fig. S12), are recoverable (Fig. S14), and can be used to simulate realistic choice and 
RT patterns (Fig. S15). Thus, our LBA results confirm the intuition that participants reached faster decisions at 
lower evidence thresholds when time limitations were imposed, but they also accumulated evidence faster and 
with larger separation between options.

In a final step, we sought to better understand how expectations of reward and uncertainty influence the 
evidence accumulation process and how time pressure may impact this relationship. Thus, we regressed the 
BMT predictions of relative expected reward, relative uncertainty, and total uncertainty for each option onto its 
estimated drift rate using a Bayesian mixed effects regression. Note that the LBA parameters are estimated on each 
round, thus the BMT predictions are averaged over trials, but nevertheless capture differences in the trajectory of 
learning and the independent manipulations of expected rewards and uncertainty in the four payoff conditions.

The result of this analysis (Fig. 3c) revealed that higher relative reward expectations amplified evidence 
accumulation equally for limited and unlimited time ( b = 0.36 [0.31, 0.41]; no interaction with time pressure: 
bUnlimited - Limited = −0.005 [−0.061, 0.051] ). Thus, options with higher relative reward expectations were more 
likely to be chosen and with faster decision times. Conversely, relative uncertainty (specific to each option) 
had a negative effect on drift rate, thus dampening evidence accumulation ( bUnlimited = −0.39 [−0.44,−0.34] ), 
with a reliably smaller effect under time pressure ( bLimited = −0.31 [−0.36,−0.27] ; bUnlimited - Limited = −0.08 
[−0.14,−0.01] ). Lastly, total uncertainty (computed across all options) also dampened evidence accumulation 
in limited time rounds ( bLimited = −0.06 [−0.09,−0.03] ), but did not produce a reliable effect in unlimited time 
( bUnlimited = −0.03 [−0.07, 0.01] ). Thus, rewards increased evidence accumulation, while uncertainty (in general) 
slowed down evidence accumulation.

The main interaction between predictors (see Fig. S16 for the full model and Figs. S17–S18 for interaction 
plots), was that the effect of total uncertainty could be inverted depending on relative reward (no interaction with 
time pressure: b = −0.08 [−0.14,−0.02] ; Fig. S17g) and relative uncertainty ( bLimited = −0.15 [−0.18,−0.12] ; 
bUnlimited = −0.09 [−0.13,−0.06] ; Fig. S17h). Total uncertainty amplified evidence accumulation when the stakes 
were low (low relative rewards or low relative uncertainty), but dampened evidence accumulation instead when 
the stakes were high (high relative rewards or relative uncertainty). Since total uncertainty is the same across all 
options, amplified evidence accumulation under low stakes corresponds to faster, more random choices, consist-
ent with little benefit from increased deliberation in these settings. Conversely, dampened evidence accumulation 
under high stakes corresponds to slower, and more reward- or uncertainty-directed choices.
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Overall, we find that reward-modulated increases in evidence accumulation were unaffected by time pressure. 
However, uncertainty-driven decreases in evidence accumulation were less pronounced under time pressure, 
with drift rates less influenced by uncertain options. We also found an influence of high total uncertainty, which 
was modulated by expectations of rewards and relative uncertainty. When more was at stake, total uncertainty 
dampened drift rates and produced slower decisions. But when relative differences in reward expectations were 
minor, higher total uncertainty amplified drift and produced faster decisions.

Discussion
How is exploration and decision-making constrained by cognitive limitations imposed through time pressure? 
We investigated this question using several variants of a four-armed bandit task, designed to independently 
manipulate differences in reward expectations and uncertainty. We then used a time pressure manipulation to 
either give participants unlimited decision time or to limit decision time to less than 400 ms for each choice. 
Both payoff and time pressure manipulations were conducted within-subjects, allowing us to use hierarchical 
modeling to achieve a high level of detail into the interplay between learning strategies and cognitive limitations 
imposed by time pressure.

Our behavioral results show that time pressure induced participants to earn fewer rewards, made them less 
sensitive to reward values in their repeat choice behavior, and less likely to select options associated with higher 
uncertainty. We then used RL models to analyze how reward expectations and uncertainty affected choices, RTs, 
and the rate of evidence accumulation.

High reward expectations made participants more likely to select options, producing faster RTs for such 
exploitative choices, and amplifying the rate of evidence accumulation. Adding time pressure reduced the value-
directedness of choices, but increased their tendency to speed up when choosing options with high relative 
reward expectations (i.e., exploitation), and made them more likely to repeat previous choices.

