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Abstract

How do people navigate the vastness of real-world environments where it is not feasible to
explore all possibilities and the exact same situation is rarely encountered twice? The study
of human learning has made rapid progress in the past decades, from discovering the neural
substrate of reward prediction errors, to using similar principles to build artificial intelligence
capable of beating the best human players in skillful games such as Go. Yet this line of research
has primarily focused on learning through repeated interactions with the same stimuli. How are
humans able to rapidly adapt to novel situations and learn from such sparse examples?

We propose that generalization plays a crucial role in guiding human exploration and
learning. Inspired by Roger Shepard’s law of generalization, we present a domain general
theory of generalization across spatial, conceptual, and structured environments. We use a
function learning model to describe how people generalize limited experiences to a wide set of
novel possibilities, based on the simple principle that similar actions produce similar outcomes.
Our model of generalization generates predictions about the expected reward and underlying
uncertainty of unexplored options, where both are vital components in how people actively
explore the world.

Across 8 experiments, we show how generalization and uncertainty guides human learning.
Chapters 1 and 2 introduce the psychological and mathematical basis of our theory. In Chapter 3
we study search on generated and real-world environments with spatially correlated rewards,
where we find robust and recoverable evidence for our model of generalization and exploration.
Chapter 4 uses a field study to investigate the source of variability in the sampling behavior of
children. Contrary to prevailing theories, we find that children are not simply more random, but
they generalize less and seek out uncertainty more eagerly than adults. Chapter 5 extends the
scope of our theory to connect search across spatial and conceptual domains. Chapter 6 provides
a unifying framework for generalization and search in structured spaces, where we show that
the models used in the previous chapters are a special case of a graph generalization model.
Finally, Chapter 7 provides a summary of the main contributions and lays the groundwork
towards a process-level theory.





Zusammenfassung

Wie navigieren Menschen in unüberschaubaren Umgebungen, wenn es nicht möglich ist, alle
Optionen ausführlich zu untersuchen? Die Forschung zum menschlichen Lernen hat in den
letzten Jahrzehnten rasche Fortschritte gemacht: Von der Entdeckung des neuronalen Substrats
für Vorhersagefehler bis hin zur Verwendung ähnlicher Prinzipien zum Aufbau künstlicher
Intelligenz, die in Geschicklichkeitsspielen wie Go die besten menschlichen Spieler schlagen
kann. Bisher lag der Forschungsschwerpunkt auf dem Lernen durch wiederholte Interaktionen
mit ein und derselben Situation. Dabei ist ungeklärt, wie Menschen sich schnell an neue
Situationen anpassen können und aus spärlichen Beispielen lernen können.

Wir schlagen vor, dass die Generalisierung eine wesentliche Rolle dabei spielt, wie Men-
schen effizient die Welt erforschen und sich in ihr zurechtfinden. Inspiriert von Roger Shepards
„law of generalization“ präsentieren wir eine allgemeine Theorie der Generalisierung in räum-
lichen, konzeptuellen und strukturierten Umgebungen. Wir verwenden ein Funktionslernmodell,
um zu beschreiben, wie Menschen begrenzte Erfahrungen auf eine Vielzahl neuer Situationen
generalisieren, basierend auf dem einfachen Prinzip, dass ähnliche Aktionen zu ähnlichen
Ergebnissen führen. Unser Modell der Generalisierung erzeugt Vorhersagen über die erwartete
Belohnung und die damit verbundene Unsicherheit unerforschter Optionen—zwei wichtige
Komponenten dafür, wie Menschen die Welt aktiv erkunden.

In acht Experimenten zeigen wir, wie die durch Generalisierung und Ungewissheit bedingte
Erforschung das menschliche Lernen lenkt. Die Kapitel 1 und 2 stellen die psychologischen
und mathematischen Grundlagen unserer Theorie vor. In Kapitel 3 untersuchen wir die Suche
in generierten und natürlichen Umgebungen mit räumlich korrelierten Belohnungen. Hierbei
finden wir robuste und wiederherstellbare Beweise für unser Modell der Generalisierung und
Erkundung. In Kapitel 4 verwenden wie eine Feldstudie, um die Quelle der Variabilität im
Probenahmeverhalten von Kindern zu untersuchen. Im Gegensatz zu den vorherrschenden The-
orien stellen wir fest, dass Kinder nicht einfach mehr zufällig Entscheidungen treffen, sondern
weniger generalisieren und unsichere Optionen eifriger erkunden als Erwachsene. Kapitel 5
erweitert den Umfang unserer Theorie, um die Suche über räumliche und konzeptuelle Domä-
nen hinweg zu verbinden. Kapitel 6 bietet ein einheitliches Rahmenwerk für Generalisierung
und Suche in strukturierten Umgebungen. Hier zeigen wir, dass die in den vorangegan-



genen Kapiteln verwendeten Modelle einen Sonderfall eines Graph-Generalisierungsmodells
darstellen. Schließlich liefert Kapitel 7 ein Überblick über die wichtigsten Beiträge und legt
die Grundlagen für eine process-level Theorie.
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Chapter 1

Exploring the Landscape of Human
Learning

The years of our lives number less than one hundred
Yet we agonize over a thousand years of worry.
The days are short and the bitter nights are long!
Why not take up torches and go wandering out into the dark?

—Han Dynasty Poem (ca. 200 CE)

What principles guide human learning in large problem spaces, where the same situation is
rarely encountered twice? Rather than merely groping through the dark, the goal of this thesis
is to show how human learning is guided by generalization. Past experiences can be leveraged
to make predictions about an endless number of novel situations, thereby guiding search
towards promising options. In this chapter, we present an overview of influential theories of
learning and generalization in psychology. We trace the development of modern reinforcement
learning algorithms to origins in theories of animal and human learning. Despite a deep
understanding of the behavioral and neural signatures of learning through repeat interactions
with the same stimuli, prevalent theories in this framework lack an account of how people
adapt to novel situations. Inspired by Shepard’s law of generalization, we propose a theory
of generalization using the mechanism of function learning. Functions represent inferred
relationships between actions and outcomes, and provide guiding predictions across an entire
continuum of possibilities. Across spatial, conceptual, and structured domains, we show
that generalization acts as a torch for guiding human exploration in unknown and uncertain
environments.



2 Exploring the Landscape of Human Learning

1.1 The gap between human and machine learning

One of the mysteries of human cognition is how people perform rapid inference and general-
ization from a sparse number of examples (Lake, Salakhutdinov, & Tenenbaum, 2013; Vul,
Goodman, Griffiths, & Tenenbaum, 2014). While recent advances in machine learning have
produced algorithms that achieve human–level performance in sophisticated games such as Go
(Silver et al., 2016), there still exists an intriguing gap between the efficiency of human and
machine learning (Lake, Ullman, Tenenbaum, & Gershman, 2017). For example, consider that
AlphaGo was trained on approximately 10.5 million virtual games† of Go in order to achieve
what DeepMind described as “masterful” performance (Silver et al., 2016). If a human were
to completely devote themselves to the game of Go, playing 24 games a day without sleep, it
would take 1200 years to achieve the same depth of experience as AlphaGo acquired. Recent
improvements to this algorithm, as demonstrated in the AlphaStar algorithm designed for the
game Starcraft II, still require up to 200 years of real-time play during training (Vinyals et al.,
2019). While neither domain can be considered a trivial learning problem, the immense quantity
of training data illustrates a qualitative difference in how people and modern computational
algorithms learn through experience. Since first posed by Plato in the Meno (380 BCE), the
question still remains: how do people learn from such sparse examples?

One potential answer may be found in the strategies people use to actively explore the
world. By asking questions (Coenen, Nelson, & Gureckis, 2018; Nelson, 2005; Rothe, Lake,
& Gureckis, 2018; Wu, Meder, Filimon, & Nelson, 2017), directing eye-movements towards
informative scenes (Cavanagh, Hunt, Afraz, & Rolfs, 2010; Najemnik & Geisler, 2005; Nelson
& Cottrell, 2007), or sampling different options (Hertwig, Barron, Weber, & Erev, 2004; Hills
& Hertwig, 2010), people are remarkably efficient at acquiring relevant information for making
good decisions (Pirolli & Card, 1999; Todd, Hills, & Robbins, 2012). We investigate this
capacity for active learning as a potential source of the gap between human and machine
learning. Using the metaphor of “learning as search”, this thesis aims to understand the
mechanisms that guide human exploration through complex and uncertain environments.

This introduction chapter is structured as follows. We first trace the development of
psychological theories of learning, specifically related to value or reward-based learning (e.g.,
which actions lead to rewarding outcomes). Models of associative learning provide a common
point of origin for both neural theories of human learning and computational algorithms

†160,000 games were used to train the Policy network to classify positions according to expertise, and another
1.6 million games were used to train the policy gradient. Additionally 1.6 billion positions were used to train the
value function, while 8 million positions were used to train the rollout policy. Assuming an average of 183.75
positions per game (as was the case in the dataset used for the policy network), this is equivalent to another 8.7
million games. While this does not include the full extent of training data (but rather only what can be easily
sorted into games), we find that this sums to a total of about 10.5 million virtual games of Go.
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used in large-scale machine learning applications. However, one missing ingredient in the
associative learning framework is the ability to generalize previous experiences to novel
situations. The most influential solution to this problem comes from Shepard’s (1987) law
of generalization, which describes generalization as an exponential function of distance in
an internal representational space. This raises important questions about how knowledge is
organized. A spatial representation is intuitive and largely effective, but lacks the ability to
capture structured and asymmetric representations. We propose a kernel representation of
similarity that unifies both spatial and structural organizations of knowledge. Kernel similarity
forms the basis of a function learning model, which we use to describe how people generalize
limited experiences to a wide set of novel possibilities, with functions representing a candidate
hypotheses about the relationship between actions and outcomes. Across spatial, conceptual,
and structured domains, we show that generalization guides exploration in large problem spaces,
by illuminating which unknown regions seem most promising to explore. Combined with a
bold heuristic that proposes “optimism in the face of uncertainty”, we find evidence for general
principles of generalization-guided exploration at the foundation of human learning.

1.1.1 Learning as search

From foraging for resources in a spatial landscape (Hills et al., 2015; Kolling, Behrens, Mars,
& Rushworth, 2012; Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018) to searching through
hypothesis space in order to learn causal relationships (Bramley, Dayan, Griffiths, & Lagnado,
2017; Mitchell, 1982; Ullman, Goodman, & Tenenbaum, 2012), many aspects of human
cognition can be captured by the metaphor of search. At any moment, we are presented with a
near infinite number of possibilities, from which we must search for the right action to take.
What should I have for lunch? Which path should I take to get to work? Which experiment
should I conduct next? Indeed, this is the exact problem for which Kierkegaard (2004/1849)
coined the term “despair of the infinite“. In such vast decision spaces and with only a finite
horizon for exploration, how can one possibly make the right decision?

William James was one of the first to use the metaphor of search in the context of cognition,
describing how people retrieve memories similar to a person searching for a misplaced item in
a house. “In both cases we visit what seems to us the probable neighborhood of that which we
miss” (James, 1890, Ch. 16). But what defines probable? And how are cognitive representations
organized into neighborhoods? William James appealed to the intuition that search often begins
near associated items, and that the “machinery of recall is thus the same as the machinery of
association” (James, 1890). A lost cup might be found on the kitchen table or near the sink. A
lost key might be by the door or in the hallway.
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Edward Thorndike pioneered the empirical study of this “machinery of association” (James,
1890), by putting cats in puzzle boxes and observing that they escaped faster and faster over
successive trials (Thorndike, 1898, 1911). Thorndike’s “Law of Effect” (1911) stated that
actions associated with satisfaction are strengthened, while those associated with discomfort
become weakened. Together with Pavlov’s (1927) theory of classical conditioning, these early
demonstrations of associative learning using cats and dogs would form the basis for many
theories of human learning in psychology. Both Thorndike and Pavlov were important sources
of inspiration for Clark Hull’s (1943) theory of “drives”, which modulate how stimulus-response
pairings are translated into behavior, as well as B.F. Skinner’s (1938) approach of shaping
behavior through rewards.

1.1.2 Learning by predicting the world

Early approaches to associative learning broadly fall under two categories: classical condition
and operant conditioning. Classical condition (e.g., Pavlov, 1927) described learning as a
passive coupling of stimulus and response, whereas operant conditioning (e.g., Skinner, 1938;
Thorndike, 1911) described learning as a shift of behavior in response to rewards or punishments.
Initially developed as a model of classical conditioning, the Rescorla-Wagner† (RW) model
was greatly influential to both camps of associative learning by reframing learning as an active
process of making predictions of the world. Thus, highly surprising outcomes resulted in
greater changes to learned responses, since the magnitude of the prediction error would be
large (Rescorla & Wagner, 1972). The RW model uses a linear combination of weights wt

and a vector of conditioned stimulus intensities xt (e.g., the sound of a bell) to predict the
unconditioned stimulus V (xt) (e.g., the arrival of food) on trial t :

V (xt) = w⊤
t xt (1.1)

Learning is modeled by updating the weights on each trial based on the prediction error δt :

wt+1 = wt +ηδtxt (1.2)

δt = rt −V (xt), (1.3)

where η ∈ [0,1] is the learning rate parameter, and δt is the prediction error, calculated as the
difference between the acquired reward rt and the predicted value V (xt). Thus, the amount of

†The RW model was originally an extension of the Bush and Mosteller (1951a, 1951b) model, but has largely
overshadowed the latter in terms of popularity. As pointed out by Glimcher (2011), the RW is often incorrectly
attributed as the origin of prediction error updating, although it was first formalized by Bush and Mosteller (1951a,
1951b).



1.1 The gap between human and machine learning 5

Fig. 1.1 Temporal discounting at different discount rates (γ). Lower values of γ result in more rapid discounting
of rewards as a function of time.

learning is modulated by the (un)predictability of rewards, where large prediction errors lead to
larger updates and faster learning. The important contribution of Bush and Mosteller (1951a,
1951b) and the RW model (Rescorla & Wagner, 1972) was in recasting the process of learning
as an active process of making predictions and recalibrating them based on the magnitude of
the error, rather than a solely passive association of rewards.

Temporal difference learning

While the RW model explains learning based on the prediction of immediate rewards, it fails to
address an important aspect of what Minsky (1961) called the “credit-assignment problem”.
Specifically, the RW is unable to distribute credit for delayed or long-term rewards to the
previous actions or stimuli that were involved in producing it. Eating a balanced diet and
exercising regularly may not result in much immediate reward (relative to feasting on fast food
and binge drinking), yet it may be reasonable to expect better long-term rewards. To solve this
problem†, Richard Sutton developed the Temporal Difference (TD) model to learn predictions
of value based on long-term future rewards instead of only immediate rewards (Sutton, 1988;
Sutton & Barto, 1990). TD learning uses a discount factor γ ∈ [0,1] that controls the rate
at which we discount future rewards (Fig 1.1), where the value function V (xt) encodes the
expected sum of discounted future rewards:

V (xt) = E

[
∞

∑
k=0

γ
krt+k

]
(1.4)

†The TD learning model was also designed to solve the problem of modeling continuous time rather than only
discrete time intervals (i.e., trials).
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Fig. 1.2 Dopamine responses adapted from Schultz et al. (1997).

Thus, we can modify the RW prediction error equation based on trying to predict discounted
future rewards instead of only immediate rewards:

δt = rt + γV (xt+1)−V (xt), (1.5)

This value updating equation is identical to the previous RW equation (Eq. 1.3), except for the
addition of the discounted future reward term γV (xt+1). Another way to interpret temporal
discounting is that rewards are generalized to the sequence of previous states that contributed
to the eventual outcome, where the discount factor controls the rate of exponential decay of
reward generalizations over time.

Prediction error and dopamine

The principle of prediction error learning has influenced the majority of modern reinforcement
learning models (Sutton & Barto, 2018), playing an integral role in large-scale applications
from self-driving cars (Michels, Saxena, & Ng, 2005; Sallab, Abdou, Perot, & Yogamani, 2017)
to robotics (Kober, Bagnell, & Peters, 2013; OpenAI et al., 2018). Yet aside from being a useful
principle in applied domains, a prediction error learning rule has also been widely linked to
the firing rate of Dopamine (DA) neurons in the ventral tegmental area (VTA) and substantia
nigra (SNc) of the midbrain (Glimcher, 2011; Lak, Stauffer, & Schultz, 2014; Schultz, 2016).
Based on a previously developed theoretical framework (Montague, Dayan, Nowlan, Pouget, &
Sejnowski, 1993; Montague, Dayan, & Sejnowski, 1996), Schultz et al. (1997) showed that the
activity of midbrain Dopamine (DA) neurons specifically correspond to a TD prediction error
model of learning.

Thirsty monkeys were studied using single cell recordings of DA neurons under two
conditions. In one condition, the monkeys were rewarded with water squirted into their mouths
at unpredictable times without any stimulus present, whereas in the second condition, a visual
stimulus preceded each water reward. In the no stimulus condition, the unpredictable rewards
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were immediately followed by a burst of action potentials in the DA neurons (Fig. 1.2 top).
In the visual stimulus condition, DA neurons initially responded the same as the no stimulus
condition (i.e., a spike following the reward). However, the DA neurons gradually shifted their
response from the actual reward to the visual stimulus that predicted the reward. Eventually,
DA neurons no longer responded to the water reward, but only to the stimulus (Fig. 1.2 middle).
Additionally, once the monkeys learned to associate the stimulus with reward, they were again
shown the stimulus but without any reward occurring. This caused the usual DA response
following the stimulus, but then a depressed DA response when the predicted reward failed to
occur (Fig. 1.2 bottom), indicating a negative prediction error.

Since then, a host of human brain imaging studies (Berns, McClure, Pagnoni, & Montague,
2001; D’Ardenne, McClure, Nystrom, & Cohen, 2008; O’Doherty, Dayan, Friston, Critchley, &
Dolan, 2003; Pagnoni, Zink, Montague, & Berns, 2002; Pessiglione, Seymour, Flandin, Dolan,
& Frith, 2006) have replicated these main results, showing that the prediction error response of
DA neurons is a robust feature of human learning. However, one criticism of this paradigm is
that it fails to account for how people generalize about novel situations (Gardner, Schoenbaum,
& Gershman, 2018; Gershman & Niv, 2015). DA neurons are also shown to respond to novel
stimuli (Ljungberg, Apicella, & Schultz, 1992), with the response fading as the novelty wears
off (Menegas, Babayan, Uchida, & Watabe-Uchida, 2017). This has sometimes been explained
as an exploration or shaping bonus (Gershman, 2017; Kakade & Dayan, 2002). However, other
theories have argued that DA responses are more sophisticated than the model-free prediction
errors of the TD learning model, and that it corresponds to predictions based on inferences
about the structure of the environment (Bromberg-Martin, Matsumoto, Hong, & Hikosaka,
2010; Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Gardner et al., 2018).

While the DA prediction error theory provides one of the rare cases of a top to bottom theory
of cognition†, the scope appears limited to settings where learning occurs through repeated
interactions with the same stimulus. There is still a need to understand how people generalize
to new stimuli and learn to predict rewards in novel situations, since real world learning hardly
ever involves the exact same situation twice (Gershman & Daw, 2017).

1.2 Generalization as similarity

A defining feature of human intelligence is that we are “adaptive systems, whose behavior is
highly flexible” (Simon, 1990). Yet both the RW and TD learning models are only calibrated

†David Marr famously proposed that the study of intelligent systems should be conducted at three different
levels of analysis (Marr, 1982; Marr & Poggio, 1976). The three levels, from top to bottom, consist of: the
computational level (what is the problem being solved?), the algorithmic level (which representations or processes
are used to implement the solution?), and the physical level (how is the system physically realized?).
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for previously experienced pairings of stimulus and reward. Thus, a critical deficiency is that
they fail to account for how people learn and adapt to novel situations. It only takes a small
number of features (e.g., the amount of each ingredient in a meal or a cocktail) such that the
total number of possibilities vastly outnumbers what can be explored in a human lifetime. Yet
even without experience, one can predict that a tuna–marmalade sandwich or a Jägermeister
mayonnaise shot would taste awful (Gershman, Malmaud, & Tenenbaum, 2017). Because we
cannot exhaustively explore all possibilities, what principles guide our exploration towards
promising yet novel items?

In this section we first explore the massively influential literature on stimulus generalization,
where the similarity between stimuli defines the level of generalization. A central question is
how to represent similarity, with deep implications for theories about how people represent
knowledge. An intuitive approach is to use a spatial representation, where larger distances in
representational space correspond to less similarity. However, there are also challenges to the
spatial approach, with alternative representations being better suited for capturing structured
and asymmetric forms of human knowledge (i.e., tree structures or sequential dynamics). We
resolve these issues by introducing a kernel representation of similarity, which can operate on
both spatial and structured forms of knowledge. This also allows us to extend the principles
of generalization between pairs of items to a function learning framework, where a function
represents an inferred relationship between actions and outcomes, producing an adaptive range
of predictions about novel situations.

1.2.1 Shepard’s universal law of generalization

Inspired by Newton’s (1687) laws of physics, Roger Shepard famously proposed that the first
law of psychology should be a law of generalization and that it follows an invariant exponential
form (Shepard, 1987). Already, Pavlov had noticed that his dogs would salivate as a response
to other sounds, distinct from the bell or whistle they had been conditioned on, and that this
response was more likely when the pitch was similar (Pavlov, 1927).