In contrast, while uncertainty also made participants more likely to select options, choices with higher relative 
(and to some extent total uncertainty) were associated with slower choices and reduced evidence accumulation 
rates. Adding time pressure reduced uncertainty-directed exploration in choice behavior and also reduced the 
influence of uncertainty on RTs. This is consistent with the notion that uncertainty takes time to process and 
deploy strategically. Without the necessary time to grapple with uncertainty, participants shifted to exploiting 
known options and repeating previous choices, rather than integrating the value of exploring uncertain options.

Similar reductions in directed exploration have also been observed when participants were placed under 
working memory  load62. The resulting behavior may thus be seen as a resource-rational4,5 adaptation to externally 
imposed limitations on cognitive resources, consistent with other findings showing that people are sensitive to the 
cost-benefit tradeoffs of different learning  strategies63,64. Indeed, the interactions of our LBA model (Fig. S17g,h) 
suggest that people are sensitive to the cost-benefit trade-off of increased deliberation, producing faster more 
random decisions when the stakes are low, but slowing down and deliberating longer when the stakes are high. 
Future research should examine the underlying mechanisms of the arbitration between strategies and the neural 
locus of cognitive control.

Limitations and extensions. One limitation is that we only account for how time pressure influences 
exploration strategies, but not for changes in learning. Time pressure might not only change which computa-
tions we engage in when deciding how to explore or exploit, but it might also influence the richness of the 
representations we form during learning or the extent to which these representations are updated in response 
to new information. Indeed, previous work in economics has shown a reduced efficacy of  training65. However, 
our use of Bayesian RL in modeling choices and RTs may not be able to differentiate between these hypotheses, 
although similar models in related tasks have been used to predict directly elicited participant judgments about 
reward expectations and  confidence66–70. Future studies may consider modeling not only choices and RTs, but 
also participant judgments about future outcomes in a similar time pressure manipulation.

Our current results also only examined uncertainty about reward expectations. However, there exist several 
alternative measures of uncertainty such as  confidence71,72, perceptual  uncertainty73,74, and computational uncer-
tainty induced by cognitive  load75, all of which could influence exploration behavior in different ways. Thus, we 
expect future studies to increasingly focus on disentangling different sources of uncertainty and their effects on 
the exploration-exploitation dilemma.

Additionally, while our four-armed bandit task was designed to provide a richer choice set beyond two 
options, magnifying the difference between directed and random exploration, it still pales in comparison to the 
complexity of many real world problems. Since participants may be more likely to engage in directed exploration 
in highly complex or highly structured  domains21,22,70, an important future direction will be to understand how 
environmental structure modulates changes in learning as a function of cognitive limitations.

Lastly, we have also only looked at multi-armed bandits in which participants only gain positive rewards or 
earn nothing when exceeding the time limit. We did not, however, probe how exploration behavior changes in 
the domain of  losses76,77 or risky  outcomes33,78. Since the distribution of rewards can affect participants’  learning79 
and losses have been shown to produce risk-seeking under time  pressure45,46, studying this domain will be a 
crucial next step.

Conclusions. We studied the interplay of human exploration strategies and cognitive limitations imposed 
by time pressure, showing that participants are sensitive to the costs and benefits of different computations. Put 
under time pressure, people were less influenced by uncertainty, less value-directed, and repeated past choices 
more often. These behavioral changes are linked to the cognitive costs of reasoning about rewards and uncer-
tainty. Exploitative choices (i.e., high reward expectations) were generally faster, while exploratory choices (i.e, 
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high relative or total uncertainty) were slower. Taken together, our results suggest that people display a resource-
rational sensitivity to the cost-benefits of different exploration strategies under externally imposed limitations 
on cognitive resources.

Methods
Participants and design. We recruited 99 participants (36 female, aged between 21 and 69 years; M = 
34.82; SD = 10.1) on Amazon Mechanical Turk (requiring 95% approval rate and 100 previously approved HITs). 
Participants were paid $3.00 for taking part in the experiment and a performance contingent bonus of up to 
$4.00 (calculated based on the performance of one randomly selected round). Participants spent 13.0 ± 5.6 
min on the task and earned $5.87 ± $0.91 in total. The study was approved by the Ethics Committee of the Max 
Planck Institute for Human Development and all methods were carried out in accordance with relevant guide-
lines and regulations.. Informed consent was obtained from all subjects.

We used a 2× 4 within-subject design to examine how the presence or absence of time pressure and the 
payoff structure of the task (see Fig. 1c and Table 1) influenced choices and reaction times. In total, the experi-
ment consisted of 40 rounds with 20 trials each. In each round, a condition was sampled (without replacement) 
from a pre-randomized list, such that each combination of time pressure and payoff structure was repeated five 
times, with a total of 100 trials in each.

Materials and procedure. Participants were required to complete three comprehension questions and two 
practice rounds (one with unlimited time and one with limited time) consisting of 5 trials each before starting 
the experiment. Each of the 40 rounds was presented as a four-armed bandit task, where the four options were 
randomly mapped to the [Q, W, O, P] keys on the keyboard (Fig. 1a). Selecting an option by pressing the cor-
responding key yielded a reward sampled from a normal distribution, where the mean and variance was defined 
by the round’s payoff structure (Fig. 1c and Table 1). Participants completed 20 trials in each round and were told 
to acquire as many points as possible.

Before starting a round, participants were informed whether it was an unlimited or a limited time round. In 
unlimited time rounds, participants could spend as much time as they needed to reach a decision, upon which 
they were given feedback about the obtained reward (displayed for 400 ms) before continuing to the next trial 
(Fig. 1b). In limited time rounds, participants were instructed to decide as fast as possible. If a decision took 
longer than 400 ms, they forfeited the reward they would have earned (presented to them as a crossed-out number 
with an additional sad smiley; Fig. 1b). We used the same feedback period of 400 ms to display feedback about 
obtained rewards in both limited and unlimited time rounds.

We applied a random shifting of rewards across rounds (i.e., different minimum and maximum reward) to 
prevent participants from immediately recognizing when they had chosen the optimal option. For each round, 
we sampled a value from a uniform distribution U(30, 60) , which was then added to the rewards. Together with 
random shifting, we also truncated rewards such that they were always larger than zero. In order to convey 
intuitions about the random shift of rewards, payoffs were presented using a different fictional currency in each 
round (e.g., ß, Þ, ϑ ), such that the absolute value was unknown, but higher were always better.

At the end of each round, participants were given feedback about their performance in terms of the bonus 
they would gain (in USD) if this was the round selected for determining the bonus. The bonus was calculated as 
a percentage of the total possible performance, raised to the power of 4 to accentuate differences in the upper 
range of performance: Bonus =

(

total reward gained
mean reward of best option×20trials

)4
× $4.00

Payoff conditions. We used four different payoff conditions as a within-participant manipulation 
(Table 1 and Fig. 1c). Each payoff condition specified the mean µj and variance σ 2

j  of the reward distribution 
Rj ∼ N (µj , σ

2
j ) for each option j. Each distribution was randomly mapped to one of the four [Q, W, O, P] keys 

of the keyboard in each round. The Iowa Gambling Task (IGT) is a classic design that has been related to a variety 
of clinical and neurological factors affecting decision-making54,80. We implemented a reward condition inspired 
by the IGT such that there are two high and two low reward options, with a low and high variance version of 
each. We also constructed two conditions with equally spaced means, but with either uniformly low variance or 
uniformly high variance. Lastly, the equal means condition had identical means and gradually increasing vari-
ance, such that we can observe the influence of uncertainty independent of mean reward.

Model-based analyses. Bayesian mean tracker. The Bayesian mean tracker (BMT) learns a posterior 
distribution over the mean reward µj for each option j. Rewards are assumed to be normally distributed with 
a known variance but unknown mean. The prior distribution of the mean is also a normal distribution. This 
implies that the posterior distribution for each mean is also a normal distribution:

where pt is the posterior distribution at trial t and Dt−1 denotes the observed rewards and choices up to and 
including trial t (for all options). For a given option j, the posterior mean mj,t and variance vj,t at trial t are only 
updated when it has been selected at trial t:

(3)pt(µj|Dt−1) = N (mj,t , vj,t)

(4)mj,t = mj,t−1 + δj,tGj,t

[

yt −mj,t−1

]