Using a stimulus-response paradigm, Shepard (1958) trained participants (both humans
and animals) to associate a variety of different stimuli (e.g., a specific color or tone) with a
response (e.g., pushing a button or pulling a lever). When the stimuli were modified (e.g., by
changing the hue of a color or the pitch of a tone), the probability of responding decayed as an
exponential function of distance between the original stimulus x and modified stimulus x′:

G(x,x′) ∝ exp
(
−d(x,x′)

)
(1.6)
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Fig. 1.3 Theories of generalization and similarity. a) Shepard’s (1987) law of generalization, where the generaliza-
tion between two stimuli (i.e., probability of confusion) decays as an exponential function of their distance in
“psychological space”. b) An illustration of a psychological space centered on previously encountered stimuli x,
where the blue region indicates a circular consequential region of unknown size (darker colors indicate higher
likelihood). For some new stimuli x′, a larger distance from x corresponds to higher uncertainty about both
belonging to the same consequential region, producing lower levels of generalization. c) Tversky’s (1977) contrast
model, where the overlap indicates features shared by both x and y, while features exclusive to x are on the left
and features exclusive to y are on the right. d) Tenenbaum and Griffiths (2001) show that a Bayesian inference
model of concept learning can unify both Shepard’s law of generalization and Tversky’s contrast model. Based on
previous experiences of a class of items (black crosses), potential consequential regions (ellipses) are considered
as hypotheses (h), where the probability of a hypothesis p(h) is inversely proportion to it’s size (Bayesian size
principle).

G(x,x′) is the generalization gradient indicating the probability of producing the response
associated with stimulus x when x′ is presented (Fig. 1.3a). This exponential generalization
function is able to explain behavior across an impressive range of data sets (Attneave, 1950;
Cheng, 2000; Ekman, 1954; Guttman & Kalish, 1956; Miller & Nicely, 1955), with diversity in
both stimuli (e.g., phonemes, shapes, and colors) and subject (e.g., humans, pigeons, and bees).
Recent work has further grounded the universality of the exponential law of generalization
in fundamental properties of efficient coding given information rate limits (Sims, 2018) and
as a requirement for any perceptual system that is invariant to shifts, stretches, and rotations
(S. A. Frank, 2018).

An important feature of the generalization gradient is the notion of distance between
stimuli d(x,x′), where it is assumed that stimuli are represented as coordinates in an internal
psychological space and that distance is the inverse of similarity (Fig. 1.3b). We discuss
this spatial representation of similarity below, but in plain terms the law of generalization
implies that similar stimuli produce similar responses, with an exponential decay of response
probability as similarity decreases.

1.2.2 Representations of similarity

Similarity is a central theoretical concept in psychology (Goldstone & Son, 2012; Medin,
Goldstone, & Gentner, 1993), and is used in a wide variety of contexts, from category learning
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(Kruschke, 1993; Nosofsky, 1988b), to semantics (Hills, Jones, & Todd, 2012; Landauer &
Dumais, 1997), to the representativeness heuristic (Galesic, Goode, Wallsten, & Norman,
2018; Kahneman & Tversky, 1972). Yet there has been much debate about which metric
or representation to use (e.g., Chater & Vitányi, 2003; Hahn, Chater, & Richardson, 2003;
Tversky, 1977). Here we discuss influential theories about how to represent similarity, which
are fundamentally linked to theories about how knowledge is organized in the brain.

Spatial representations of similarity

Thinking spatially is intuitive. We remember things in terms of places (Dresler et al., 2017;
James, 1890; Yates, 2013), describe the world using spatial metaphors (Lakoff & Johnson,
2008; Landau & Jackendoff, 1993), and commonly use concepts like “space” or “distance” in
mathematical descriptions of abstract phenomena. Previous theories have proposed that spatial
representations have been “exapted” (adapted externally into new domains through evolution)
for organizing more abstract forms of conceptual knowledge (Hills, 2006; Hills, Todd, &
Goldstone, 2008; Todd et al., 2012). This theory has gained new support from neuroscience,
with evidence that grid cells in the entorhinal cortex utilize the same encoding for representing
knowledge in both spatial and conceptual domains (Behrens et al., 2018; Constantinescu,
O’Reilly, & Behrens, 2016). Grid cells are a type of neuron that encode an individual’s location
and orientation in space (Hafting, Fyhn, Molden, Moser, & Moser, 2005), the discovery of
which won May-Britt and Edvard Moser the Nobel prize in 2014. More specifically, grid
cells have also been shown to encode distances in multidimensional feature space (Theves,
Fernandez, & Doeller, 2019), providing neurological evidence for a spatial representation of
similarity across domains.

Early theories of similarity introduced the notion of a psychological space, where stimuli
are embedded as geometric coordinates and a measure of distance (commonly Euclidean or
Manhattan distance) serves to represent the level of (dis)similarity between stimuli (Ekman,
1954; Torgerson, 1952). These early spatial representations were constructed using subjective
ratings of similarity, such that items rated as highly similar were placed in close proximity.
Shepard’s (1987) law of generalization also relies on a metric representation of similarity. But
rather than using similarity ratings, Shepard constructed his psychological space based on
the confusability of different stimuli (i.e., responding to stimulus x when x′ is shown), such
that items producing similar responses are embedded in similar locations. More specifically,
stimuli embeddings are computed using Multidimensional scaling (MDS; Kruskal, 1964a,
1964b; Shepard, 1962a, 1962b) as a means to a preserve the rank-ordering of the data in a
low-dimensional Euclidean space. This monotonic transformation results in a metric space
where the same unit of distance in any direction corresponds to the same level of generalization.
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Shepard assumed that mental representations of categories or natural kinds implicitly
correspond to a consequential region in psychological space (Fig. 1.3b). Thus, generalizations
result from uncertainty about the distribution of stimuli that define this region (Shepard, 1987).
This approach to stimulus generalization has inspired many theories of category learning, where
categories (e.g., dog or cat) correspond to different consequential regions and membership
in a category is determined on the basis of similarity to previously encountered exemplars
(Kruschke, 1992; Nosofsky, 1986). These exemplar models also construct a psychological
space using either similarity ratings (Nosofsky, 1986) or directly using perceptual features
(Kruschke, 1992; Love, Medin, & Gureckis, 2004). A notable deviation from Shepard’s
original formula is that sometimes generalization is observed to follow a Gaussian function
i.e., G(x,x′) ∝ exp

(
−d(x,x′)2), rather than an exponential function† (Nosofsky, 1985, 1988a,

1988b).
Thus, while there is some ambiguity about how to construct a psychological space (similarity

judgments, confusability, or perceptual features) or whether the generalization gradient is
exponential or Gaussian, the basic formula of a spatial organization of knowledge is supported
by neural evidence and has proved to be a useful characterization across multiple domains.

Alternative representations of similarity

One of the main critiques of a spatial representation of similarity comes from Tversky and
colleagues (Beals, Krantz, & Tversky, 1968; Tversky, 1977; Tversky & Gati, 1982), who
argue that the properties of symmetry and the law of triangle inequality inherent to any spatial
representation are regularly violated by human judgments.

Symmetry is based on the fact that the distance between two points d(x,x′) = d(x′,x) is
the same in either direction for any distance metric. An intuitive example of when symmetry
is violated is that we can say “an ellipse is like a circle” but not “a circle is like an ellipse”.
The law of triangle inequality requires that the distance between two points d(a,b) be shorter
or equal to a path that also visits a third point c, such that d(a,b) ≤ d(a,c)+ d(c,b). It is
helpful to visualize the points a, b, and c as the vertices of a triangle, where the direct distance
between two vertices is always shorter than the sum of the other two sides. A verbal example
is that Jamaica is similar to Cuba (because of geography), and Cuba is similar to Russia
(because of political history), but Jamaica and Russia are not very similar. Thus, it appears
that adding a comparison to Cuba reduces the distance between Jamaica and Russia such

†An important caveat is that the exercise of curve fitting is susceptible to identifiablity issues (e.g., the debate
between power law vs. exponential learning curves; Myung, Balasubramanian, & Pitt, 2000; Pitt, Myung,
& Zhang, 2002). There is also a host of animal learning literature that finds Gaussian instead of exponential
generalization gradients (Blough, 1969, 1975; Ghirlanda & Enquist, 2003; Hanson, 1959; Thomas & Bistey,
1964).



12 Exploring the Landscape of Human Learning

that d(Jamaica,Russia) < d(Jamaica,Cuba)+d(Cuba,Russia). Thus, contrary to the law of
triangle inequality, these critiques suggest mental representations may have inherent structures
that cannot solely be captured by a spatial representation of similarity.

Tversky’s (1977) solution to these critiques is expressed in his contrast model of similarity
(Fig. 1.3c), where the similarity of y to x is a function of their shared and distinct features:

S(y,x) = θ f (Y ∩X )−α f (Y −X )−β f (X −Y) (1.7)

where X and Y are the feature sets of x and y, respectively, and θ ,α,β ≥ 0 are weights for
each comparison. Similarity S(y,x) is expressed as the contrast between the shared features
f (Y ∩X ) and distinctive features, f (Y −X ) and f (X −Y).

While the contrast model is commonly considered to be the main alternative to Shepard’s
metric model of generalization, Tenenbaum and Griffiths (2001) show that a Bayesian inference
model of concept learning is able to unite both frameworks. This recasts the problem of
generalization as the problem of inferring whether a new stimuli x′ belongs to the same
consequential region C as previously observed data X (Tenenbaum, 1999; Tenenbaum &
Griffiths, 2001, Fig; 1.3d). This is performed by averaging over potential hypotheses h ∈ H
corresponding to different consequential regions that are consistent with the data

p(x′ ∈C|X) = ∑
h:x′∈h

p(h|x′) (1.8)

where p(h|x′) is computed using Bayes’ rule, and weighted by the prior p(h) such that more
complex hypotheses corresponding to larger consequential regions are less likely (Bayesian
size principle; Tenenbaum & Griffiths, 2001). The Bayesian inference framework operates
on hypothesis space, which is agnostic to either spatial or feature-based representations of
knowledge. Thus, it is able to unify both approaches by producing generalization gradients
equivalent to Shepard’s (1987) law of generalization, while also encompassing the set-theoretic
approach of Tversky’s (1977) contrast model.

Extensions of the Bayesian concept learning approach have made notable contributions
to understanding how people learn rapidly from sparse data, in tasks ranging from inferring
structure (e.g., hierarchically organized tree structures; Kemp & Tenenbaum, 2008, 2009), to
learning generative programs (e.g., motor programs for handwritten characters; Lake, Salakhut-
dinov, & Tenenbaum, 2015; Lake et al., 2017), and causal theories about the world (Griffiths &
Tenenbaum, 2009). While powerful, this approach also suffers from issues of computational
complexity, since the set of potential hypotheses H could be prohibitively large or infinite (for
continuous features). Thus, the sum in Eq. 1.8 may be difficult or impossible to compute in
practice, although a sampling approach can provide approximate solutions within realistic com-
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Fig. 1.4 Kernel generalization gradients. a) The radial basis function (RBF) kernel defines a Gaussian general-
ization gradient over feature space, where colors indicate the decay of generalization for increasing distances
d(x,x′). b) The RBF generalization gradient computed on a 8x8 feature space, where larger distances correspond
to lower assumed correlations of reward. The length-scale λ governs the rate of decay. c) A graph structure used
in Experiment 7, where the connections between nodes define their relationship. Lighter colors indicate lower
levels of generalization relative to node s. d) The diffusion kernel (DF) generalization gradient, where larger graph
distances (shortest path) correspond to lower assumed correlations of reward. The diffusion parameter α governs
the rate of decay.

putational demands (e.g., Dasgupta, Schulz, & Gershman, 2017). Nevertheless, this highlights
the need for a theory of similarity that can describe both metric and structured representations
of knowledge.

1.2.3 Kernel representations of similarity

Having described the advantages and disadvantages of different types of similarity, we propose
a theory of kernel similarity for describing both spatial and structured representations of
knowledge. This approach operates on familiar principles of similarity-based generalization,
yet manages to evade Tversky’s (1977) critiques of symmetry and the law of triangle inequality.
Additionally, kernel similarity provides a bridge from generalizing about discrete stimuli or
categories, to inferring functions relating a continuous range of potential options to expectations
of reward. A small number of experiences can be generalized to produce a value function
across the space of possible options. This inferred value function can be used navigate large
problem spaces by directing search towards locations that seem promising.

A kernel function k(x,x′) expresses a similarity metric for all pairs of points in some data
set X. Mathematically, the kernel function is equivalent to defining an implicit feature map
Φ = φ(X) mapping the data onto a Hilbert space X →HK (Steinwart, Hush, & Scovel, 2006).
A Hilbert space possesses a potentially infinite number of dimensions, yet it never needs to
be explicitly computed, serving merely as a useful mathematical abstraction†. In practice,
the kernel function only requires computing the inner product between pair-wise data points

†Another perspective is that Shepard’s psychological space maps the data onto a lower dimensional Euclidean
space, while a kernel allows us to implicitly represent the data in a higher dimensionality.
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Fig. 1.5 Hilbert space representation of three observed stimuli a, b, and c. The RBF kernel maps all observations
to the surface of a unit sphere in Hilbert space. While measuring distance in the original feature space corresponds
to tracing a path along the surface of the unit sphere (solid lines), the kernel similarity corresponds to moving
through the sphere (dotted lines). Thus, triangle inequality is never violated, because the shortest path between
two points is through the sphere, and never involves a detour intersecting a third point on the surface of the sphere.
Adapted from Jäkel et al. (2008b).

(Mercer, 1909):
k(x,x′) =

〈
φ(x),φ(x′)

〉
(1.9)

This is known as the ’kernel trick’, and one of the main motivation behind the widespread use
of kernel methods in machine learning (Boser, Guyon, & Vapnik, 1992; Schölkopf, Smola, &
Müller, 1997) and psychology (Jäkel, Schölkopf, & Wichmann, 2009), since it allows linear
methods to describe non-linear relationships (Schölkopf & Smola, 2001). Thus, computing a
set of pair-wise comparisons of the stimuli features is sufficient for defining the kernel. Each
comparison computes a similarity metric, which is a function of the distance between stimuli
in feature space (Fig. 1.4a).

RBF kernel

A common choice of kernel is the radial basis function (RBF), which encodes similarity as a
smooth function of the squared euclidean distance between two stimuli x and x′:

kRBF(x,x′) = exp
(
||x−x′||2

2λ 2

)
(1.10)

The RBF kernel produces a monotonically decaying generalization gradient as a function
of the distance between two stimuli x and x′, where the length-scale λ encodes the rate of
decay (Fig. 1.4b). This representation of similarity is conceptually similar to Shepard’s law of
generalization (Jäkel, Schölkopf, & Wichmann, 2008a).
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Even though the RBF kernel is straightforward to compute using pairwise distance compar-
isons, Jäkel et al. (2008b) shows that it offers a solution to the problem of triangle inequality.
While comparisons of distance in any metric feature space are consistent with the law of triangle
inequality, recall that the kernel function involves an implicit mapping onto Hilbert space. Each
observation is mapped as a point on the unit sphere in Hilbert space (Fig 1.5). While the
shortest path in the original feature space corresponds to a path traced over the surface of the
unit sphere (solid line), the shortest distance in Hilbert space is through the sphere (dotted line).
Thus, the direct distance between any two points (through the sphere) is always shorter than a
detour that traces a path across the surface to visit another point. In other words, the law of
triangle inequality is irrelevant for a kernel similarity metric and produces no inconsistencies.
Intuitively, we can think about classical forms of spatial similarity representations as construct-
ing a map, which flattens the topology of the world onto a lower dimensional representation. In
comparison, kernel similarity creates an implicitly higher dimensional mapping, based only on
computing pairwise comparisons.

Diffusion kernel

We can also use a kernel to represent similarity over graph structures (Fig. 1.4c), where
relationships are defined based on connectivity rather than their singular features. From social
networks to subway maps, graph structures are pervasive in both natural and built environments.
Graphs define a more restricted and structured representation of knowledge, where transitions
between nodes are only allowed along defined edges. In contrast, any metric space is equivalent
to assuming that transitions are unrestricted and symmetrical in all directions.

The diffusion kernel (DF; Kondor & Lafferty, 2002) defines a similarity metric k(s,s′)
between the nodes of a graph si ∈ S:

kDF(s,s′) = expαL (1.11)

where L is the graph Laplacian and α is the diffusion parameter controlling the extent to
which generalizations “diffuse” along the graph structure. The graph Laplacian (L = D−A)
captures the connectivity structure of the graph as a function of the adjacency matrix A, where
Ai, j describes the connection weight between si and s j, and the degree matrix D, where the
diagonals describe the degree of each node. Figure 1.4d shows the generalization gradient of
the diffusion kernel, where generalizations decay over longer path distance between nodes.

A more detailed treatment of the diffusion kernel is available in Chapter 6, where we
show that it is exactly equivalent to the RBF kernel in the limiting case of an infinitely fine
lattice graph. Thus, the diffusion kernel can be seen as an extension of the RBF kernel for
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generalization over structured domains, where relationships between stimuli are discrete and
non-symmetric. Indeed, the diffusion kernel as a similarity metric operating on a graph structure
may offer a potential solution to the problem of symmetry posed by Tversky (1977), since
nodes can exert asymmetric influences based on the connectivity structure†.

Additionally, the diffusion kernel has mathematical equivalencies to the Successor Repre-
sentation (SR; Dayan, 1993) model of reinforcement learning. The SR originated as a means
to improve the generalizability of TD learning (Eq. 1.1.2), by decomposing a learned value
function into state-specific rewards and a predictive model of state transitions (e.g., moving
my queen in a game of chess changes the set of future states that are available). Recently,
the SR has been revived as a neurological theory of how the spatial encoding of grid cells in
the entorhinal cortex are selectively skewed towards commonly travelled paths (Gershman,
2018b; Momennejad et al., 2017; Stachenfeld, Botvinick, & Gershman, 2014, 2017). Thus, the
evidence for a common spatial organization of knowledge in the brain also points towards a
representation that is sensitive to the transition structures that define our world. The shortest
path is not as the crow flies, but requires navigating the structures of the environment. As a
result, these structures define the cognitive map we use to navigate the world (Tolman, 1948),
and can be described using a kernel representation of similarity.

1.3 Generalization through function learning

Having provided a brief overview of generalization and representations of similarity, we now
turn to the problem of how to efficiently search for rewards in vast problem spaces. We
established that traditional models of associative learning fail to make informative predictions
about novel situations, and thus looked to theories of stimulus and category generalization
for potential mechanisms to infer the value of novel options. However, rather than making
individual generalizations for each new situation (e.g., Shepard, 1987), we can use the same
principles of similarity-based generalization to make inferences about the relationship between
actions and outcomes in the form of a function (Fig. 1.6 Boyan & Moore, 1995; Carroll, 1963).
Functions represent candidate hypotheses about the world, for example, how pressure on the
gas pedal is related to the acceleration of a car, or how the amount of water influences the
growth rate of a plant. Based on a small number of observations, we can rapidly extrapolate
beyond our experience, in order to predict which regions of the search space seem likely to
yield the desired outcomes.

†For example, a central train station shutting down may have huge impacts on the flow of passengers at other
local stations, whereas a local station shutting down would have relatively little influence on the central station.
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Fig. 1.6 Stimuli generalization and function learning. a) Stimuli generalization makes individual predictions
for each new stimuli by generalizing from previous observations (e.g., using an exponential generalization
gradient). b) Function learning provides a mechanism for learning a function mapping inputs to outputs, providing
predictions about an entire range of possible inputs (e.g., the size of a dog and excitability). The GP model uses a
kernel function to learn a distribution over functions (red lines indicate sampled functions), where each function
represents a candidate hypothesis of the relationship between inputs and outputs.

The question of how people explicitly interpolate or extrapolate from limited data has
been the central focus of research on human function learning, which has traditionally studied
predictions on continuous spaces (e.g., the relationship between two variables; Brehmer, 1974;
Busemeyer, Byun, DeLosh, & McDaniel, 1997; Carroll, 1963; Koh & Meyer, 1991). This line
of research has revealed inductive biases that guide learning (Kalish, Griffiths, & Lewandowsky,
2007; Kwantes & Neal, 2006; E. Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gershman,
2017) and which types of functions are easier or harder to learn (E. Schulz, Tenenbaum, Reshef,
Speekenbrink, & Gershman, 2015).

Earlier theories of function learning used rule-based models that assumed a specific para-
metric family of functions (e.g., linear or exponential; Brehmer, 1974; Carroll, 1963; Koh &
Meyer, 1991). However, the rigidity of rule-based learning struggled to account for order-of-
difficulty effects in interpolation tasks (McDaniel & Busemeyer, 2005), and could not capture
the biases displayed in extrapolation tasks (DeLosh, Busemeyer, & McDaniel, 1997). An alter-
native approach relied on similarity-based learning, using connectionist networks to associate
observed inputs and outputs (DeLosh et al., 1997; Kalish, Lewandowsky, & Kruschke, 2004;
McDaniel & Busemeyer, 2005). The similarity-based approach is able to capture how people
interpolate, but fails to account for some of the inductive biases displayed in extrapolation and
in the partitioning of the input space. In some cases, hybrid architectures were developed to
incorporate rule-based functions in a associative framework (e.g., Kalish et al., 2004; McDaniel
& Busemeyer, 2005) in an attempt to gain the best of both worlds.

More recently, a theory of function learning based on Gaussian Process (GP) regression was
proposed to unite both accounts (Griffiths, Lucas, Williams, & Kalish, 2009; Lucas, Griffiths,
Williams, & Kalish, 2015), because of its inherent duality as both a rule-based and a similarity-
based model. GP regression is a non-parametric method for performing Bayesian function
learning, which has successfully described human behavior across a range of traditional function
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learning paradigms (Griffiths et al., 2009; Lucas et al., 2015), and can account for compositional
inductive biases in human learning (e.g., combining periodic and long range trends; E. Schulz,
Tenenbaum, et al., 2017).

1.3.1 Generalization using Gaussian process regression

Here, we use the GP as a model of how people generalize by learning an implicit value function
over the space of possible options. This corresponds to predictions about novel stimuli by
extrapolating or interpolating from existing data. The key principle of the GP model is a
kernel function, which provides inductive biases encoding expectations about the smoothness
of functions (i.e., that similar inputs produce similar outputs). This is exactly the type of kernel
function we described in the previous section. While we have shown that a similarity-based
approach to generalization has been widely applied in stimulus and category generalization,
here we apply it as a model of function learning to guide the efficient search for rewards.

We provide a formal description of the GP function learning model in Chapter 2, but in
brief, the GP defines a multivariate normal distribution over functions

f ∼ GP
(
m(x),k(x,x′)

)
, (1.12)

where each function f represents a candidate hypothesis for the relationship between stimulus
x and reward y (Fig. 1.6b). A common convention is to set the mean of the distribution to zero
m(x) = 0, such that the GP is entirely defined by the kernel (without loss of generality).

Conditioned on observations of reward Dt = {Xt ,yt}, we can compute a posterior distri-
bution corresponding to predictions about reward. Each prediction is also accompanied by
an estimate of the underlying uncertainty, which provides important guidance about which
regions of the search space would be most informative to sample. In 8 experiments throughout
this thesis, we show that the GP function learning model provides accurate predictions of how
people explore large problem spaces, where both predictions of reward and representations of
uncertainty play an essential role in guiding efficient search behavior.

In this chapter we focused on providing theory-driven motivations for a kernel representation
of similarity, and showed how it resolves challenges faced by other models of generalization and
offers a rich set of connections to psychological and neurological theories of how knowledge
is organized in the brain. In Chapter 2, we show how the GP model fits into the reinforce-
ment learning framework, where the computational challenges of the exploration-exploitation
dilemma motivates the need for efficient models of learning.
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1.4 Thesis roadmap

Over the past 100 years, the study of human learning has evolved from observing cats break out
of strange boxes (Thorndike, 1911), to understanding the neural substrate of reward prediction
errors (Schultz et al., 1997), to using these principles to build artificial intelligence capable of
beating the best human players in skillful games such as Go (Silver et al., 2016). While the
trajectory of this line of research is certainly impressive, a noticeable gap still exists between
the efficiency of human and machine learning. How are people able to rapidly adapt to new
situations and learn from so few examples (Lake et al., 2017)? This is the central question
of this thesis, where we propose a theory of how generalization guides exploration towards
promising options and is responsible for efficient learning in large problem spaces.

Research on stimulus-response learning (Shepard, 1958) and categorization in psychology
has defined generalization as a function of similarity (Shepard, 1987), where similar stimuli pro-
duce similar responses. This principle of similarity-based generalization can be formalized as a
kernel function (Jäkel et al., 2008b), which allows us to not only make pair-wise generalizations,
but can make predictions about a potentially infinite set of possible stimuli by approximating
a function over the input space (Griffiths et al., 2009). This function learning approach to
generalization uses Gaussian Process (GP; Rasmussen & Williams, 2006) regression, which
also resolves competing theories of rule-based and similarity-based function learning through
virtue of an inherent duality (Lucas et al., 2015). Additionally, the GP approach not only
makes predictions about expected values of novel stimuli, but also makes predictions about
the underlying certainty. This is a crucial component of the efficient nature of human learning,
since building a representation of the uncertainty in the world allows for actively and directedly
exploring the parts of the world expected to be most informative. The structure of this thesis is
as follows:

Chapter 2 provides a tutorial on the computational models used throughout the thesis. It
is designed to provide the reader with an intuitive yet sufficiently technical account of the
Reinforcement Learning (RL; Sutton & Barto, 2018) framework, and more specifically the GP
function learning model used in subsequent chapters.

Chapter 3 presents three experiments studying how people search for rewards in problem
spaces far larger than the horizon of search. Being unable to exhaustively explore all options,
participants were instructed to use the spatial correlation of rewards to generalize and infer
which options were the most promising to explore. Experiments 1 and 2 used generated
environments with varying levels of spatial correlation in rewards, while Experiment 3 used
natural environments defined by the yield of various crops, where spatial correlations arise
organically, but at heterogeneous levels both within and between environments. We used
computational models to predict participant choices, where we show that the GP function
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learning model provides the best account of behavior and is able to simulate human-like
learning curves.

Chapter 4 presents a field experiment studying how generalization and exploration changes
over the lifespan. The goal of this chapter is to add clarity to a popular theory that children have
“higher temperature sampling”, which cools off over time, leading to a reduction of random
exploration. We use a computational model where the specific components are distinctively
aligned to different theories about the sources of variability in sampling behavior: the extent of
generalization, the eagerness of exploration directed towards uncertain options, and the level
of random exploration. The results of Experiment 4 show that children do not simply behave
more randomly. Instead, we find that they generalize less than adults, but explore the world
more eagerly, in a distinctively directed fashion.

Chapter 5 connects theories of search in spatial environments to that of conceptual domains.
We present two longitudinal experiments, where participants performed successive search tasks
where either spatial or conceptual features predicted rewards. Experiment 5 used a paradigm
where participants were shown both spatial and conceptual features (plant stimuli differing
in the number of leaves and berries) simultaneous, but only one set of features predicted
rewards. We found a task-order effect, where performance was boosted in the conceptual
domain after experience in the spatial domain, but not vice versa. Additionally, while our GP
function learning model best predicted behavior in the spatial task, it failed to achieve better
performance than a non-generalizing RL model in the conceptual task. However, the GP model
parameters were correlated across both tasks, suggesting participants who generalized more
or who explored more in one domain, also did so in the other. Experiment 6 used a different
task design, where participants used arrow keys to modify a single stimuli displaying only
spatial (location on a grid) or conceptual features (rotation and number of stripes of a Gabor
patch). In both tasks, the GP function learning model was the best predictor of search behavior,
produced human-like learning curves, and was able to prediction of participant judgments about
expected reward and confidence. While this supports the hypothesis that similar principles
govern generalization across domains, we also found intriguing differences, with participants
substituting directed exploration for random exploration in the conceptual task.

Chapter 6 extends the theories and models of the previous chapters from metric spaces to
structured environments. From social networks to subway lines, many real-world human envi-
ronments are defined by graph structures, where generalization is better defined by connectivity
structure rather than some notion of spatial or feature similarity. We describe a diffusion kernel
as a means to perform inference and learn functions over graph structures. The RBF kernel used
in previous chapters is equivalent to the diffusion kernel in the special case of an infinitely fine
lattice graph. Thus, the diffusion kernel provides a broader framework of human generalization
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in both metric and structured spaces, with additional connections to neural theories of predictive
coding (Behrens et al., 2018; Stachenfeld et al., 2017). Experiment 7 presents a function learn-
ing task where participants are asked to predict the number of passengers at various stations
on generated subway maps, where we control the number of observations at other stations.
We show that the diffusion kernel accounts for both predictions and confidence judgments.
Experiment 8 is a bandit task similar to Experiments 1-6, but where the distribution of rewards
are defined by the connectivity structure of a graph. The diffusion kernel predicts participant
choices, produces human-like learning curves, and predicts judgments about expected reward
and underlying uncertainty of unobserved nodes. Taken together, this paints a rich picture
of how generalization is supported by a common organization of knowledge that is not only
sensitive to spatial or feature similarity, but also encodes a predictive map of the transition
dynamics that define structured environments.

Lastly, Chapter 7 provides concluding discussions about the work presented and proposes
yet unanswered questions to be tackled in future research. These include exploring the social
dimension of learning, the difference between description and experience, and building a
process model of generalization by accounting for selective attention, working memory, and
reaction times.





Chapter 2

A Model of Human Generalization

This chapter provides a tutorial on the methods and computational models used throughout
the thesis. We start with an introduction to the reinforcement learning (RL; Sutton & Barto,
2018) framework and show how optimal solutions are only obtainable in limited cases under
restrictive assumptions. This motivates the need for efficient learning strategies that balance
the exploration-exploitation dilemma, where we use the multi-armed bandit problem as an
experimental paradigm for studying human learning.

We first describe common computational solutions that approximate the optimal solutions
using tabular methods from Dynamic Programming, yet still require exhaustive exploration
of the entire search space. Because this scales poorly to larger problem spaces, an alternative
approach is to use value function approximation to learn a global value function.

These two computational approaches map onto two classes of models we use to describe
human learners. The option learning model is based on classic theories of associative learning
and resembles tabular methods by learning independent value representations for each option.
The function learning model is informed by theories of how humans explicitly learn functions
and uses Gaussian Process (GP) regression as a method for generalizing previous observations
of reward to a potentially infinite set of unexplored possibilities.

The option learning and function learning models are combined with a set of sampling
strategies that transform the predictions of expected reward and the underlying uncertainty into
a probabilistic choice framework. These sampling strategies represent different computational
heuristics for navigating the exploration-exploitation dilemma, where we show that “optimism
in the face of uncertainty” provides a remarkably effect strategy for learning.
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2.1 Introduction

Consider the problem of choosing where to go for lunch. Should you exploit your usual option
by going to the café you always go to? This produces a predictable yet rewarding outcome,
but forgoes any opportunity for learning. Or should you explore by visiting a newly opened
restaurant? This might lead to a pleasant or unpleasant surprise, although it will certainly
be informative for future decisions. The key to efficient learning and adaptive behavior is to
balance the two competing goals of exploration and exploitation. This frames the exploration-
exploitation dilemma, which is a central problem in RL. Because optimal solutions in RL are
generally unavailable, an optimal solution to the exploration-exploitation dilemma is likewise
non-existent for all but limiting cases (e.g., infinite time). How do people balance the dual
demands of exploration and exploitation? And what strategies do human learners use to
navigate vast problem spaces where the limited horizon for search is eclipsed by the number of
possible options to choose from?

We begin by describing the reinforcement learning (RL; Sutton & Barto, 2018) framework
for providing computational solutions to problems where learning occurs through interactions
with the environment (Fig. 2.1). Optimal solutions in RL are only available under restrictive
conditions, although approximations based on tabular methods are commonly used. Neverthe-
less, tabular methods require multiple visits to all possible states in the problem space, making
them poorly suited to real world problems where the number of possible states or actions
vastly outnumbers the horizon for search. An alternative method for large problem spaces is to
approximate a global value function across all possible states. This is known as value function
approximation and allows for predictive generalization about the value of unexplored states by
interpolating or extrapolating from a limited set of observation.

These two computational approaches provide a useful distinction that map onto two classes
of models we use to describe human learners. The option learning model is based on classic
theories of associative learning and learns independent value representations for each option,
similar to tabular methods. The function learning model has equivalencies to commonly used
neural network implementations of value function approximation, but is also informed by
psychological theories about how humans learn explicit functions and generalize about novel
stimuli. Combined with a variety of heuristic sampling strategies, these models provide a
probabilistic choice framework that allows us to model human search behavior in a wide variety
of settings, where generalization plays a crucial role in guiding exploration towards promising
options.
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Fig. 2.1 Reinforcement Learning framework adapted from Sutton and Barto (2018).

2.2 Reinforcement learning

The goal in RL is one of acquiring rewards through discovery. Much like an infant learns by
experimenting in the world without an explicit teacher (Oudeyer, Kaplan, Hafner, & Whyte,
2005; Riedmiller et al., 2018), an RL agent must be able to effectively explore the space of
possibilities and carefully balance the competing requirements of acquiring information and
acquiring immediate rewards. Here we present an overview of the RL framework and the
computational challenges that are posed. Table 2.1 provides a summary of the nomenclature
for convenience.

2.2.1 Markov decision process

Let us consider the problem of an agent (biological or machine) navigating a set of states s ∈ S ,
for instance by traveling along a subway network or preparing a meal. The agent selects an
action a ∈A at each point in time t (e.g., boarding a train or chopping onions), which results in
a new state s′ with probability P(s′|s,a). Each state-action pair corresponds to some reward
R(s,a), which is typically learned through feedback from the environment. This defines a
Markov decision process (MDP) where the agent’s goal is to learn a policy π over actions that
maximizes the cumulative reward. We can write this in terms of a value function Vπ(s):

Vπ(s) = ∑
a

π(a|s)∑
s′

P(s′|s,a)
[
R(s′,a)+ γVπ(s′)

]
(2.1)
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Table 2.1 Summary of reinforcement learning terminology

Variable Description

S A set of states. The environment is in some state s ∈ S at each time point.

A A set of actions. The agent selects action a ∈ A at each time point.

P(s′|s,a) Transition probability. The probability of ending up in state s′ when performing
action a from the current state s.

R(s,a) Reward function. The immediate rewards for the state-action pair (s,a).

γ Temporal discount parameter. In the range 0 ≥ γ ≥ 1, where smaller values
discount long-term future gains more heavily, relative to short-term gains.

V (s) Value function. The expected future discounted returns for state s.

π A policy. Defines the probability distribution over actions π(a|s) for any state s.

For any state s, the value function Vπ(s) defines an expectation over all possible actions and all
possible outcomes, corresponding to the discounted future rewards† that the agent can expect
to earn following policy π . The value function is dependent on policy π , which defines a
probability distribution over actions π(a|s). Intuitively, the policy can be interpreted as an
action plan for how the agent should behave in any given state.

Theoretically, we can define an optimal value function V∗(s) using the Bellman (1957)
equation:

V∗(s) = max
a ∑

s′
P(s′|s,a)

[
R(s,a)+ γV∗(s′)

]
(2.2)

The Bellman equation utilizes the Markov assumption of the MDP framework (i.e., that a future
state depends only on the current state), to define the value of state s based on the immediate
rewards R(s,a) and the discounted value of successor states s′. If the optimal value function
can be computed, then the optimal policy π∗ becomes rather trivial and merely corresponds to
selecting the best action in any state.

While the Bellman equation represents a theoretically optimal solution, computational
limitations make it intractable except under restrictive conditions for very simple problems.
More commonly, methods from dynamic programming known as tabular methods are used to
compute approximate solutions to the Bellman equation. We first discuss tabular methods as
approximation of the optimal solution that may be suitable for problems with small problem

†The temporal discount parameter γ determines how short-term gains are valued relative to long-term gains.
See Temporal difference learning (section 1.1.2)
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spaces, followed by a discussion of the difficulties in scaling them up to larger problems where
we cannot afford to exhaustively explore all possibilities.

2.2.2 Tabular methods for small problem spaces

In small problem spaces there are computational solutions that approximate the optimal solution,
but still require exhaustive search. These tabular solutions are based on methods from Dynamic
Programming (DP; Bellman, 1957), which were first proposed by Minsky (1961) for solving
RL problems. While computationally simpler than directly solving the Bellman equation,
tabular methods may still be inappropriate when it is not possible to experience all possibilities.
For instance, Claude Shannon’s (1988) conservative lower bound on the number of possible
board positions in the game of chess is 10120, where comparatively, the number of atoms in the
observable universe are estimated to only be 1080.

Value iteration

Value iteration resembles the recursive form of the Bellman equation by iteratively visiting
all states and updating the value function until a stopping policy terminates search once the
algorithm has converged on a “good enough” solution. We begin by initializing the value
function as V0(s) = 0 for all states, and then repeatedly visiting each state and iteratively
updating the value function until convergence:

Vk+1(s) = max
a∈A

∑
s′

P(s′|s,a)[R(s,a)+ γVk(s′)] (2.3)

The are many types of stopping rules, with one common approach based on the Bellman
residual (Puterman, 1994; Zhang & Zhang, 2005), which defines a small positive value θ and
terminates search when the maximal change in the value function is less than θ :

max
s∈S

|Vk(s)−Vk−1(s)|< θ (2.4)

However, there are no performance bounds on how well Vn approximates the optimal value
function V∗ (Geist, Piot, & Pietquin, 2017), where n is the number of iterations before the
Bellman residual stopping rule is reached. This is because the local updates in Equation 2.3
may result in a value function Vn that is only a local optima, and may be substantially inferior
to some global optimum that has not been found.
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Policy iteration

Policy iteration consists of alternating between evaluating a policy and then improving the
policy, which repeats until convergence. Policy evaluation is performed by starting with some
policy π0 (often a random policy), and then visiting each state s ∈ S in order to iteratively learn
a value function Vπ0 using Eq. 2.3. The policy π0 is then improved by again visiting each state
s ∈ S in order to define a new policy based on selecting the best possible action in each state
based on Vπ0(s):

πk+1 = argmax
a ∑

s′
P(s′|s,a) [R(s,a)+ γVπk ] (2.5)

This process then repeats over n iterations until some policy πn emerges that may approximate
the theoretically optimal π∗. Policy iteration has many caveats, such as requiring a visit to each
individual state 2n times, and that convergence is not guaranteed. Indeed, the choice of policy
greatly influences the value function that is learned, such that a low-value state for one policy,
may in fact be a high-value state for some other policy.

Limitations of tabular methods

Value iteration and policy iteration are known as tabular methods because the value of each state
is learned independently from other states (Fig. 2.2 left). We can imagine a large lookup table,
where each state corresponds to a single value that is individually updated based on observations
of reward. Both value iteration and policy iteration provide computational approximations of
the theoretically optimal solution (Eq. 2.2), yet still require multiple visits to every state in the
problem space. This is simply not feasible for many real world learning environments, where
the number of possible states greatly outnumbers what can be experienced in a human lifetime.
In these cases, the value of unobserved states must be defaulted to zero or some prior value.

2.2.3 Value function approximation for large problem spaces

In order to scale to problems with large problem spaces, one solution from the RL framework is
to approximate a global value function (Fig. 2.2 right). This transforms the problem of learning
a large number of independent values for each state into a function learning problem, where the
goal is to learn the appropriate function mapping states onto values f : s →V (s). We explore
different approaches to function learning in Section 2.3.2, while here we can broadly define an
approximate value function V̂ parameterized by a weight vector w and the state s at which it is
evaluated:

V̂ (s,w)≈Vπ(s) (2.6)
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Fig. 2.2 Value functions. Tabular value functions (left) learn the value of each state independently, where
unobserved states have a default value of 0 or set to some prior. Value function approximation learns a continuous
value function (red line) over the entire state space, where predictions are made about unobserved states through
interpolating or extrapolating the value function from the set of observed states (green dots).

The weight vector w can correspond to the weights of a linear function over features of the
state space, or more commonly in machine learning, to the weights of a neural network. Neural
networks are increasingly common implementations of RL agents (Mnih et al., 2015; Silver et
al., 2016), where whether they be deep or shallow, are specifically a type of universal function
approximator (Schölkopf, 2015). The inputs of the neural network are translated into some
output by the connection weights, thus corresponding to a function.

A common method for learning the weight vector w is to use Stochastic Gradient Descent
(SGD) to minimize the error between the approximate value function V̂ (s,w) and the observed
value (Sutton & Barto, 2018). SGD is a type of local optimization with an added component of
randomness, which can perform well in very high dimensional environments (i.e., having many
weights corresponding to many features), where it is less likely to to become stuck in a local
optima (Bottou, 2010). However, the number of function evaluations (i.e., costly observations
of reward from the environment) may still be prohibitively large.

One specific approach for approximating a value function is based on using Radial Basis
Function (RBF) networks (Poggio & Girosi, 1989, 1990, see Fig. 2.4), which generalize a finite
set of observations to nearby regions of the input space. This represents a type of inductive bias
that can lead to more efficient function approximation by assuming some level of smoothness
of the value function. We discuss this in Section 2.3.2, where we show that GP regression
using a RBF kernel learns an equivalent value function, but has the added advantage of making
predictions about the underlying uncertainty. Representations of uncertainty are necessary for
directed exploration strategies that prioritize exploring highly uncertain regions of the state
space, leading to more efficient learning.



30 A Model of Human Generalization

2.2.4 Multi-armed bandit problem

While RL provides a computational framework for a very general class of problems, we now
narrow our focus to the multi-armed bandit (MAB) problem (Robbins, 1952; Wald, 1947) as
a simpler subclass of RL problems. In the MAB framework, we can effectively ignore states
and state transitions to focus on selecting actions that produce good rewards. Yet, even in this
simpler class of problem, optimal solutions are still intractable under finite time horizons†

(Lusena, Goldsmith, & Mundhenk, 2001; Reverdy, Srivastava, & Leonard, 2014).
Named after a colorful metaphor for a slot machine (i.e., a one-armed bandit), the MAB

problem imagines an agent in front of a row of slot machines. Here, actions correspond to the
agent selecting one of the available options x ∈ X, and acquiring some stochastic reward R(x).
Because the rewards are a priori unknown, the agent needs to both explore new options to gain
information and exploit options known to have high rewards. From choosing which beer to try
at a craft brewery or deciding where to go for lunch, the exploration-exploitation dilemma, is a
ubiquitous feature of human learning.