(5)vj,t =
[

1− δj,tGj,t

]

vj,t−1
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where δj,t = 1 if option j is chosen on trial t, and 0 otherwise. Additionally, yt is the observed reward at trial t, 
and Gj,t is defined as:

where θ2ǫ  , referred to as the error variance, is the variance of the rewards around the mean.
Intuitively, the estimated mean of the chosen option mj,t is updated based on prediction error, which is the dif-

ference between the observed reward yt and the prior expectation mj,t−1 , multiplied by learning rate Gj,t ∈ [0, 1] . 
At the same time, the estimated variance vj,t of the chosen option is reduced by a factor 1− Gj,t . The error variance 
( θ2ǫ  ) can be interpreted as an inverse sensitivity, where smaller values result in more substantial updates to the 
mean mj,t , and larger reductions of uncertainty vj,t . We set the prior mean to mj,0 = 0 based on the (unshifted) 
expectation across payoff conditions, and the prior variance is set to vj,0 = 55 ∗ 20 , which is also the expecta-
tion across payoff conditions, scaled by a constant multiple of 20. We use unshifted reward values (i.e., before 
adding the shift ∼ U(30, 60) were observed by participants), with the means in each condition centered on 0. 
For our model-based analysis, the error variance θ2ǫ  was set to the true underlying variance of the chosen option.

Hierarchical Bayesian regression models. Mixed effects regressions. All Bayesian mixed effects 
regression models used Hamiltonian Markov chain Monte Carlo (MCMC) with a No-U-Turn  sampler81 and 
were implemented using brms82. All models used generic, weakly informative priors ∼ N (0, 1) with the pro-
posal acceptance probability set to .99. In all cases, participants were assigned a random intercept and all fixed 
effects also had corresponding random effects following recommendations to apply a maximal random-effects 
 structure83. All models were estimated over four chains of 4000 iterations, with a burn-in period of 1000 samples.

Softmax choice model. The softmax choice model was estimated hierarchically using custom code writ-
ten in STAN. Formally, we assume that the α - and β-coefficients (see Eq. 2) for each participant are drawn inde-
pendently from a normal distribution:

For simplicity, we use αi , βi , and γi in Eq. (2) to refer to θi = θ limited
i + 1θunlimited

i  , where θ ∈ [α,β , γ ] and 
1 = 1 for unlimited time rounds, and 0 otherwise. We used Hamiltonian MCMC with a No-U-Turn  sampler81 
to estimate the group-level mean µ0 and variance over participants σ 2

0  for α , β , and γ , and their interaction with 
time pressure. We used the following priors on the group-level parameters:

The posterior mean and uncertainty estimates of the BMT were standardized between [0,1] before being 
entered into the regression. The model was estimated over four chains of 4000 iterations, with a burn-in period 
of 1000 samples, and with the proposal acceptance probability set to 0.99.

RTs. The RT regression used the same Bayesian mixed effects framework as above, with log-transformed RTs 
as the dependent variable. 1 ms was added to each RT to avoid log(0) , with the raw RTs truncated at a maximum 
of 5000 ms. Both dependent and independent variables were standardized to a mean of 0 and unit variance.

LBA. Formally, the LBA assumes that, after an initial period of non-decision time τ , evidence for option j 
accumulates linearly at a rate of vj , starting from an initial evidence level pj ∼ U(0,A) . Evidence accumulates for 
each option j until a threshold b = A+ k is reached. We follow the Bayesian implementation proposed by Ref.61 
and assume that the priors for the drift rates stem from truncated normal distributions

Additionally, we assume a uniform prior on non-decision time

and a truncated normal prior on the maximum starting evidence

Finally, we reparameterized the model by shifting b by k units away from A, and put a truncated normal 
distribution as the prior on the resulting relative threshold k:

We estimated the LBA parameters (see Fig. S12) for each participant in every round separately using No-U-
Turn Hamiltonian  MCMC81, with reaction times truncated at 5000 ms. The drift rate regression used the same 
Bayesian mixed effects framework as above, with both DVs and IVs standardized to a mean of 0 and unit variance.

(6)Gj,t =
vj,t−1

vj,t−1 + θ2ǫ

(7)αlimited
i ,αunlimited

i ,β limited
i ,βunlimited

i , γ limited
i , γ unlimited

i ∼ N (µ0, σ
2
0 ).

(8)µ0 ∼ N (0, 1)

(9)σ 2
0 ∼ N (0, 1) ∈ (0,∞)

(10)vj ∼ N (2, 1) ∈ (0,∞).

(11)τ ∼ U(0, 1),

(12)A ∼ N (0.5, 1) ∈ (0,∞).

(13)k ∼ N (0.5, 1) ∈ (0,∞).
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Data availability
Code and data are publicly available at https:// osf. io/ v4dua/.
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