While many MAB problems are framed such that each option has an independent reward
distribution (Gershman, 2018a; Steyvers, Lee, & Wagenmakers, 2009; Wu, Schulz, Gerbaulet,
Pleskac, & Speekenbrink, 2019), the experiments in this thesis use environments with correlated
rewards, such that similar options yield similar outcomes. This is a common feature of real
world environments (e.g., the natural availability of food; see Experiment 3) and is equivalent
to the assumption of patchy (Hills et al., 2008; Wilke et al., 2015) or spatially correlated reward
distributions (Srivastava, Reverdy, & Leonard, 2015). The correlation of rewards provides
traction for generalization, which can be learned and used to efficiently direct search towards
promising locations of the search space. Additionally, while many MAB tasks allow for
exhaustive sampling of all options, our interest in the problem of generalization motivates the
use of short horizons, where the number of possible options is greater than the available number
of actions. This makes generalization particularly important and amplifies the difference
between efficient and inefficient search strategies.

2.3 Models of human learning

We now turn to the problem of describing and modeling human learners in a MAB task. The
distinction between tabular methods and value function approximation map onto two classes of

†The Gittins index (Gittins, 1979; Gittins & Jones, 1974) provides an optimal solution for the MAB problem by
transforming it into a series of optimal stopping problems for each option, yet requires the prohibitive assumption
of infinite time and exponential discounting. Additionally, Lai and Robbins (1985) describe a solution that reaches
an asymptotically optimal lower bound on performance, but also in the limit of infinite time.
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models we use to describe human learners. Traditional models of human reinforcement learning
are similar to tabular methods because they assume humans learn independent associations of
rewards for each individual stimulus or option. The Rescorla-Wagner (RW; 1972) and Temporal
Difference (TD; Sutton, 1988; Sutton & Barto, 1990) learning models described in Chapter 1
are examples of this approach, while here we introduce a Bayesian variant for modeling human
learners (see Bayesian Mean Tracker). In the context of human learning, we call this the option
learning model.

While value function approximation is commonly implemented using neural networks
(Mnih et al., 2015; Silver et al., 2016) in large-scale machine learning problems, here we use a
Gaussian Process (GP; Rasmussen & Williams, 2006) implementation as a psychologically
intepretable model of human function learning (Griffiths et al., 2009; Lucas et al., 2015;
E. Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gershman, 2016; E. Schulz, Tenenbaum,
et al., 2017). GPs also have mathematical equivalencies to neural networks (Neal, 2012),
meaning we do not need commit ourselves to either implementation. However, a useful feature
of the GP model is that it uses a kernel to encode inductive biases, which we show to be
conceptually related to Shepard’s law of generalization. We call this the function learning
model.

Both the option learning and function learning models generate Bayesian predictions of
reward for any option x that can be decomposed into predictions about the expected reward
m(x) and the underlying uncertainty v(x). These two components allow us to define a variety of
sampling strategies that implement heuristic solutions to the exploration-exploitation dilemma.
These sampling strategies represent different approaches to balancing the exploitation of high
expected rewards m(x) while also exploring optioned deemed to be highly uncertainty v(x).
We begin by introducing the option learning and function learning models of human learning,
followed by a discussion of potential sampling strategies. Lastly, we also consider several
heuristics that do not build a representation of the world (i.e., no predictions about reward), but
also capture aspects of human search behavior (Bonawitz, Denison, Gopnik, & Griffiths, 2014;
Raichlen et al., 2014).

2.3.1 Option learning

We use a Bayesian Mean Tracker (BMT) as a prototypical model of associative learning that
learns independent reward distributions for each option. Formally, the BMT is a type of Kalman
filter (Dayan, Kakade, & Montague, 2000; Kruschke, 2008), which originated as a method for
controlling dynamic systems (Kalman, 1960), but can be understood as a Bayesian extension
of the traditional Rescorla-Wagner (1972) model (Gershman, 2015). The BMT differs from the
standard Kalman filter by making the simplifying assumption that the rewards associated with
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each option remain constant over time (Speekenbrink & Konstantinidis, 2015). This assumption
allows us to focus on how people generalize over the space of possible options, by omitting
complex temporal dynamics.

The BMT assumes a normal prior distribution of rewards N (m j,0,v j,0) computed indepen-
dently for each option j, where m j,0 is the prior mean and v j,0 is the prior variance. Given
some observations Dt−1 = {Xt−1,yt−1} of rewards yt−1 for inputs Xt−1, the BMT learns the
rewards of each option independently by computing independent posterior distributions for the
mean µ j for each option j

P(µ j|Dt−1) =N (m j,t−1,v j,t−1) (2.7)

In each iteration, the posterior mean m j,t and variance v j,t for the option j chosen at time t are
updated based on the prediction error:

m j,t = m j,t−1 +δ j,tG j,t
[
y j,t −m j,t−1

]
(2.8)

v j,t =
[
1−δ j,tG j,t

]
v j,t−1 (2.9)

where δ j,t = 1 if option j was chosen on trial t, and 0 otherwise. Additionally, y j,t is the
observed reward for option j at time t, and G j,t is the Kalman gain, which is defined as:

G j,t =
v j,t−1

v j,t−1 +θ 2
ε

(2.10)

where θ 2
ε is the error variance parameter. Intuitively, the estimated mean of the chosen option

m j,t is updated based on the difference between the observed value yt and the prior expected
mean m j,t−1 (i.e., prediction error), scaled by the Kalman gain G j,t . At the same time, the
estimated variance v j,t is reduced by a factor of 1−G j,t , which is in the range [0,1]. The error
variance (θ 2

ε ) can be interpreted as an inverse sensitivity, where smaller values result in more
substantial updates to the mean m j,t , and larger reductions of uncertainty v j,t .

Similar to the tabular methods described above, the BMT uses repeated interactions with
the environment to learn about the rewards of each option independently. Thus, predictions
about unobserved options are defaulted to some prior (Fig. 2.5a). However, one distinction is
that the BMT computes a Bayesian posterior distribution, making predictions about both the
expected mean and the estimated uncertainty. Repeated observations about an option reduce
the uncertainty, reflecting higher confidence over the course of learning.



2.3 Models of human learning 33

2.3.2 Function learning

The function learning model uses Gaussian Process (GP; Rasmussen & Williams, 2006)
regression as a model of how people learn an implicit value function over the space of possible
options. The GP model is informed by research on how people perform explicit function
learning (Griffiths et al., 2009; Lucas et al., 2015), and has equivalencies to neural network
methods used in large-scale machine learning applications (Neal, 2012; Poggio & Girosi, 1989,
1990).

Like the BMT model described above, the GP also makes Bayesian predictions about reward
that can be decomposed into a prediction about the expected reward m(x) and the underlying
uncertainty v(x), but where x can be any point in a continuous input space. Unlike the BMT
model, the observations about rewards at input x also influence predictions about rewards at
other inputs x′ based on the kernel similarity k(x,x′). Thus, the GP uses function learning
as a mechanism for continuous generalization across the space of possible inputs, making
predictions about a potentially infinite set of possibilities from a small set of observations.

In order to introduce the mathematics of the GP regression framework, we first begin with
the traditional weight-space view of regression. This approach requires making parametric
assumptions about the type of function to be learned, which are often inflexible and unforgiving
in the case of a mismatch with the environment. We transition to the function-space view of
regression used in the GP framework, which is capable of learning any stationary function by
matching the complexity of the function to the complexity of the data.

Weight-space: linear regression

Let us consider the simple example of learning a function f from a set of observations D =

{X,y}, where xi ∈ X are the inputs and yi ∈ y are the outputs. For example, imagine we are
making a soup, and want to learn how the quantities of each ingredient contribute towards the
overall taste. The input vector xi represents a specific set of features (e.g., the amount of each
ingredient) that we will use to predict the output yi (e.g., the taste). We can write this function
as:

yi = f (xi)+ ε (2.11)

where we assume Gaussian noise ε ∼N (0,σ2
ε ) on each observation. The typical weight-space

view of function learning uses a linear combination of weights such that

yi = w⊤xi + ε (2.12)
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where w = [w0,w1, · · · ,wd] are the weights of the model and we redefine xi = [1,xi] by append-
ing a value of 1 for the intercept term (w0). The maximum likelihood estimate (MLE) of the
weights can be found by minimizing the Residual Sum of Squares (RSS):

RSS(w) =
n

∑
i=1

(yi − ŷi)
2 = ||y−Xw||2 (2.13)

where ŷi is the model prediction for input xi based on w⊤xi, and where predictions for each of
the n observations in D are given by Xw. A simple analytic solution is available through the
Moore-Penrose pseudoinverse (Penrose, 1955):

ŵ =
(

X⊤X
)−1

X⊤y (2.14)

where ŵ is the maximum likelihood estimate (MLE)† that minimizes the prediction error
defined in Eq. 2.13. This defines a simple format for learning any linear function (Fig. 2.3a).
However, not all functions are linear. Imagine a function mapping the happiness of child to
the amount of force used to push them on a swing, or your own happiness as a function of the
amount of pizza you eat. A linear function would assume that the highest levels of happiness
would be on either extreme, of no force or maximum force, or no pizza or infinite pizzas. The
reader is not recommended to try this at home.

The weight-space solution to learning non-linear functions proposes using a feature map
to transform the input space X into a feature space Φ = φ(X). One common example is the
polynomial kernel where φ(xi) = 1+xi +x2

i + · · ·+xk
i , with k representing the order of the

largest polynomial (Fig. 2.3b). Thus, we can substitute xi with the feature mapped φ(xi) in
equation 2.12:

yi = w⊤
φ(xi)+ ε (2.15)

The use of a feature map in the weight-space linear regression framework makes parametric
assumptions about the class of function being learned. With the case of the polynomial kernel,
the choice of k makes rigid assumptions about the complexity of the function to be learned. A
mismatch in choosing either an overly complex or overly simple functional form can lead to
inaccurate representations of the data and produce poor predictions about unobserved inputs

†Linear regression can also be extended to the Bayesian framework by assuming a prior over weights,
for instance a Gaussian prior p(w) = N (0,Σ). In this case, the likelihood can be described as p(y|X,w) =

N (X⊤w,σ2
ε I), and the posterior distribution over weights is given by p(w|y,X) =N

(
1

σ2
ε

A−1XX⊤,A−1
)

, where

A = Σ−1 + σ−2
ε XX⊤. In the Bayesian framework, finding the right weights for the model is equivalent to

performing Bayesian inference. See Williams (1998) and Chapter 3 of Bishop (2006) for more details.
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Fig. 2.3 Types of regression. a) Linear regression using the Bayesian framework. b) Regression with a polynomial
kernel of degree 3. c) Gaussian process regression with a RBF kernel. Each black point is an observation, while
the blue lines indicate the posterior mean and the blue ribbon indicates the 95% confidence interval. The red lines
are examples of candidate functions computed by sampling from the posterior distribution of weights (a,b) or by
sampling directly from the posterior distribution over functions (c).

(Pitt & Myung, 2002). We now turn to the GP regression framework where the complexity of
the function is directly determined by the complexity of the data.

Function-space: Gaussian Process regression

A Gaussian Process (GP) defines a distribution over functions f : X → Rn that map the input
space X to real-valued scalar outputs (Rasmussen & Williams, 2006). Each function f can be
modelled as a random draw from a multivariate normal distribution:

f ∼ GP
(
m(x),k(x,x′)

)
, (2.16)

where m(x) is a mean function specifying the expected output of the function given input x,
and k(x,x′) is a kernel (or covariance) function specifying the covariance between outputs.
A common convention is to set the mean function to zero, such that GP prior is completely
defined by the kernel (without loss of generality).

We use the Radial Basis Function (RBF) kernel to model the covariance between points as
an exponentially decreasing function of their squared Euclidean distance:

k(x,x′) = exp
(
−||x−x′||2

2λ 2

)
(2.17)

The length-scale parameter λ modifies the rate of generalization decay, with larger λ -values
corresponding to slower decays, generalization over larger distances, and smoother functions.
As λ →+∞, the RBF kernel assumes functions approaching linearity, whereas as λ → 0, there
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Fig. 2.4 RBF network (adapted from Jäkel et al., 2008a). The posterior mean of the GP can also be interpreted
as a weighted sum of the similarities between a target input x∗ and the previous observations xi ∈ Xt . This is
equivalent to a single layer RBF network that has featured prominently in machine learning approaches to value
function approximation (Sutton & Barto, 2018) and as a theory of the neural architecture of human generalization
(Poggio & Bizzi, 2004).

ceases to be any spatial correlation, with the implication that learning happens independently
for each input without generalization (similar to traditional models of associative learning).

Given some observations Dt = {Xt ,yt} of observed outputs yt at inputs Xt , we can compute
the posterior distribution p( f (x∗)|Dt) for any target input x∗. The posterior is a normal
distribution with mean and variance defined as:

m(x∗|Dt) = k⊤
∗,t(K+σ

2
ε I)−1yt (2.18)

v(x∗|Dt) = k(x∗,x∗)−k⊤
∗,t(K+σ

2
ε I)−1k∗,t (2.19)

where Kt is the t × t covariance matrix evaluated at each pair of observed inputs, k∗,t =

[k(x1,x∗), . . . ,k(xt ,x∗)] is the covariance between each observed input and the target input x∗,
I is the identity matrix, and σ2

ε is the noise variance. Thus, for any input (including unobserved
inputs not in Xt), we can make Bayesian predictions about the expected reward m(x∗|Dt) and
also the level of uncertainty v(x∗|Dt) (see Figs. 2.3c and 2.5a).
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Generalization as a similarity-weighted sum

We can also return to the weight-space view of regression and rewrite the posterior mean
function of the GP as:

m(x∗|Dt) =
t

∑
i=1

wik(xi,x∗) (2.20)

where each xi is a previously observed input and the weights are collected in the vector
w=

[
k(Xt ,Xt)+σ2

ε I
]−1 yt . Intuitively, this means that GP regression is equivalent to a linearly-

weighted sum using basis functions k(xi,x∗) to project observed inputs onto a feature space
(Rasmussen & Williams, 2006; E. Schulz, Speekenbrink, & Krause, 2018). To generate new
predictions for an unobserved input x∗, each output yi is weighted by the similarity between
observed states xi ∈ Xt and the target input x∗.

Formally, Eq. 2.20 is equivalent to a single layer neural network known as a RBF network
(Jäkel et al., 2008a, see Fig. 2.4), which has been proposed as a theory of the neural architecture
of generalization in vision and motor control (Poggio & Bizzi, 2004). However, one important
difference is that the GP implementation described above also computes uncertainty estimates
while the RBF network only predicts expected reward.

2.4 Sampling strategies

Having defined BMT option learning and GP function learning as candidate models for how
people learn from experience and make predictions about reward, we now describe various
sampling strategies that convert these predictions into valuations of where to sample next. These
strategies can be understood as heuristics for trading off between exploring highly uncertain
options in order to improve future behavior and exploiting known options for immediate reward.
Beyond just predicting which options will produce high-value rewards, efficient learning also
requires selectively sampling informative options that reduce our uncertainty about the world.

Both the option learning and function learning models generate normally distributed pre-
dictions about each option x, which have mean mt(x) and variance vt(x) (Fig. 2.5a). For
the Option Learning model, we let mt(x) = m j,t and vt(x) = v j,t , where j is the index of the
option characterized by x. Each sampling strategy transforms these Bayesian predictions into
a value q(x), which is then put into a softmax choice rule (Eq. 2.27) to produce probabilistic
predictions about where participants search next at time t +1.
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Fig. 2.5 Illustration of learning models, contrasting how the BMT-UCB option learning model (top row) and the
GP-UCB function learning model (bottom row) make predictions about search behavior. a) Based on a set of
observed rewards (orange diamonds) the BMT option learning model makes predictions about the expected reward
(blue bars) and the estimated uncertainty (error bars showing 95% CI). Unobserved options are defaulted to a
prior mean and prior uncertainty (set to m0 = 50 and v0 = 102). In contrast, the GP function learning model uses
observed rewards (orange diamonds) to generalize across the search space, with the green line indicating expected
rewards and the shaded ribbon indicating the uncertainty (95% CI). b) The UCB sampling strategy computes
a valuation of each option based on a weighted sum of the expected reward and uncertainty estimate, where β

defines how much the reduction of uncertainty is valued relative to exploiting high value rewards. The top panel
shows the BMT-UCB strategy where the dark error bars indicate β = 1 and the light error bars indicate β = 2.
UCB values are uniformly large for unexplored options. The bottom panel shows the GP-UCB strategy, where the
dark green ribbon shows the UCB value for β = 1 and the light green shows β = 2. The highest UCB values are
in unexplored regions near to high observations of reward. c) The softmax choice rule transforms the valuations of
any sampling strategy into a probabilistic choice framework, where the temperature parameter τ controls the level
of undirected sampling noise. The top panel shows the probabilistic predictions of the BMT-UCB model (β = 1),
where the blue bars indicate a low temperature τ = 1 and red indicates a high temperature τ = 10. Note that the
highest probabilities tend to be for previously chosen options (indicated by orange diamonds). In contrast, the
predictions of the GP-UCB model (β = 1) are directed towards regions of the search space similar to previous
observations of high rewards, which prominently includes unobserved options.
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2.4.1 Upper Confidence Bound Sampling

Upper confidence bound (UCB) sampling (Auer, 2002) represents an optimistic approach to
the explore-exploit dilemma because it places a positive value on uncertain options. The value
of an option is computed using a simple weighted sum:

UCB(x) = mt(x)+β
√

vt(x), (2.21)

where the exploration factor β determines how much the reduction of uncertainty is valued
relative to the exploitation of high-value options. Sometimes referred to as “optimism in the
face of uncertainty” (Bubeck & Cesa-Bianchi, 2012), the intuition behind UCB sampling is
that search is directed towards highly uncertain options (Fig 2.5b). As uncertainty diminishes
through successive observations of reward, the overall uncertainty in the environment dimin-
ishes and the expected reward term begins to play a larger role in determining the value of an
option.

The optimism of UCB sampling contrasts with economic approaches to determining value
under uncertainty. A common utility function in the Mean-Variance Theory (MVT) framework
(Markowitz, 1952) is to assign a negative value to uncertainty (Meyer, 2014). However, in the
RL domain where optimal solutions are generally unavailable, UCB sampling combined with
GP regression is one of the only known algorithms with theoretical guarantees (Srinivas, Krause,
Kakade, & Seeger, 2010). The exploration term in Eq. 2.21 guarantees that UCB sampling
achieves a constant fraction of the maximum information gain in each sample, thus providing a
lower bound on performance. This makes UCB a highly competitive algorithm in Bayesian
optimization, which has been successfully applied to robotics (Cully, Clune, Tarapore, &
Mouret, 2015), ecology (Gotovos, Casati, Hitz, & Krause, 2013), and protein biology (Romero,
Krause, & Arnold, 2013), where search is costly and efficient exploration is valuable.

2.4.2 Pure Exploitation and Pure Exploration

Upper Confidence Bound sampling can be decomposed into a Pure Exploitation component
and a Pure Exploration component:

PureExploit(x) = mt(x) (2.22)

PureExplore(x) =
√

vt(x) (2.23)

These strategies are meant to illustrate the important contribution of both components in the
UCB framework. However, equivalent approaches are widely used in a variety of decision
making and learning problems. The PureExploit strategy is equivalent to greedy methods used
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in decision making (Meder, Nelson, Jones, & Ruggeri, 2018), while the PureExplore strategy
implements the information gain maximizing solution (Lindley, 1956; Nelson, 2005) when
combined with the GP framework Krause and Ong (2011).

2.4.3 Probability of Improvement.

We can also define a sampling strategy that values an option based on the probability of
improving upon the best observed outcome (Močkus, 1975). At any point in time t, the
best observed outcome can be described as x+ = argmaxxi∈Xt mt(xi). The probability of
improvement (POI) strategy evaluates each option based on high likely it improves on x+:

POI(x) = P
(

f (x)≥ f (x+)
)

= Φ

(
mt(x)−mt(x+)√

vt(x)

)
(2.24)

where Φ(·) is the cumulative density function (CDF) of a normal distribution (since both the
BMT and GP produce normally distributed posterior predictions). A similar strategy is also
used in Gershman et al. (2017) in predicting how people sample novel food combinations.

2.4.4 Expected Improvement

Rather than evaluating an option by the extent of the probability of improvement , the Expected
Improvement (EXI) strategy evaluates an option based on how much (in the expectation) it
promises to be better than the best observed outcome x+:

EXI(x) =

Φ(Z)(mt(x)−mt(x+))+
√

vt(x)φ(Z), if
√

vt(x)> 0

0, if
√

vt(x) = 0
(2.25)

where Φ(·) is the normal CDF, φ(·) is the probability density function (PDF) of a normal
distribution, and Z = (mt(x)−mt(x+))/

√
vt(x).

2.4.5 Probability of Maximum Utility.

The Probability of Maximum Utility (PMU) uses a form of probability matching (Gaissmaier &
Schooler, 2008; Neimark & Shuford, 1959) to sample each option according to the probability
that it results in the highest reward of all options in a particular context (Speekenbrink &
Konstantinidis, 2015). It can also be understood as an implementation of Thompson sampling
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(Gershman, 2018a; Thompson, 1933), where we use Monte Carlo sampling from each option’s
predictive distributions, and then assign a probability to each option proportional to the number
of times it has the highest sampled payoff:

PMU(x) = P
(

f (x j)> f (xi̸= j)
)

(2.26)

We compute 1,000 Monte Carlo samples from the posterior distribution of each option, and
then evaluate the proportion of times a given option turns out to be the maximum.

2.4.6 Softmax choice rule

All sampling strategies produce a valuation for each option q(x). We then use a softmax choice
rule to compute a probability distribution over options

p(x) =
exp(q(x)/τ)

∑
N
j=1 exp(q(x j)/τ)

, (2.27)

where q(x) is the predicted value of each option x for a given sampling strategy (e.g., q(x) =
UCB(x) for UCB sampling), and τ is the temperature parameter (Fig. 2.5c). Lower values
of τ produce more concentrated probability distributions centered on the option with the
maximum value, where the limit of τ → 0 is equivalent to an argmax choice rule. Larger
values of τ produce noisier choice distributions, where in the limit of τ → ∞ produces a
uniform distribution over choices. We can also understand τ as controlling the level of noisey,
undirected exploration, which can be contrasted with the UCB β parameter that controls the
level of directed exploration, targeted towards highly uncertain options.

2.5 Heuristic strategies

We also compare various heuristic strategies that make predictions about search behaviour
without learning about the distribution of rewards. These are not combined with either the
option learning or function learning models, and make predictions about behavior without
maintaining either a tabular or function-like representation of the world (Gigerenzer, Todd, &
the ABC Research Group, 1999; Hertwig, Hoffrage, & Martignon, 1999; Todd & Gigerenzer,
2007).



42 A Model of Human Generalization

2.5.1 Win-stay lose-sample

We consider a form of a win-stay lose-sample (WSLS) heuristic (Bonawitz et al., 2014), where a
win is defined as finding a payoff with a higher or equal value than the previously best observed
outcome. When the decision-maker “wins”, we assume that any option within a Manhattan
distance ≤ 1 in the search space is chosen (i.e., a repeat selection or selecting any of the four
cardinal neighbours) with equal probability. Losing is defined as the failure to improve, and
results in sampling any unexplored option with equal probability.

2.5.2 Local search

Local search predicts that search decisions have a tendency to stay local to the previous choice.
We use inverse Manhattan distance (IMD) to quantify locality:

IMD(x,x′) =
1

∑
n
i=1 |xi − x′i|

(2.28)

where x and x′ are vectors corresponding to options embedded in Rn. For the special case
where x = x′, we set IMD(x,x′) = 1 to avoid a divide by zero. This local search strategy, when
coupled with a softmax choice rule behaves similarly to a Lévy flight (Mandelbrot, 1982),
where small steps are more likely relative to longer jumps. Lévy flights have been used to
model the search patterns of human hunter–gatherers (Raichlen et al., 2014), predatory birds
(Humphries, Weimerskirch, Queiroz, Southall, & Sims, 2012), and honey bees (Reynolds
et al., 2007). While sometimes hailed as an optimal foraging strategy under random reward
distributions (Viswanathan et al., 1999), the lack of responsiveness to encounters of reward in
the environment make Lévy flights poorly adapted to patchy or correlated resource distributions
(Hills, Kalff, & Wiener, 2013).

2.6 Conclusion

In this chapter, we have provided a summary on the RL framework and highlighted the
computational challenges of learning in large problem spaces. Optimal solutions are generally
unavailable, while approximate solutions from Dynamic Programming still require exhaustive
exploration of all possibilities. We contrast the tabular approach of these approximate solutions
with value function approximation, which learns a global value function over the space of
possible options. This provides a useful distinction that maps onto two classes of human learning
models. The option learning model is based on classic theories of associative learning, while
the function learning model is inspired by theories of explicit function learning in humans. Both
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models produce predictions about expected rewards and the underlying uncertainty, which we
combine with a variety of heuristic sampling strategies to navigate the exploration-exploitation
dilemma.

This set of candidate models for human learning is explored in Chapter 3 where we
present a large-scale model comparison across three different MAB problems with spatially
correlated rewards. Chapter 4 uses a more restricted set of models to test clear hypotheses
about developmental changes in generalization and exploration, where we also include an
ε-greedy model as an alternative form of random exploration. Chapter 5 compares option
learning and function learning models across spatial and conceptual domains, while Chapter 6
extends the function learning framework to describe generalization over graph structures where
relationships between options are discrete and asymmetric.





Chapter 3

Generalization and Exploration in Vast
Spaces

The sage steers by the torch of uncertainty and doubt

—Zhuangzi

How do people explore the vast (and sometimes infinite) decision spaces that define our
lives, where the number of possibilities can never be exhaustively explored? Here the traditional
explore-exploit dilemma breaks down, because aside from knowing when to explore, you also
need to know where to explore.

This chapter presents three experiments studying how people explore large decision spaces
under limited search horizons, using both generated and real-world search environments.
Using a model of generalization based on Gaussian process (GP) regression combined with an
optimistic sampling strategy, we are able to describe participant behavior and simulate human-
like learning curves. Our results also suggest that a tendency towards undergeneralization is a
beneficial bias in a wide variety of settings.

This chapter is based on the following publications:

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D., & Meder, B. (2017). Mapping the
unknown: The spatially correlated multi-armed bandit. In G. Gunzelmann, A. Howes, T.
Tenbrink, & E. J. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive
Science Society. (pp. 1357–1362). Austin, TX: Cognitive Science Society.

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D., & Meder, B. (2018). Generalization
guides human exploration in vast decision spaces. Nature Human Behaviour, 2, 915–924.
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3.1 Introduction

Many aspects of human behavior can be understood as a type of search problem (Todd et
al., 2012), from foraging for food or resources (Kolling et al., 2012), to searching through
a hypothesis space to learn causal relationships (Bramley et al., 2017), or more generally,
learning which actions lead to rewarding outcomes (Sutton & Barto, 2018). In a natural setting,
these tasks come with a vast space of possible actions, each corresponding to some reward that
can only be observed through experience. In such problems, one must learn to balance the
dual goals of exploring unknown options, while also exploiting familiar options for immediate
returns. This frames the exploration-exploitation dilemma, typically studied using the multi-
armed bandit framework (Palminteri, Lefebvre, Kilford, & Blakemore, 2017; Reverdy et al.,
2014; Speekenbrink & Konstantinidis, 2015; Steyvers et al., 2009), which imagine a gambler in
front of a row of slot machines, learning the reward distributions of each option independently.
Solutions to the problem propose different policies for how to learn about which arms are
better to play (exploration), while also playing known high-value arms to maximize reward
(exploitation). Yet under real-world constraints of limited time or resources, it is not enough to
know when to explore; one must also know where to explore.

Human learners are incredibly fast at adapting to unfamiliar environments, where the same
situation is rarely encountered twice (Gershman & Daw, 2017; Lee, Shimojo, & O’Doherty,
2014). This highlights an intriguing gap between human and machine learning, where traditional
approaches to reinforcement learning typically learn about the distribution of rewards for each
state independently (Sutton & Barto, 2018). Such an approach falls short in more realistic
scenarios where the size of the problem space is far larger than the search horizon, and it
becomes infeasible to observe all possible options (Lake et al., 2017; Wilson, Geana, White,
Ludvig, & Cohen, 2014). What strategies are available for an intelligent agent—biological or
machine—to guide efficient exploration when not all options can be explored?

One method for dealing with vast state spaces is to use function learning as a mechanism
for generalizing prior experience to unobserved states (Tesauro, 1992). The function learning
approach approximates a global value function over all options, including ones not experienced
yet (Gershman & Daw, 2017). This allows for generalization to vast and potentially infinite
state spaces, based on a small number of observations. Additionally, function learning scales
to problems with complex sequential dynamics and has been used in tandem with restricted
search methods, such as Monte Carlo sampling, for navigating intractably large search trees
(Mnih et al., 2015; Silver et al., 2016). While restricted search methods have been proposed
as models of human reinforcement learning in planning tasks (Huys et al., 2015; Solway &
Botvinick, 2015), here we focus on situations in which a rich model of environmental structure
supports learning and generalization (Guez, Silver, & Dayan, 2013).
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Function learning has been successfully utilized for adaptive generalization in various
machine learning applications (Rasmussen & Kuss, 2004; Sutton, 1996), although relatively
little is known about how humans generalize in vivo (e.g., in a search task; but see Reverdy
et al., 2014). Building on previous work exploring inductive biases in pure function learning
contexts (Lucas et al., 2015; E. Schulz, Tenenbaum, et al., 2017) and human behavior in
univariate function optimization (Borji & Itti, 2013), we present a comprehensive approach
using a robust computational modelling framework to understand how humans generalize in an
active search task.

Across three studies using uni- and bivariate multi-armed bandits with up to 121 arms, we
compare a diverse set of computational models in their ability to predict individual human
behavior. In all experiments, the majority of subjects are best captured by a model combining
function learning using Gaussian Process (GP) regression, with an optimistic Upper Confidence
Bound (UCB) sampling strategy that directly balances expectations of reward with the reduction
of uncertainty. Importantly, we recover meaningful and robust estimates about the nature of
human generalization, showing the limits of traditional models of associative learning (Dayan
& Niv, 2008) in tasks where the environmental structure supports learning and inference.

The main contributions of this paper are threefold:

1. We introduce the spatially correlated multi-armed bandit as a paradigm for studying how
people use generalization to guide search in larger problems space than traditionally used
for studying human behavior.

2. We find that a Gaussian Process model of function learning robustly captures how humans
generalize and learn about the structure of the environment, where an observed tendency
towards undergeneralization is shown to sometimes be beneficial.

3. We show that participants solve the exploration-exploitation dilemma by optimistically
inflating expectations of reward by the underlying uncertainty, with recoverable evidence
for the separate phenomena of directed (towards reducing uncertainty) and undirected
(noisy) exploration.

3.2 The spatially correlated multi-armed bandit

A useful inductive bias in many real world search tasks is to assume a spatial correlation
between rewards (Srivastava et al., 2015) or clumpiness of resource distributions (Wilke et
al., 2015). This is equivalent to assuming that similar actions or states will yield similar
outcomes. We present human data and modelling results from three experiments (Fig. 3.1)
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using univariate (Experiment 1) and bivariate (Experiment 2) environments with fixed levels of
spatial correlations, and also real-world environments where spatial correlations occur naturally
(Experiment 3). The spatial correlation of rewards provides a context to each arm of the bandit,
which can be learned and used to generalize to not-yet-observed options, thereby guiding
search decisions. Additionally, since recent work has connected both spatial and conceptual
representations to a common neural substrate (Constantinescu et al., 2016), our results in
a spatial domain provide potential pathways to other search domains, such as contextual
(E. Schulz, Konstantinidis, & Speekenbrink, 2017; Stojic, Analytis, & Speekenbrink, 2015; Wu,
Schulz, Garvert, Meder, & Schuck, 2018) or semantic search (Abbott, Austerweil, & Griffiths,
2015; Hills et al., 2012).

3.2.1 Methods

Participants and design

We recruited 81 participants from Amazon Mechanical Turk for Experiment 1 (25 Female;
mean ± SD age 33 ± 11), 80 for Experiment 2 (25 Female; mean ± SD age 32 ± 9), and
80 for Experiment 3 (24 Female; mean ± SD age 35 ± 10). In all experiments, participants
were paid a participation fee of $0.50 and a performance contingent bonus of up to $1.50.
Participants earned on average $1.14 ± 0.13 and spent 8 ± 4 minutes on the task in Experiment
1, earned $1.64 ± 0.20 and spent 8 ± 4 minutes in Experiment 2, and earned $1.53 ± 0.15
and spent 8 ± 5 minutes in Experiment 3. Participants were only allowed to participate in one
of the experiments, and were required to have a 95% HIT approval rate and 1000 previously
completed HITs. The Ethics Committee of the Max Planck Institute for Human Development
approved the methodology and all participants consented to participation through an online
consent form at the beginning of the survey.

Experiments 1 and 2 used a 2×2 between-subjects design, where participants were randomly
assigned to one of two different payoff structures (Accumulation condition vs. Maximization
condition) and one of two different classes of environments (Smooth vs. Rough), whereas Exper-
iment 3 used environments from real-world agricultural datasets (Table B.1), and manipulated
only the payoff structure (random assignment between subjects). Each grid world represented a
(either uni- or bivariate) function, with each observation including normally distributed noise,
ε ∼ N (0,1). The task was presented over either 16 rounds (Exp. 1) or 8 rounds (Exp. 2
and 3) on different grid worlds, which were randomly drawn (without replacement) from the
same class of environments. Participants had either a short or long search horizon (Exp. 1:
[5,10]; Exp. 2 and 3: [20,40]) to sample tiles on the grid, including repeat clicks. The search
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Fig. 3.1 Procedure and behavioral results. Experiments 1 and 2 used a 2×2 between-subject design, manipulating
the type of environment (Rough or Smooth) and the payoff condition (Accumulation or Maximization), while
Experiment 3 manipulated only payoff conditions (between subjects) and used a set of natural environments where
rewards reflect normalized crop yields from various agricultural datasets. a) Experiment 1 used a 1D array of 30
possible options, while Experiments 2 and 3 used a 2D array (11×11) with 121 options. Experiments took place
over 16 (Exp. 1) or 8 rounds (Exp. 2 and 3), with a new environment sampled without replacement for each round.
Search horizons alternated between rounds (within subject), with the horizon order counter-balanced between
subjects. b) Examples of fully revealed search environments, where tiles were initially blank at the beginning of
each round, except for a single randomly revealed tile. Rough and Smooth environments differed in the extent of
spatial correlations, while Crop Yield environments have no fixed level of correlation (see Table B.1). c) Locality
of sampling behavior compared to a random baseline simulated over 10,000 rounds (black line), where distance is
measured using Manhattan distance and the y-axis indicates the probability density of different distances (with a
different maximum range for Exp. 1 compared to Exp. 2 and 3). d) Average reward earned (Accumulation goal)
and maximum reward revealed (Maximization goal), where coloured lines indicate the assigned payoff condition
and shaded regions show the standard error of the mean. Short horizon trials are indicated by lighter colours and
dashed lines, while black lines are a random baseline simulated over 10,000 rounds.
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horizon alternated between rounds (within subject), with initial horizon length counterbalanced
between subjects by random assignment.

Materials and procedure

Prior to starting the task, participants observed four fully revealed example environments and
had to correctly complete three comprehension questions. At the beginning of each round, one
random tile was revealed and participants could click any of the tiles in the grid until the search
horizon was exhausted, including re-clicking previously revealed tiles. Clicking an unrevealed
tile displayed the numerical value of the reward along with a corresponding colour aid, where
darker colours indicated higher point values. Per round, observations were scaled to a randomly
drawn maximum value in the range of 65 to 85, so that the value of the global optima could
not be easily guessed (e.g., a value of 100). Re-clicked tiles could show some variations in
the observed value due to noise. For repeat clicks, the most recent observation was displayed
numerically, while hovering over the tile would display the entire history of observation. The
colour of the tile corresponded to the mean of all previous observations.

Payoff conditions. We compared performance under two different payoff conditions, re-
quiring either a balance between exploration and exploitation (Accumulation condition) or
corresponding to consistently making exploration decisions (Maximization condition). In
each payoff condition, participants received a performance contingent bonus of up to $1.50.
Accumulation condition participants were given a bonus based on the average value of all
clicks as a fraction of the global optima, 1

T ∑( yt
y⋆ ), where y⋆ is the global optimum, whereas

participants in the Maximization condition were rewarded using the ratio of the highest observed
reward to the global optimum, (maxyt

y⋆ )4, taken to the power of 4 to exaggerate differences in
the upper range of performance and for between-group parity in expected earnings across
payoff conditions. Both conditions were equally weighted across all rounds and used noisy
but unscaled observations to assign a bonus of up to $1.50. Subjects were informed in dollars
about the bonus earned at the end of each round.

Environments. In Experiments 1 and 2, we used two classes of generated environments
corresponding to different levels of smoothness (i.e., spatial correlation of rewards). These
environments were sampled from a GP prior with a RBF kernel, where the length-scale
parameter (λ ) determines the rate at which the correlations of rewards decay over distance.
Rough environments used λRough = 1 and Smooth environments used λSmooth = 2, with 40
environments (Exp. 1) and 20 environments (Exp. 2) generated for each class (Smooth and
Rough). In Experiment 3, we used environments defined by 20 real-world agricultural datasets,
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where the location on the grid corresponds to the rows and columns of a field and the payoffs
reflect the normalized yield of various crops (see Table B.1 for full details).

Search horizons. We chose two horizon lengths (Short=5 or 20 and Long=10 or 40, for
Experiment 1 and Experiments 2 and 3, respectively) that were fewer than the total number of
tiles on the grid (30 or 121), and varied them within subject (alternating between rounds and
counterbalanced). Horizon length was approximately equivalent between Experiments 1 and
Experiments 2 and 3, as a fraction of the total number of options (short ≈ 1

6 ; long ≈ 1
3 ).

3.3 Results

3.3.1 Experiment 1

Participants (n = 81) searched for rewards on a 1×30 grid world, where each tile represented
a reward-generating arm of the bandit (Fig. 3.1a). The mean rewards of each tile were spatially
correlated, with stronger correlations in Smooth than in Rough environments (between subjects;
Fig. 3.1b). Participants were either assigned the goal of accumulating the largest average
reward (Accumulation condition), thereby balancing exploration-exploitation, or of finding the
best overall tile (Maximization condition), an exploration goal directed towards finding the
global maximum. Additionally, the search horizons alternated between rounds (within subject;
Short = 5 vs. Long = 10), with the order counter-balanced between subjects. We hypothesized
that if function learning guides search behavior, participants would perform better and learn
faster in smooth environments (E. Schulz et al., 2015), in which stronger spatial correlations
reveal more information about nearby tiles .

Looking first at sampling behavior, the distance between sequential choices was more
localized than chance (t(80) = 39.8, p < .001, d = 4.4, BF > 100; Fig. 3.1c), as has also
been observed in semantic search Hills et al. (2012) and causal learning (Bramley et al., 2017)
domains. Participants in the Accumulation condition sampled more locally than those in the
Maximization condition (t(79) = 3.33, p = .001, d = 0.75, BF = 24), corresponding to the in-
creased demand to exploit known or near-known rewards. Comparing performance in different
environments, the learning curves in Fig. 3.1d show that participants in Smooth environ-
ments obtained higher average rewards than participants in Rough environments (t(79) = 3.58,
p < .001, d = 0.8, BF = 47), consistent with the hypothesis that spatial patterns in the envi-
ronment can be learned and used to guide search. Surprisingly, longer search horizons (solid
vs. dashed lines) did not lead to higher average reward (t(80) = 0.60, p = .549, d = 0.07,
BF = 0.2). We analyzed both average reward and the maximum reward obtained for each



52 Generalization and Exploration in Vast Spaces

subject, irrespective of their payoff condition (Maximization or Accumulation). Remarkably,
participants in the Accumulation condition performed best according to both performance mea-
sures, achieving higher average rewards than those in the Maximization condition (t(79) = 2.89,
p = .005, d = 0.7, BF = 8), and performing equally well in terms of finding the largest overall
reward (t(79) =−0.73, p = .467, d =−0.2, BF = 0.3). Thus, a strategy balancing exploration
and exploitation—at least for human learners—may achieve the global optimization goal en
passant.

3.3.2 Experiment 2

Experiment 2 had the same design as Experiment 1, but used a 11×11 grid representing an
underlying bivariate reward function (Fig. 3.1 center) and longer search horizons to match the
larger search space (Short = 20 vs. Long = 40). We replicated the main results of Experiment
1, showing participants (n = 80) sampled more locally than a random baseline (t(79) = 50.1,
p < .001, d = 5.6, BF > 100; Fig. 3.1c), Accumulation participants sampled more locally
than Maximization participants (t(78) = 2.75, p = .007, d = 0.6, BF = 5.7), and participants
obtained higher rewards in Smooth than in Rough environments (t(78) = 6.55, p < .001,
d = 1.5, BF > 100; Fig. 3.1d). For both locality of sampling and the difference in average
reward between environments, the effect size was larger in Experiment 2 than in Experiment
1. We also replicated the result that participants in the Accumulation condition were as
good as participants in the Maximization condition at discovering the largest reward values
(t(78) = −0.62, p = .534, d = −0.1, BF = 0.3), yet in Experiment 2 the Accumulation
condition did not lead to substantially better performance than the Maximization condition in
terms of average reward (t(78) =−1.31, p = .192, d =−0.3, BF = 0.5). Again, short search
horizons led to the same level of performance as longer horizons, (t(79) =−0.96, p = .341,
d =−0.1, BF = 0.2), suggesting that learning occurs rapidly and peaks rather early.

3.3.3 Experiment 3

Experiment 3 used the same 121-armed bivariate bandit as Experiment 2, but rather than
generating environments with fixed levels of spatial correlations, we sampled environments from
20 different agricultural datasets (Wright, 2017), where payoffs correspond to the normalized
yield of various crops (e.g., wheat, corn, and barley). These datasets have naturally occurring
spatial correlations and are naturally segmented into a grid based on the rows and columns of
a field, thus requiring no interpolation or other transformation except for the normalization
of payoffs (see Appendix B.4 for selection criteria). The crucial difference compared to
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Experiment 2 is that these natural datasets comprise a set of more complex environments in
which learners could nonetheless still benefit from spatial generalization.

As in both previous experiments, participants (n = 80) sampled more locally than random
chance (t(79) = 50.1, p < .001, d = 5.6, BF > 100), with participants in the Accumulation
condition sampling more locally than those in the Maximization condition (t(78) = 3.1, p =

.003, d = 0.7, BF = 12). In the natural environments, we found that Accumulation participants
achieved a higher average reward than Maximization participants (t(78) = 2.7, p = .008,
d = 0.6, BF = 6), with an effect size similar to Experiment 1. There was no difference in
maximum reward across payoff conditions (t(78) = 0.3, p = .8, d = 0.06, BF = 0.2), as in
all previous experiments, showing that the goal of balancing exploration-exploitation leads
to the best results on both performance metrics. As in the previous experiments, we found
that a longer search horizon did not lead to higher average rewards (t(78) = 2.1, p = .04,
d = 0.2, BF = 0.4). The results of Experiment 3 corroborate the results of Experiments 1 and
2, showing that our findings in simulated environments are very similar to human behavior in
natural environments.

3.4 Modelling generalization and search

To better understand how participants explore, we compared a diverse set of computational
models in their ability to predict each subject’s trial-by-trial choices (see Fig. B.6 and Table
B.3 for extended results). These include different combinations of models of learning and
sampling strategies, which map onto the distinction between belief and sampling models that
is central to theories in statistics (Lindley, 1956), psychology (Nelson, 2005), and philosophy
of science (Crupi & Tentori, 2014). Models of learning form inductive beliefs about the
value of possible options (including unobserved options) conditioned on previous observations,
while sampling strategies transform these beliefs into probabilistic predictions about where
a participant will sample next. We also consider heuristics, which are competitive models of
human behavior in bandit tasks (Steyvers et al., 2009), yet do not maintain a model of the world
(see section 2.5). By far the best predictive models used Gaussian Process (GP) regression
(Rasmussen & Williams, 2006; E. Schulz, Speekenbrink, & Krause, 2018) as a mechanism for
generalization, and Upper Confidence Bound (UCB) sampling (Auer, 2002) as an optimistic
solution to the exploration-exploitation dilemma.

Function learning provides a possible explanation of how individuals generalize from
previous experience to unobserved options, by adaptively learning an underlying function
mapping options onto rewards. We use GP regression as an expressive model of human function
learning, which has known equivalencies to neural network function approximators (Neal,



54 Generalization and Exploration in Vast Spaces

Fig. 3.2 Overview of the GP-UCB Model specified using median participant parameter estimates from Experiment
2 (see Table B.3). a) Screenshot of Experiment 2. Participants were allowed to select any tile until the search
horizon was exhausted. b) Estimated reward (not shown, the estimated uncertainty) as predicted by the GP
Function Learning model, based on the points sampled in Panel a. c) Upper confidence bound of predicted rewards.
d) Choice probabilities after a softmax choice rule. P(x) = exp(UCB(x)/τ)/∑

N
j=1 exp(UCB(x j)/τ), where τ is

the temperature parameter (i.e., higher temperature values lead to more random sampling).

2012), yet provides psychologically interpretable parameter estimates about the extent to which
generalization occurs. GP function learning can guide search by making predictions about the
expected mean m(x) and variance v(x) for each option x in the global state space (see Fig. 3.2a-
b), conditioned on a finite number of previous observations of rewards yt = [y1,y2, . . . ,yt ]

⊤ at
inputs Xt = [x1, . . . ,xt ] . Similarities between options are modelled by a Radial Basis Function
(RBF) kernel:

kRBF(x,x′) = exp
(
−||x−x′||2

2λ 2

)
, (3.1)

where λ governs how quickly correlations between points x and x′ (e.g., two tiles on the grid)
decay towards zero as their distance increases. We use λ as a free parameter, which can be
interpreted psychologically as the extent to which people generalize spatially. Since the GP prior
is completely defined by the RBF kernel, the underlying mechanisms are similar to Shepard’s
universal gradient of generalization (Shepard, 1987), which also models generalization as an
exponentially decreasing function of distance between stimuli. To illustrate, generalization to
the extent of λ = 1 corresponds to the assumption that the rewards of two neighbouring options
are correlated by r = 0.61, and that this correlation decays to (effectively) zero if options are
further than three tiles away from each other. Smaller λ values would lead to a more rapid
decay of assumed correlations as a function of distance.

Given estimates about expected rewards m(x) and the underlying uncertainty v(x) from the
function learning model, UCB sampling produces valuations of each option x using a simple
weighted sum:

UCB(x) = m(x)+β
√

v(x), (3.2)

where β is a free parameter governing how much the reduction of uncertainty is valued relative
to expectations of reward (Fig. 3.2c). To illustrate, an exploration bonus of β = 0.5 suggests
participants would prefer a hypothetical option x1 predicted to have mean reward m(x1) = 60
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and uncertainty
√

v(x1) = 10, over an option x2 predicted to have mean reward m(x2) = 64
and standard deviation

√
v(x2) = 1. This is because sampling x1 is expected to reduce a

large amount of uncertainty, even though x2 has a higher mean reward (as UCB(x1) = 65 but
UCB(x2) = 64.5). This trade-off between exploiting known high-value rewards and exploring
to reduce uncertainty (Kaufmann, Cappé, & Garivier, 2012) can be interpreted as optimistically
inflating expectations of reward by the attached uncertainty, and can be contrasted to two
separate sampling strategies that only sample based on expected reward (Pure Exploitation) or
uncertainty (Pure Exploration):

PureExploit(x) = m(x) (3.3)

PureExplore(x) =
√

v(x) (3.4)

Figure 3.2 shows how the GP-UCB model makes inferences about the search space and
uses UCB sampling (combined with a softmax choice rule) to make probabilistic predictions
about where the participant will sample next. We refer to this model as the Function Learning
Model and contrast it with an Option Learning Model. The Option Learning Model uses
a Bayesian mean tracker (BMT) to learn about the distribution of rewards for each option
independently (see subsection 2.3.1). The Option learning Model is a traditional associative
learning model, and can be understood as a variant of a Kalman filter where rewards are assumed
to be time-invariant (Speekenbrink & Konstantinidis, 2015). Like the Function Learning Model,
the Option Learning Model also generates normally distributed predictions with mean m(x)
and variance v(x), which we combine with the same set of sampling strategies and the same
softmax choice rule to make probabilistic predictions about search. For both models, we use the
softmax temperature parameter (τ) to estimate the amount of undirected exploration (i.e., higher
temperatures correspond to more noisy sampling; Fig. 3.2d), in contrast to the β parameter of
UCB, which estimates the level of exploration directed towards reducing uncertainty.

3.5 Modelling results

Cross-validation. We performed model comparison using cross-validated maximum likeli-
hood estimation (MLE), where each participant’s data was separated by horizon length (short
or long) and we iteratively form a training set by leaving out a single round, compute a MLE
on the training set, and then generate out-of-sample predictions on the remaining round. This
was repeated for all combinations of training set and test set, and for both short and long
horizons. The cross-validation procedure yielded one set of parameter estimates per round, per
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Fig. 3.3 Modelling results. a) Cross-validated predictive accuracy of each model (higher is better), with box plots
indicating the IQR, the median (horizontal line), mean (diamond), and 1.5x IQR (whiskers). Each individual
participant is shown as a single dot, with the number of participants best described shown as an icon array (inset;
aggregated by sampling strategies). Asterisks (*) indicate a localized variant of the Option Learning or Function
Learning models, where predictions are weighted by the inverse distance from the previous choice (see Methods).
b) Learning curves of participants and model simulations. Each simulated learning model uses UCB sampling and
is specified using participants parameter estimates and averaged over 100 simulated experiments per participant
per model. c) Parameter estimates of the best predicting model for each experiment. Each coloured dot is the
median estimate per participant, with box plots indicating 1.5x IQR (whiskers), median (horizontal line), and
mean (diamond).

participant, and out-of-sample predictions for 120 choices in Experiment 1 and 240 choices in
Experiments 2 and 3 (per participant). Prediction error (computed as log loss) was summed
up over all rounds, and is reported as predictive accuracy, using a pseudo-R2 measure that
compares the total log loss prediction error for each model to that of a random model:

R2 = 1− logL(Mk)

logL(Mrand)
, (3.5)

where logL(Mrand) is the log loss of a random model and logL(Mk) is model k’s out-
of-sample prediction error. Moreover, we calculated each model’s protected probability of
exceedance using its predictive log-evidence (Rigoux, Stephan, Friston, & Daunizeau, 2014;
Stephan, Penny, Daunizeau, Moran, & Friston, 2009). This probability is defined as the
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probability that a particular model is more frequent in the population than all the other models,
averaged over the probability of the null hypothesis that all models are equally frequent (thereby
correcting for chance performance).

Localized models. All models (except for local search) include a localized variant, which
introduced a locality bias by weighting the predicted value of each option q(x) by the inverse
Manhattan distance (IMD) to the previously revealed tile. This is equivalent to a multiplicative
combination with the Local Search model (subsection 2.5.2), and is similar to a “stickiness
parameter” (Christakou, Murphy, et al., 2013; Gershman, Pesaran, & Daw, 2009), although we
implement it here without the introduction of any additional free parameters. Localized models
are indicated with an asterisk (e.g., Function Learning*).

Simulated learning curves. We use participants’ cross-validated parameter estimates to spec-
ify a given model and then simulate performance. At each trial, model predictions correspond
to a probabilistic distribution over options, which was then sampled and used to generate the
observation for the next trial. In order to correspond with the manipulations of horizon length,
payoff condition, and environment type, each simulation was performed at the participant
level, producing data resembling a virtual participant for each replication. Iterating over each
round, we selected the same environment as seen by the participant and then simulated data
using the cross-validated parameters that were estimated using that round as the left-out round.
Thus, just as model comparison was performed out-of-sample, the generated data was also
out-of-sample, based on parameters that were estimated on a different set of rounds than the
one being simulated. We performed 100 replications for each participant in each experiment,
which were then aggregated to produce the learning curves in Figure 3.3b.

3.5.1 Experiment 1

Participants were better described by the Function Learning Model than the Option Learning
Model (t(80) = 14.10, p < .001 d = 1.6, BF > 100, comparing cross-validated predictive
accuracies, both using UCB sampling), providing evidence that participants generalized in-
stead of learning rewards for each option independently. Furthermore, by decomposing the
UCB sampling algorithm into Pure Exploit or Pure Explore components, we show that both
expectations of reward and estimates of uncertainty are necessary components for the Function
Learning Model to predict human search behavior, with the Pure Exploitation (t(80) =−8.85,
p < .001, d =−1.0, BF > 100) and Pure Exploration (t(80) =−16.63, p < .001, d =−1.8,
BF > 100) variants each making less accurate predictions than the combined UCB algorithm.
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Because of the observed tendency to sample locally, we created a localized variant of both
Option Learning and Function Learning Models (indicated by an asterisk *; Fig. 3.3a), penal-
izing options farther away from the previous selected option (without introducing additional
free parameters). While the Option Learning* Model was better than the standard Option
Learning Model (t(80) = 16.13, p < .001, d = 1.8, BF > 100), the standard Function Learning
Model still outperformed its localized variant (t(80) = 5.05, p < .001, d = 0.6, BF > 100).
Overall, 56 out of 81 participants were best described by the Function Learning Model, with an
additional 10 participants best described by the Function Learning* Model with localization.
Lastly, we also calculated each model’s protected exceedance probability † (Rigoux et al., 2014;
Stephan et al., 2009) using its out-of-sample log loss. This probability assesses which model is
the most common among all models in our pool (among the 12 models reported in the main
text; see Table B.3 for comparison with additional models) while also correcting for chance.
Doing so, we found that the Function Learning-UCB Model reached a protected probability of
pxp = 1, indicating that it vastly outperformed all of the other models.

Figure 3.3b shows simulated learning curves of each model in comparison to human
performance, where models were specified using parameters from participants’ estimates
(averaged over 100 simulated experiments per participant per model). Whereas both versions
of the Option Learning Model improve only very slowly, both standard and localized versions
of the Function Learning Model behave sensibly and show a close alignment to the rapid rate
of human learning during the early phases of learning. However, there is still a deviation in
similarity between the curves, which is partially due to aggregating over reward conditions and
horizon manipulations, in addition to aggregating over individuals, where some participants
over-explore their environments while others produce continuously increasing learning curves
(see Figure B.5 for individual learning curves). While aggregated learning curves should be
analyzed with caution (Myung, Kim, & Pitt, 2000), we find an overlap between elements
of human intelligence responsible for successful performance in our task, and elements of
participant behavior captured by the Function Learning Model.

We compare participants’ parameter estimates using a Wilcoxon signed rank test to make
the resulting differences more robust to potential outliers. The parameter estimates of the
Function Learning Model (Fig. 3.3c) indicated that people tend to underestimate the extent of
spatial correlations, with median per-participant λ estimates significantly lower than the ground
truth (λSmooth = 2 and λRough = 1) for both Smooth (Wilcoxon signed rank test; λ̂Smooth = 0.5,
Z = −7.1, p < .001, r = 1.1, BF > 100) and Rough environments (λ̂Rough = 0.5, Z = −3.4,
p < .001, r = 0.55, BF > 100). This can be interpreted as a tendency towards undergeneral-
ization. Additionally, we found that the estimated exploration bonus of UCB sampling (β )

†See section A.5 for a description of the Bayesian model selection framework for group studies.
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was reliably greater than zero (β̂ = 0.51, Z =−7.7, p < .001, r = 0.86, BF > 100, compared
to lower estimation bound), reflecting the valuation of sampling uncertain options, together
with exploiting high expectations of reward. Lastly, we found relatively low estimates of the
softmax temperature parameter (τ̂ = 0.01), suggesting that the search behavior of participants
corresponded closely to selecting the very best option, once they had taken into account both
the exploitation and exploration components of the available actions.

3.5.2 Experiment 2

In a more complex bivariate environment (Fig. 3.3a), the Function Learning Model again
made better predictions than the Option Learning Model (t(79) = 9.99, p < .001, d = 1.1,
BF > 100), although this was only marginally the case when comparing localized Function
Learning* to localized Option Learning* (t(79) = 2.05, p = .044, d = 0.2, BF = 0.9). In the
two-dimensional search environment of Experiment 2, adding localization improved predictions
for both Option Learning (t(79) = 19.92, p < .001, d = 2.2, BF > 100) and Function Learning
(t(79) = 10.47, p < .001, d = 1.2, BF > 100), in line with the stronger tendency towards
localized sampling compared to Experiment 1 (see Fig. 3.1c). Altogether, 61 out of 80
participants were best predicted by the localized Function Learning* model, whereas only
12 participants were best predicted by the localized Option Learning* model. Again, both
components of the UCB strategy were necessary to predict choices, with Pure Exploit (t(79) =
−6.44, p < .001, d =−0.7, BF > 100) and Pure Explore (t(79) =−12.8, p < .001, d =−1.4,
BF > 100) making worse predictions. The probability of exceedance over all models showed
that the Function Learning*-UCB Model achieved virtually pxp = 1, indicating that it greatly
outperformed all other models under consideration.

As in Experiment 1, the simulated learning curves of the Option Learning models learned
slowly and only marginally outperformed a random sampling strategy (Fig. 3.3b), whereas
both variants of the Function Learning Model achieved performance comparable to that of
human participants†. Median per-participant parameter estimates (Fig. 3.3c) from the Function
Learning*-UCB Model showed that while participants generalized somewhat more than in
Experiment 1 (λ̂ = 0.75, Z =−3.7, p < .001, r = 0.29, BF > 100), they again underestimated
the strength of the underlying spatial correlation in both Smooth (λ̂Smooth = 0.78, Z =−5.8,
p < .001, r = 0.88, BF > 100; comparison to λSmooth = 2) and Rough environments (λ̂Rough =

0.75, Z = −4.7, p < .001, r = 0.78, BF > 100; comparison to λRough = 1). This suggests a
robust tendency to undergeneralize. There were no differences in the estimated exploration
bonus β between Experiment 1 and 2 (β̂ = 0.5, Z = 0.86, p = .80, r = 0.07, BF = 0.2),

†Note that the learning curves for Experiment 2 differ from the published version. A correction has been
submitted to the editor.
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although the estimated softmax temperature parameter τ was larger than in Experiment 1
(τ̂ = 0.09; Z = −8.89, p < .001, r = 0.70, BF = 34). Experiment 2 therefore replicated the
main findings of Experiment 1. When taken together, results from the two experiments provide
strong evidence that human search behavior is best explained by function learning paired with
an optimistic trade-off between exploration and exploitation.

3.5.3 Experiment 3

Using natural environments without a fixed level of spatial correlations, we replicated key
results from the prior experiments: Function Learning made better predictions than Option
Learning (t(79) = 3.03, p = .003, d = 0.3, BF = 8); adding localization improved predictions
for both Option Learning (t(79) = 18.83, p < .001, d = 2.1, BF > 100) and Function Learning
(t(79) = 14.61, p < .001, d = 1.6, BF > 100); and the combined UCB algorithm performed
better than using only a Pure Exploit (t(79) = 12.97, p < .001, d = 1.4, BF > 100) or a
Pure Explore strategy (t(79) = 5.87, p < .001, d = 0.7, BF > 100). However, the difference
between the localized Function Learning* and the localized Option Learning* was negligible
(t(79) = 0.32, p = .75, d = 0.04, BF = 0.1). This is perhaps due to the high variability across
environments, which makes it harder to predict out-of-sample choices using generalization
behavior (i.e., λ ) estimated from a separate set of environments. Nevertheless, the localized
Function Learning* model was still the best predicting model for the majority of participants
(48 out of 80 participants). Moreover, calculating the protected probability of exceedance
over all models’ predictive evidence revealed a probability of pxp = 0.98 that the Function
Learning* model was more frequent in the population than all the other models, followed by
pxp = 0.01 for the Option Learning* model. Thus, even in natural environments in which
the underlying spatial correlations are unknown, we were still able to distinguish the different
models in terms of their overall out-of-sample predictive performance.

The simulated learning curves in Figure 3.3b show the strongest concurrence out of all
previous experiments between the Function Learning model and human performance. Moreover,
both variants of the Option Learning model learn far slower, failing to match the rate of human
learning, suggesting that they are not plausible models of human behavior (Palminteri, Wyart,
& Koechlin, 2017). The parameter estimates from the Function Learning* Model are largely
consistent with the results from Experiment 2 (Fig. 3.3c), but with participants generalizing
slightly less (λ̂natural = 0.68, Z =−3.4, p < .001, r = 0.27, BF = 10), and exploring slightly
more, with a small increase in both directed exploration (β̂natural = 0.54, Z =−2.3, p = .01,
r = 0.18, BF = 5) and undirected exploration (τ̂natural = 0.1, Z = −2.2, p = .02, r = 0.17,
BF = 4) parameters. Altogether, the parameter estimates are highly similar to the previous
experiments.
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3.5.4 Robustness and recovery

We conducted both model and parameter recovery simulations to assess the validity of our
modelling results (see Fig. B.1 and Fig. B.2). Model recovery consisted of simulating data
using a generating model specified by participant parameter estimates. We then performed the
same cross-validation procedure to fit a recovering model on this simulated data. In all cases,
the best predictive accuracy occurred when the recovering model matched the generating model
(Fig. B.1), suggesting robustness to Type I errors and ruling out model overfitting (i.e., the
Function Learning Model did not best predict data generated by the Option Learning Model).
Parameter recovery was performed to ensure that each parameter in the Function Learning-UCB
Model robustly captured separate and distinct phenomena. In all cases, the generating and
recovered parameter estimates were highly correlated (Fig. B.2). It is noteworthy that we
found distinct and recoverable estimates for β (exploration bonus) and τ (softmax temperature),
supporting the existence of exploration directed towards reducing uncertainty (Wilson et al.,
2014) as a separate phenomena from noisy, undirected exploration (Daw, O’doherty, Dayan,
Seymour, & Dolan, 2006).

3.5.5 The adaptive nature of undergeneralization

In Experiments 1 and 2, we observed a robust tendency to undergeneralize compared to the
true level of spatial correlations in the environment. We therefore ran simulations to assess how
different levels of generalization influence search performance when paired with different types
of environments. We found that undergeneralization largely leads to better performance than
overgeneralization. Remarkably, undergeneralization sometimes is even better than exactly
matching the underlying structure of the environment (Fig. 3.4). These simulations were
performed by first generating search environments by sampling from a GP prior specified using
a teacher length-scale (λ0), and then simulating search in this environment by specifying the
GP-UCB Model with a student length-scale (λ1). Instead of a discrete grid, we chose a set-up
common in Bayesian optimization (Metzen, 2016) with continuous bivariate inputs in the range
x,y = [0,1], allowing for a broader set of potential mismatched alignments (see Fig. B.3 for
simulations using the exact design of each experiment).

We find that undergeneralization largely leads to better performance than overgeneralization,
and that this effect is more pronounced over time t (i.e., longer search horizons). Estimating
the best possible alignment between λ0 and λ1 revealed that underestimating λ0 by an average
of about 0.21 produces the best scores over all scenarios. These simulation results show that
the systematically lower estimates of λ captured by our models are not necessarily a flaw in
human cognition, but can sometimes lead to better performance. Indeed, simulations based on
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Fig. 3.4 Mismatched length-scale (λ ) simulation results. The teacher length-scale λ0 is on the x-axis, the student
length-scale λ1 is on the y-axis, and each panel is performance at a different trial t. The teacher λ0 values were
used to generate environments, while the student λ1 values were used to parameterize the Function Learning
Model to simulate search performance. The dotted lines show where λ0 = λ1 and mark the difference between
undergeneralization and overgeneralization, with points below the line indicating undergeneralization. We report
the median score (over 100 replications) as a standardized measure of performance, such that 0 shows the lowest
possible and 1 the highest possible log unit-performance.

the natural environments used in Experiment 3 (which had no fixed level of spatial correlations)
revealed that the range of participant λ estimates were highly adaptive to the environments
they encountered (Fig. B.3c). Undergeneralization might not be a bug, but rather an important
feature of human behavior.

3.6 Discussion

How do people learn and adaptively make good decisions when the number of possible actions is
vast and not all possibilities can be explored? We found that Function Learning, operationalized
using GP regression, provides a mechanism for generalization, which can be used to guide
search towards unexplored yet promising options. Combined with Upper Confidence Bound
(UCB) sampling, this model navigates the exploration-exploitation dilemma by optimistically
inflating expectations of reward by the estimated uncertainty.

While GP function learning combined with a UCB sampling algorithm has been successfully
applied to search problems in ecology (Gotovos et al., 2013), robotics (Cully et al., 2015;
Deisenroth, Fox, & Rasmussen, 2015), and biology (Sui, Gotovos, Burdick, & Krause, 2015),
there has been little psychological research on how humans learn and search in environments
with a vast set of possible actions. The question of how generalization operates in an active
learning context is of great importance, and our work makes key theoretical and empirical
contributions. Expanding on previous studies that found an overlap between GP-UCB and
human learning rates (Borji & Itti, 2013; Reverdy et al., 2014), we use cognitive modelling
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to understand how humans generalize and address the exploration-exploitation dilemma in a
complex search task with spatially correlated outcomes.

Through multiple analyses, including trial-by-trial predictive cross-validation and simulated
behavior using participants’ parameter estimates, we competitively assessed which models best
predicted human behavior. The vast majority of participants were best described by the GP-
UCB model or its localized variant. Parameter estimates from the best-fitting GP-UCB models
suggest there was a systematic tendency to undergeneralize the extent of spatial correlations,
which we found can sometimes lead to better search performance than even an exact match
with the underlying structure of the environment (Fig. 3.4).

Altogether, our modelling framework yielded highly robust and recoverable results (Fig.
B.1) and parameter estimates (Fig. B.2). Whereas previous research on exploration bonuses
has had mixed results (Daw et al., 2006; Speekenbrink & Konstantinidis, 2015; Wilson et
al., 2014), we found recoverable parameter estimates for the separate phenomena of directed
exploration, encoded in UCB exploration parameter β , and the noisy, undirected exploration
encoded in the softmax temperature parameter τ . Even though UCB sampling is both optimistic
(always treating uncertainty as positive) and myopic (only planning the next timestep), similar
algorithms have competitive performance guarantees in a bandit setting (Srinivas et al., 2010).
This shows a remarkable concurrence between intuitive human strategies and state-of-the-art
machine learning research.

3.6.1 Limitations and extensions

One potential limitation is that our payoff manipulation failed to induce superior performance
according to the relevant performance metric. While participants in the Accumulation condition
achieved higher average reward, participants in the Maximization condition were not able to
outperform with respect to the maximum reward criterion. The goal of balancing exploration-
exploitation (Accumulation condition) or the goal of global optimization (Maximization con-
dition) was induced through the manipulation of written instructions, comprehension check
questions, and feedback between rounds. While this may have been insufficient for observing
clear performance differences (see Table B.2 for parameter differences), the practical difference
between these two goals is murky even in the Bayesian optimization literature, where the strict
goal of finding the global optimum is often abandoned based purely on computational concerns
(Močkus, 2012). Instead, the global optimization goal is frequently replaced by an approximate
measure of performance, such as cumulative regret (Srinivas et al., 2010), which closely aligns
to our Accumulation payoff condition. In our experiments, remarkably, participants assigned
to the Accumulation goal payoff condition also performed best relative to the maximization
criterion.
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In addition to providing the best model of human behavior, the Function Learning Model
also offers many opportunities for theory integration. The Option Learning Model can itself be
reformulated as special case of GP regression (Reece & Roberts, 2010). When the length-scale
of the RBF kernel approaches zero (λ → 0), the Function Learning Model assumes state
independence, as in the Option Learning Model. Thus, there may be a continuum of reinforce-
ment learning models, ranging from the traditional assumption of state independence to the
opposite extreme, of complete state inter-dependence. Moreover, GPs also have equivalencies
to Bayesian neural networks (Neal, 2012), suggesting a further link to distributed function
learning models (LeCun, Bengio, & Hinton, 2015). Indeed, one explanation for the impressive
performance of deep reinforcement learning (Mnih et al., 2015) is that neural networks are
specifically a powerful type of function approximator (Schölkopf, 2015).

Lastly, both spatial and conceptual representations have been connected to a common neural
substrate in the hippocampus (Constantinescu et al., 2016), suggesting a potential avenue for
applying the same GP-UCB model for modelling human learning using contextual (E. Schulz,
Konstantinidis, & Speekenbrink, 2017; Stojic et al., 2015; Wu, Schulz, Garvert, et al., 2018),
semantic (Abbott et al., 2015; Hills et al., 2012), or potentially even graph-based features. One
hypothesis for this common role of the hippocamus is that it performs predictive coding of
future state transitions (Stachenfeld et al., 2017), also known as “successor representation”
(Dayan & Niv, 2008). In our task, where there are no restrictions on state transitions (i.e., each
state is reachable from any prior state), it may be the case that the RBF kernel driving our
GP Function Learning model performs the same role as the transition matrix of a successor
representation model, where state transitions are learned via a random walk policy. This link is
explored in more detail in Chapters 5 and 6.

3.6.2 Conclusions

We present a paradigm for studying how people use generalization to guide the active search
for rewards, and found a systematic—yet sometimes beneficial—tendency to undergeneral-
ize. Additionally, we uncovered substantial evidence for the separate phenomena of directed
exploration (towards reducing uncertainty) and noisy, undirected exploration. Even though
our current implementation only grazes the surface of the types of complex tasks people are
able to solve—and indeed could be extended in future studies using temporal dynamics or
depleting resources—it is far richer in both the set-up and modelling framework than traditional
multi-armed bandit problems used for studying human behavior. Our empirical and modelling
results show how function learning, combined with optimistic search strategies, may provide
the foundation of adaptive behavior in complex environments.



Chapter 4

The Developmental Trajectory of
Generalization and Search

For the child enamoured with stamps and engravings,
The universe is equal to your vast appetite!

—Baudelaire

How do children and adults differ in their search for rewards? Children are prone to higher
variability in their sampling behavior, with an influential hypothesis describing development as
a “cooling off” process (Gopnik et al., 2017), where initially random behavior is reduced over
the lifespan. We use computation modeling to add clarity to this theory. Our model parameters
correspond specifically to three different hypotheses, attributing developmental differences to
changes in (i) random sampling, (ii) in exploration directed towards uncertain options, or (iii)
the extent of generalization.

Using a field study conducted in museums, we compare children and adults in their ability
to generalize about unobserved outcomes and balance the exploration-exploitation dilemma.
Our results show that children generalize less than adults, yet are hungrier for information,
by using more directed exploration. We do not, however, find differences in terms of random
sampling. This account is corroborated by judgments about unobserved options and a forced
choice task, providing broad support for a richer picture of developmental differences.

This chapter is based on the following manuscript, where all analyses and figures were either
originally produced by me or have been independently reproduced with minor variations:

Schulz, E., Wu, C. M., Ruggeri, A., & Meder, B. (in press). Searching for rewards like a child
means less generalization and more directed exploration. Psychological Science.
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4.1 Introduction

Alan Turing (1950) famously believed that in order to build a General Artificial Intelligence,
one must create a machine that can learn like a child. Indeed, recent advances in machine
learning often contain references to child-like learning and exploration (Lake et al., 2017;
Riedmiller et al., 2018). Yet little is known about how children actually explore and search for
rewards in their environments, and in what ways their behavior differs from adults.

In the course of learning through interactions with the environment, all organisms (biological
or machine) are confronted with the exploration-exploitation dilemma (Mehlhorn et al., 2015).
This dilemma highlights two opposing goals. The first is to explore unfamiliar options that
provide useful information for future decisions, yet may result in poor immediate rewards. The
second is to exploit options known to have high expectations of reward, but potentially forgo
learning about unexplored options.

In addition to balancing exploration and exploitation, another crucial ingredient for adaptive
search behavior is a mechanism that can generalize beyond observed outcomes, thereby guiding
search and decision making by forming inductive beliefs about novel options. For example,
from a purely combinatorial perspective, it only takes a few features and a small range of
values to generate a pool of options vastly exceeding what could ever be explored in a lifetime.
Nonetheless, humans of all ages manage to generalize from limited experiences in order to
choose from amongst a set of potentially unlimited possibilities. Thus, a model of human
search also needs to provide a mechanism for generalization.

Previous research has found extensive variability and developmental differences in chil-
dren’s and adults’ search behavior, which not only result from a progressive refinement of basic
cognitive functions (e.g., memory or attention), but also derive from systematic changes in the
computational principles driving behavior (Palminteri, Kilford, Coricelli, & Blakemore, 2016).
In particular, developmental differences in learning and decision making have been explained
by appealing to three hypothesized mechanisms: children sample more randomly, explore more
eagerly, or generalize more narrowly than adults.

In this chapter, we investigate how these three mechanisms are able to explain developmental
differences in exploration-exploitation behavior. We provide a precise characterization of these
competing ideas in a formal model, which is used to predict behavior in a search task, where
noisy and continuous rewards are spatially correlated. Using behavioral markers, interpreting
parameter estimates from computational models, and analyzing judgments about unexplored
options, our results converge on the finding that children generalize less, but engage in more
directed exploration than adults. We do not, however, find reliable developmental differences
in random exploration. These results enrich our understanding of maturation in learning and
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decision making, demonstrating that children explore using uncertainty-guided mechanisms
rather than simply behaving more randomly.

4.1.1 A tale of three mechanisms

Development as cooling off

Because optimal solutions to the exploration-exploitation dilemma are generally intractable
(Bellman, 1952; Gittins & Jones, 1979), heuristic alternatives are frequently employed. In
particular, learning under the demands of the exploration-exploitation trade-off has been
described using at least two distinct strategies (Wilson et al., 2014). One such strategy is
increased random exploration, which uses noisy, random sampling to learn about new options.

A key finding in the psychological literature is that children tend to try out more options than
adults (Cauffman et al., 2010; Mata, Wilke, & Czienskowski, 2013). This has been interpreted
as evidence for higher levels of random exploration in children, and has been loosely compared
to algorithms of simulated annealing from computer science (Gopnik et al., 2017), where the
amount of random exploration gradually reduces over time. Children can be described as
having higher temperature parameters, where the learner initially samples very randomly across
a large set of possibilities, before eventually focusing on a smaller subset (Gopnik, Griffiths, &
Lucas, 2015). This temperature parameter is expected to “cool off” with age, leading to lower
levels of random exploration in late childhood and adulthood.

Development as reduction of directed exploration

A second strategy to tackle the exploration-exploitation dilemma is to use directed exploration
by preferentially sampling highly uncertain options in order to gain more information and reduce
uncertainty about the environment. Directed exploration has been formalized by introducing
an “uncertainty bonus” that values the exploration of lesser known options (Auer, 2002), with
behavioral markers found in a number of studies (M. J. Frank, Doll, Oas-Terpstra, & Moreno,
2009; Wu, Schulz, Speekenbrink, et al., 2018).

Directed exploration treats information as intrinsically valuable by inflating rewards by
their estimated uncertainty (Auer, 2002). This leads to a more sophisticated uncertainty-guided
sampling strategy that could also explain developmental differences. Indeed, the literature on
self-directed learning shows that children are clearly capable of exploring their environment in a
systematic, directed fashion. Already infants tend to value the exploration of uncertain options
(L. E. Schulz, 2015), and children can balance theory and evidence in simple exploration tasks
(Bonawitz, van Schijndel, Friel, & Schulz, 2012) and are able to efficiently adapt their search
behavior to different environmental structures (Nelson, Divjak, Gudmundsdottir, Martignon, &
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Fig. 4.1 Overview of task and model. a) Screenshot of experiment in the middle of a round with partially revealed
grid. b) Expected reward and c) estimated uncertainty, based on observations in a) using Gaussian Process
regression as a model of generalization. d) Upper confidence bounds of each option based on a weighted sum
of panels b and c. e Choice probabilities of softmax function. Panels (b-e) use median participant parameter
estimates. f) Overview of the experimental design and g) types of environments. h) Correlations of rewards
between different options decay exponentially as a function of their distance, where higher values of λ lead to
slower decays and broader generalizations. i) An illustration of UCB sampling using a univariate example, where
the expected reward (black line) and estimated uncertainty (gray ribbon; for different values of β ) are summed
up. Higher values of β value the exploration of uncertain options more strongly (compare the argmax of the two
beta values, indicated by the cross and the triangle). j) Overview of softmax function, where higher values of the
temperature parameter τ lead to increased random exploration.

Meder, 2014; Ruggeri & Lombrozo, 2015). Moreover, children can sometimes even outperform
adults in the self-directed learning of unusual relationships (Lucas, Bridgers, Griffiths, &
Gopnik, 2014). Both directed and random exploration do not have to be mutually exclusive
mechanisms, with recent research finding signatures of both types of exploration in adolescent
and adult participants (Gershman, 2018a; Somerville et al., 2017; Wilson et al., 2014).

Development as refined generalization

Rather than explaining development as a change in how we explore given some beliefs about
the world, generalization-based accounts attribute developmental differences to the way we
form our beliefs in the first place. Many studies have shown that human learners use structured
knowledge about the environment to guide exploration (Acuna & Schrater, 2009; E. Schulz,
Konstantinidis, & Speekenbrink, 2017), where the quality of these representations and the
way that people utilize them to generalize across experiences can have a crucial impact on
search behavior. Thus, development of more complex cognitive processes (Blanco et al.,
2016), leading to broader generalizations, could also account for the observed developmental
differences in sampling behavior.

The notion of generalization as a mechanism for explaining developmental differences
has a long standing history in psychology. For instance, Piaget (1964) assumed that children
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learn and adapt to different situational demands by the processes of assimilation (applying a
previous concept to a new task) and accommodation (changing a previous concept in the face
of new information). Expanding on Piaget’s idea, Klahr (1982) proposed generalization as
a crucial developmental process, in particular the mechanism of regularity detection, which
supports generalization and improves over the course of development. More generally, the
implementation of various forms of decision making (Hartley & Somerville, 2015) could be
constrained by the capacity for complex cognitive processes, which become more refined over
the life span. For example, although younger children attend more frequently to irrelevant
information than older children (Hagen & Hale, 1973), they can be prompted to attend to the
relevant information by marking the most relevant cues, whereupon they eventually select the
best alternative (Davidson, 1996). Thus, children may indeed be able to apply uncertainty-driven
exploratory strategies, but lack the appropriate task representation to successfully implement
them.

4.2 A task to study generalization and exploration

In Experiment 4, we study the behavior of both children and adults in a spatially correlated
multi-armed bandit task (Fig. 4.1a; Wu, Schulz, Speekenbrink, et al., 2018, see also White,
2013, for a similar task), where rewards are distributed on a grid characterized by spatial
correlation (i.e., high rewards cluster together; Fig. 4.1g) and the search horizon is vastly
smaller than the number of options. Efficient search and accumulation of rewards in such
an environment requires two critical components. First, participants need to learn about the
underlying spatial correlation in order to generalize from observed rewards to unseen options.
This is crucial because there are considerably more options than can be explored within the
limited search horizon. Second, participants need a sampling strategy that achieves a balance
between exploring new options and exploiting known options with high rewards.

4.3 Methods

Participants

We recruited 55 younger children (range: 7 to 8, 26 female, Mage=7.53; SD=0.50), 55 older
children (range: 9 to 11, 24 female, Mage=9.95; SD=0.80), and 50 adults (range: 18 to 55,
25 female, Mage=33.76; SD= 8.53) from museums in Berlin, Germany. We determined the
different age groups and the number of participants per group based on prior active learning
research (Ruggeri & Lombrozo, 2015) and before data collection commenced. Participants were
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paid up to e3.50 for taking part in the experiment, contingent on performance (range: e2.00 to
e3.50, Mreward=e2.67; SD=0.50). Informed consent was obtained from all participants.

Design

The experiment used a between-subjects design, where participants were randomly assigned
to one of two different classes of environments (Fig. 4.1g), with smooth environments having
stronger spatial correlations than rough environments. We generated 40 of each class of
environments from a radial basis function kernel (see below), with λsmooth = 4 and λrough =

1. On each round, a new environment was sampled (without replacement) from the set
of 40 environments, which was then used to define a bivariate function on the grid, with
each observation including additional normally distributed noise ε ∼N (0,1). The task was
presented over ten rounds on different grid worlds drawn from the same class of environments.
The first round was a tutorial round and the last round was a bonus round in which participants
sampled for 15 trials and then had to generate predictions for five randomly chosen tiles on the
grid. Participants had a search horizon of 25 trials per grid, including repeat clicks.

Materials and procedure

Participants were introduced to the task through a tutorial round and were required to correctly
complete three comprehension questions prior to continuing the task. At the beginning of each
round, one random tile was revealed and participants could click on any of the tiles (including
re-clicks) on the grid until the search horizon was exhausted. Clicking an unrevealed tile
displayed the numerical value of the reward along with a corresponding color aid, where darker
colors indicated higher rewards. Per round, observations were scaled to a randomly drawn
maximum value in the range of 35 to 45, so that the value of the global optima could not be
easily guessed. Re-clicked tiles could show some variations in the observed value due to noise.
For repeat clicks, the most recent observation was displayed numerically, while the color of the
tile corresponded to the mean of all previous observations. In the bonus round, participants
sampled for 15 trials and were then asked to generate predictions for five randomly selected
and previously unobserved tiles. Additionally, participants had to indicate how certain they
were about their prediction on a scale from 0 to 10. Afterwards, they had to select one of the
five tiles before continuing with the round.

Participants were awarded up to five stars at the end of each round (e.g., 4.6 out of 5),
based on the ratio of their average reward to the global maximum. The performance bonus was
calculated based on the average number of stars earned in each round, excluding the tutorial
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round. 5 out of 5 stars corresponded to e3.50, while each half star interval reduced the bonus
by e0.50 until a minimum bonus of e0.50.

4.3.1 A combined model of generalization and exploration

We use a formal model that combines generalization with a sampling strategy accounting for
both directed and random exploration (Wu, Schulz, Speekenbrink, et al., 2018), and use it to
predict each participant’s out-of-sample search behavior. The generalization component is
based on Gaussian Process (GP) regression, and to briefly summarize, is a Bayesian function
learning approach theoretically capable of learning any stationary function (Rasmussen &
Williams, 2006) and has been found to effectively describe human behavior in explicit function
learning tasks (Lucas et al., 2015). The GP component is used to adaptively learn a value
function, which generalizes the limited set of observed rewards over the entire search space
using Bayesian inference.

The GP prior is completely determined by the choice of a kernel function k(x,x′), which
encodes assumptions about how points in the input space are related to each other. A common
choice of this function is the radial basis function (RBF) kernel:

k(x,x′) = exp
(
−||x−x′||2

2λ 2

)
, (4.1)

where the length-scale parameter λ encodes the extent of spatial generalization between options
(tiles) in the grid. The assumptions of this kernel function are similar to the gradient of
generalization historically described by Shepard (1987), which also models generalization as an
exponentially decaying function of the stimulus similarity distance (see Fig. 4.1h), which has
been observed across a wide range of stimuli and organisms. As an example, generalization with
λ = 1 corresponds to the assumption that the rewards of two neighboring tiles are correlated by
r = 0.6, and that this correlation decays to zero for options further than three tiles apart. We
treat λ as a free parameter in our model comparison in order to assess age-related differences
in the capacity for generalization.

Given different possible options x to sample from (i.e., tiles on the grid), GP regression
generates normally distributed beliefs about rewards with expectation m(x) and estimated
uncertainty s(x) (Fig. 4.1b,c). A sampling strategy is then used to map the beliefs of the
GP onto a valuation for sampling each option at a given time. Crucially, such a sampling
strategy must address the exploration-exploitation dilemma. One frequently applied heuristic
for solving this dilemma is Upper Confidence Bound (UCB) sampling (Srinivas et al., 2010),
which evaluates each option based on a weighted sum of expected reward and estimated
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uncertainty:

UCB(x) = m(x)+β
√

v(x) (4.2)

where β models the extent to which uncertainty is valued positively and therefore directly sought
out. This strategy corresponds to directed exploration because it encourages the sampling
of options with higher uncertainty according to the underlying generalization model (see
Fig. 4.1i). We treat the exploration parameter β as a free parameter to assess how much
participants value the reduction of uncertainty (i.e., engage in directed exploration). As
described before, an exploration bonus of β = 0.5 means participants would prefer an option
x1 expected to have reward m(x1) = 30 and uncertainty

√
v(x1) = 10, over option x2 expected

to have reward m(x2) = 34 and uncertainty
√

v(x2) = 1. This is because sampling x1 is
expected to reduce a larger amount of uncertainty, even though x2 has a higher expected reward
(UCB(x1|β = 0.5) = 35 vs. UCB(x2|β = 0.5) = 34.5).

Finally, we use a softmax function to map the upper confidence bound values, UCB(x),
of our proposed Gaussian Process-Upper Confidence Bound sampling model onto choice
probabilities:

p(x) =
exp(UCB(x)/τ)

∑
N
j=1 exp(UCB(x j)/τ)

, (4.3)

where τ is the temperature parameter governing the amount of randomness in sampling behavior.
If τ is high (higher temperatures), then participants are assumed to sample more randomly,
whereas if τ is low (cooler temperatures), the choice probabilities are concentrated on the
highest valued options (Fig. 4.1j). Thus, τ encodes the tendency towards random exploration.
We treat τ as a free parameter to assess the extent of random exploration in children and adults
(see Appendix section C.1 for alternative implementations such as ε-greedy sampling and
estimation of optimal parameters).

In summary, GP-UCB contains three different parameters: the length-scale λ capturing the
extent of generalization, the exploration bonus β describing the extent of directed exploration,
and the temperature parameter τ modulating random exploration. These three parameters
directly correspond to the three postulated mechanisms of developmental differences in complex
decision making tasks and can also be robustly recovered (see Fig. C.2).
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Fig. 4.2 Experiment 4 main results. a) Tukey box plots of rewards, showing the distribution of all choices for
all participants, with the horizontal line representing the median and box showing the interquartile range of
the distribution. Each dot is the participant-wise mean and diamonds indicate group means. b) Histograms of
distances between consecutive choices by age group and condition, with a distance of zero corresponding to a
repeat click. The vertical red line marks the difference between a repeat click and sampling a different option.
c) Mean reward over trials by condition (solid lines for smooth and dashed lines for rough environments) and
age group (color). Error bars indicate the standard error of the mean. d) Tukey box plots showing the results of
the model comparison between Gaussian Process (GP) and Bayesian Mean Tracker (BMT) models by age group.
Each point is a single subject and group means are shown as a diamond. e) Tukey box plot of cross-validated
parameters retrieved from the GP-UCB model by age group, where each point is the mean estimate per subject
and diamonds indicate the group means. Outliers are removed for readability, but are included in all statistical
tests (see Appendix C.2). f) Learning curves simulated by GP-UCB model using mean participant parameter
estimates. Error bars indicate the standard error of the mean.

4.4 Results

4.4.1 Behavioral results

Participants gained higher rewards in smooth than in rough environments (Fig. 4.2a; t(158) =
10.51, p < .001, d = 1.66, BF > 100), suggesting they made use of the spatial correlations and
performed better when correlations were stronger. Adults performed better than older children
(Fig. 4.2a; t(103) = 4.91, p < .001, d = 0.96, BF > 100), who in turn performed somewhat
better than younger children (t(108) = 2.42, p = .02, d = 0.46, BF = 2.68). Analyzing the
distance between consecutive choices (Fig. 4.2b) revealed that participants sampled more locally
(smaller distances) in smooth compared to rough environments (t(158) = −3.83, p < .001,
d = 0.61, BF > 100). Adults sampled more locally than older children (t(103) = −3.9,
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Fig. 4.3 Bonus round results. a) Absolute error of participant predictions about the rewards of unobserved tiles.
a)Certainty judgments, where 0 is least certain and 10 is most certain. a) Standardized predictions and certainty
estimates, which shows how much the estimated reward and certainty influenced choice (relative to judgments
about non-chosen options). All figures show Tukey box plots (over all data points), with participant means as dots
and group means as diamonds.

p < .001, d = 0.76, BF > 100), but there was no difference between younger and older children
(t(108) = 1.76, p = .08, d = 0.34, BF = 0.80). Importantly, adults sampled fewer unique
options than older children (14.5 vs. 21.7; t(103) = 6.77, d = 1.32, p < .001, BF > 100),
whereas the two children groups did not differ in how many options they sampled (21.7 vs.
22.7; t(108) = 1.27, d = 0.24, p = .21, BF = 0.4).

Looking at the learning curves (i.e., average rewards over trials; Fig. 4.2c), we found
a positive rank-correlation between mean rewards and trial number (Spearman’s ρ = .12,
t(159) = 6.12, p < .001, BF > 100). Although this correlation did not differ between the rough
and smooth condition (t(158) = −0.43, p = .67, d = 0.07, BF = 0.19), it was significantly
higher for adults than for older children (0.29 vs 0.08, t(103) = 5.90, p < .001, d = 1.15,
BF = 0.19), BF > 100). The correlation between trials and rewards did not differ between
younger and older children (0.04 vs 0.08; t(108) = −1.87, p = .06, d = 0.36, BF = 0.96).
Therefore, adults learned faster, while children explored more extensively (see Appendix C.7
for further behavioral analyses).

4.4.2 Model comparison

We compared the GP-UCB model with an alternative model that does not generalize across
options but is a powerful Bayesian model for reinforcement learning across independent reward
distributions (Bayesian Mean Tracker; BMT, see subsection 2.3.1). Model comparisons are
based on leave-one-round-out cross-validation error, where we fit each model combined with
the UCB sampling strategy to each participant using a training set omitting one round, and
then assess predictive performance on the hold-out round. Repeating this procedure for every
participant and all rounds (apart from the tutorial and the bonus rounds), we calculated the
standardized predictive accuracy for each model (pseudo-R2 comparing out-of-sample log
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loss to random chance), where 0 indicates chance-level predictions and 1 indicates theoreti-
cally perfect predictions (see Table C.1 for full model comparison with additional sampling
strategies).

The results of this comparison are shown in Fig. 4.2d. The GP-UCB model predicted
participants’ behavior better overall (t(159) = 13.28, p < .001, d = 1.05, BF > 100), and
also for adults (t(49) = 5.98, p < .001, d = 0.85, BF > 100), older (t(54) = 10.92, p < .001,
d = 1.48, BF > 100) and younger children (t(54) = 6.77, p < .001, d = 0.91, BF > 100). The
GP-UCB model predicted adults’ behavior better than that of older children (t(103) = 4.33,
p < .001, d = 0.85, BF > 100), which in turn was better predicted than behavior of younger
children (t(108) = 3.32, p = .001, d = 0.63, BF = 25).

4.4.3 Developmental differences in parameter estimates

We analyzed the mean participant parameter estimates of the GP-UCB model (Fig. 4.2e) to
assess the contributions of the three mechanisms (generalization, directed exploration, and
random exploration) towards developmental differences.

We found that adults generalized more than older children, as indicated by larger λ -
estimates (Mann-Whitney-U = 2001, p < .001, rτ = 0.32, BF > 100), whereas the two groups
of children did not differ significantly in their extent of generalization (U = 1829, p = .06,
rτ = 0.15, BF = 1.7). Furthermore, older children valued the reduction of uncertainty more
than adults (i.e., higher β -values; U = 629, p < .001, rτ = 0.39, BF > 100), whereas there was
no difference between younger and older children (U = 1403, p = .51, rτ = 0.05, BF = 0.2).
Critically, whereas there were strong differences between age groups for the parameters
capturing generalization and directed exploration, there was no reliable difference in the softmax
temperature parameter τ , with no difference between older children and adults (W = 1718,
p = .03, rτ = 0.17, BF = 0.7) and only anecdotal differences between the two groups of
children (W = 1211, p = .07, rτ = 0.14, BF = 1.4). This suggests that the amount of random
exploration did not reliably differ by age group (see Appendix C.1 for other implementations
of random exploration). Thus, our modeling results converge on the same conclusion as the
behavioral results. Children explore more than adults, yet instead of exploring randomly,
children’s exploration behavior seems to be directed toward options with high uncertainty.
Additionally, our parameter estimates are robustly recoverable (see Fig. C.2) and can be used
to simulate learning curves that reproduce the differences between the age groups as well as
between smooth and rough conditions (Fig. 4.2f).
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4.4.4 Bonus round

In the bonus round, each participant predicted the expected rewards and the underlying un-
certainty for five randomly sampled unrevealed tiles after having made 15 choices on the
grid. We first calculated the mean absolute error between predictions and the true expected
value of rewards (Fig. 4.3a). Prediction error was higher for rough compared to smooth en-
vironments (t(158) = 4.93, p < .001, d = 0.78, BF > 100), reflecting the lower degree of
spatial correlation that could be utilized to evaluate unseen options. Surprisingly, older children
were as accurate as adults (t(103) = 0.28, p = .78, d = 0.05, BF = 0.2), but younger children
performed worse than older children (t(108) = 3.14, p = .002, d = 0.60, BF = 15). Certainty
judgments did not differ between the smooth and rough environments (t(158) = 1.13, p = .26,
d = 0.18, BF = 0.2) nor between the different age groups (max-BF = 0.1).

Of particular interest is how judgments about the expectation of rewards and perceived
uncertainty relate to the eventual choice from amongst the five options (implemented as a
5-alternative forced choice). We standardized the estimated reward and confidence judgment
of each participant’s chosen tile by dividing by the sum of the estimates for all five options
(Fig. 4.3c). Thus, larger standardized estimates reflect a larger contribution of either high reward
or high certainty on the choice. Whereas there was no difference between age groups in terms
of the estimated reward of the chosen option (max-BF = 0.1), we found that younger children
preferred options with higher uncertainty slightly more than older children (t(108) = 2.22,
p = .03, d = 0.42, BF = 1.8), and substantially more than adults (t(103) = 2.82, p = .006,
d = 0.55, BF = 7). This further corroborates our previous analyses, showing that the sampling
behavior of children is more directed toward uncertain options than that of adults.

4.5 Discussion

We examined three potential sources of developmental differences in a complex learning and
decision-making task: random exploration, directed exploration, and generalization. Using a
paradigm that combines both generalization and search, we found that adults gained higher
rewards and exploited more strongly, whereas children sampled more unique options, thereby
gaining lower rewards but exploring the environment more extensively. Using a computational
model with parameters directly corresponding to the three hypothesized mechanisms of de-
velopmental differences, we found that children generalized less and were guided by directed
exploration more strongly than adults. They did not, however, explore more randomly than
adults.

Our results shed new light on the developmental trajectories in generalization and ex-
ploration, casting children not as merely more random sampling behavior, but as directed
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explorers who are hungry for information in their environment. Our conclusions are drawn
from converging evidence combining analysis of behavioral data and computational modeling.
Moreover, our findings are highly recoverable and also hold for other formalizations of random
exploration instead of using the softmax temperature parameter (see Appendix section C.1).

Related work by Somerville et al. (2017) also found no developmental difference in random
exploration, but in contrast, found increased directed exploration across early adolescence,
which stabilized in adulthood. We believe that our results are not necessarily incompatible with
that finding. Somerville and colleagues defined directed exploration using horizon-sensitive
exploration (i.e,. strategic planning of exploration), whereas we define directed exploration as
uncertainty-guided exploration via a greedy upper confidence bound algorithm. Thus, children
may have higher tendencies towards directed exploration in a stepwise-greedy fashion, but fail
to exhibit such tendencies when planning ahead for multiple steps, perhaps due to cognitive
limitations. This opens up further possibilities for studying different mechanisms of directed
exploration and how they relate to one another.

Our results provide strong evidence for developmental differences in directed exploration
driven by both expected rewards and the associated uncertainty. These findings complement
existing research on age-related differences in risk- and uncertainty-related behavior (Josef
et al., 2016). For instance, adolescents and adults systematically differ in their tolerance of
options with outcomes that have unknown probabilities, providing converging evidence that
uncertainty is valued differently depending on age (Tymula et al., 2012). Importantly, in our task
a sampling strategy that only seeks to reduce uncertainty (PureExplore; see subsection 2.4.2) is
inferior to the “optimistic” UCB strategy in predicting children’s and adults’ behavior (Table
C.1). This result demonstrates how reward expectations and uncertainty interact to produce
decision-making behavior that balances the exploration-exploitation trade-off adaptively as
a function of age. Nonetheless, future work could attempt to further disentangle different
interpretations of uncertainty seeking formally, for example, by not familiarizing participants
with the underlying environments or by manipulating the variance of outcomes directly.

Furthermore, it is surprising that there were no meaningful differences between the param-
eter estimates of younger and older children. Since this indicates that directed exploration
might emerge even earlier than expected, future studies could apply our paradigm to investigate
exploration behavior in even younger children.

Our results showing a developmental increase in generalization can also be related to
previous findings showing a developmental increase in the use of task structure knowledge in
model-based reward learning (Decker, Otto, Daw, & Hartley, 2016). Because the generalization
parameter λ can be mathematically equated to the speed of learning about the underlying
function (Sollich, 1999), generalization and learning are inextricably linked in our task. There
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are however other uses of the term “generalization” in the psychological literature. For example,
children are known to generalize words or categories more broadly, a tendency that decreases
over time, trading-off with the capacity to form more precise episodic memories (Keresztes et
al., 2017). While we focus on generalization in the sense used by Shepard (i.e., generalization
across stimuli), it is an outstanding question how this type of generalization relates to word and
category generalization. It would be a fruitful avenue for future research to connect these two
domains in a unifying theory of generalization.

In our current study, we have assessed only environments with stationary reward distribu-
tions. However, given that children displayed increased exploration behavior, we believe that
they could perform especially well in environments that change over rounds. Whether or not
children would outperform adults in changing environments remains an important question
for future research. Ultimately, our results suggest that to fulfill Alan Turing’s dream of cre-
ating a child-like AI, we need to incorporate generalization and curiosity-driven exploration
mechanisms (Riedmiller et al., 2018).



Chapter 5

From Spatial to Conceptual Search

Everything that distinguishes humanity from animals depends
on the ability to volatilize perceptual metaphors into a schema,
to dissolve images into a concept.

—Nietzsche

The idea of a “cognitive map” was originally developed to explain planning and generaliza-
tion in spatial domains as a representation of inferred relationships between experiences. More
recently, research has suggested that a common neurological substrate governs the organization
of both spatial and conceptual knowledge. Is there a common computational framework for
understanding generalization and search across domains?

We present two studies using a within-subject design to compare individual search behavior
in successive tasks, where either spatial or conceptual features predicted rewards. Converging
evidence from search behavior, judgments about unobserved options, and model parameters
indicate similar principles govern how people generalize and search for rewards. However, we
also find some intriguing differences. Participants showed a reduced capacity for generalization
in the conceptual domain, that led to less directed exploration in favor of increased random
exploration. These results enrich our understanding of how people represent and navigate the
spatial and conceptual worlds we live in.

This chapter is based on the following publication in addition to new unpublished research:

Wu, C. M., Schulz, E., Garvert, M. M., Meder, B., & Schuck, N. W. (2018). Connecting
conceptual and spatial search via a model of generalization. In T. T. Rogers, M. Rau, X. Zhu,
& C. W. Kalish (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science
Society (pp. 1183–1188). Austin, TX: Cognitive Science Society.



80 From Spatial to Conceptual Search

5.1 Introduction

The ability to search for rewards comes in many shapes. We can wander through a foreign
city in search of new and delicious foods, or search through an online store to find a laptop
with the features that we like. We can even skim over parts of a thesis chapter to find sections
more interesting than the introduction. While these tasks differ in a number of ways, all of
them require the exploration of possibilities and the use of generalization to predict outcomes
of unexplored options. Here, we ask if generalization and search in different domains employ
common computational mechanisms.

Breaking from the classical stimulus-response school of reinforcement learning, Tolman
(1948) argued that both rats and humans extract a cognitive representation from experience,
described as a “cognitive map” of the environment. Rather than merely representing stimulus-
response associations, cognitive maps also encode inferred relationships between experiences
or options, such as the distances between locations in space, thereby facilitating planning ahead
and generalization. While cognitive maps were first identified as representations of physical
spaces, Tolman also hypothesized that similar principles may underlie the organization of
knowledge more broadly (Tolman, 1948).

The idea of a cognitive map has been widely adopted in research on brain signals underlying
spatial navigation (O’Keefe & Nadel, 1978). In a similar vein, studies on reinforcement learning
have emphasized that relations between states may also be encoded as a cognitive map (Behrens
et al., 2018; Schuck, Cai, Wilson, & Niv, 2016; Stachenfeld et al., 2017). Most recently, a
number of studies suggest that the same neural representations may underlie the organization of
spatial and non-spatial relational information in the brain (Constantinescu et al., 2016; Garvert,
Dolan, & Behrens, 2017; Kaplan, Schuck, & Doeller, 2017). This is consistent with behavioral
evidence for generalized cognitive search processes (Hills et al., 2008) in both semantic and
spatial domains. Thus, a common representation (in the form of a cognitive map) may be the
basis for generalized search processes operating on multiple domains. Whereas the capacity to
generalize from past experiences to unobserved states and actions has been studied for decades
(e.g., Shepard, 1987), the link between our ability to generalize in a wide range of tasks and the
encoding of experiences in a cognitive map-like format has not yet been explored.

To assess this link, we investigate how people search for rewards in both spatially and
conceptually correlated multi-armed bandit tasks (E. Schulz, Konstantinidis, & Speekenbrink,
2017; Stojic et al., 2015; Wu, Schulz, et al., 2017; Wu, Schulz, Speekenbrink, et al., 2018). In
two experiments employing a longitudinal design, we study how participants perform search
guided by either spatial or conceptual features. In spatial domains, the spatial correlation of
rewards can be used to guide generalization based on the spatial similarity between options. In
conceptual domains, participants can use feature-based similarity to navigate conceptual space
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in the search for rewards. In both domains and in both experiments, search takes place in state
spaces larger than the available search horizon and with noisy rewards, thereby inducing an
exploration-exploitation dilemma. Generalization is constrained by the level of environmental
correlation, which we vary between participants.

Our results show that participants are able to learn and generalize in both spatial and
conceptual domains, with correlated performance across the two tasks. In Experiment 5, where
both spatial and conceptual features were shown simultaneously (with one relevant and the
other irrelevant), we find a task order effect, where performing the spatial task first boosted
performance in the conceptual task, but not vice versa. We also find that both performance
and model parameters were correlated across the two tasks, indicating that participants who
generalized more or explored more eagerly in one domain, also did so in the other. However,
there were also systematic differences, indicating that the irrelevant spatial features were more
difficult to ignore and that participants may have had a linear prior on the conceptual features
(i.e., assuming more leaves or berries predicted higher reward). Experiment 6 addressed
potential confounds by showing only task-specific features and changing the conceptual stimuli
for Gabor patches. Here we find that a Gaussian Process (GP) model of generalization best
predicts behavior in both domains, predicts judgments of both reward and uncertainty, and can
simulate learning curves replicating differences in tasks and environment manipulations. We
also find a intriguing difference in model parameters, indicating participants reduced directed
exploration and increased random exploration in the conceptual domain. Overall, our results
provide important clarification about the similarities and differences in how people represent
and search in spatial and conceptual spaces.

5.2 Experiment 5: Branch search

Participants searched for rewards in two successive multi-armed bandit tasks with correlated
rewards (Fig. 5.1). In one task, rewards were spatially correlated (Spatial task), meaning
options with similar spatial locations yielded similar rewards. In the other task, rewards
were conceptually correlated (Conceptual task), such that options with similar features (i.e.,
the number of leaves ∈ [1,5] and the number of berries ∈ [1,5]) yielded similar rewards.
Figure 5.1c,d shows examples of fully revealed environments representing the same underlying
reward function, but mapped to either spatial or conceptual features. In both tasks, the search
space was represented by a 5×5 two-dimensional grid, where each of the 25 options represented
a different arm of the bandit, which could be clicked to obtain (noisy) rewards. Each tile of the
grid contained one of 25 unique conceptual stimuli, which were randomly shuffled between
rounds and always visible. Thus, we presented information about both spatial and conceptual
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Fig. 5.1 Experiment 5 design. a) Searching for spatially or conceptually correlated rewards in a two part multi-
armed bandit experiment, where task order was counter-balanced across subjects. b) Illustration of conceptual
space, with four edge cases shown. c, d) Two fully revealed environments (representing the same underlying
reward function), represented as a 5×5 grid, where participants could click on the tiles to obtain rewards, revealing
a numeric payoff value and a corresponding color aid (larger rewards are darker; unexplored tiles are initially
white). c) Spatial search task, where rewards are spatially correlated, with nearby tiles yielding similar rewards. d)
Conceptual search task, where options with high feature similarity (i.e., number of leaves and number of berries)
had similar rewards, independent of spatial location.

features in both search tasks, but only one of them was relevant for generalization and predicting
rewards. At the beginning of each round only a single randomly chosen option was revealed (i.e.,
displayed the numerical reward and corresponding color aid), whereby subjects had a limited
horizon of 10 actions in each round (40% of the total search space; similar to Wu, Schulz, et al.,
2017; Wu, Schulz, Speekenbrink, et al., 2018), thereby inducing an exploration-exploitation
trade-off.

5.2.1 Methods

Participants and Design.

72 participants were recruited through Amazon Mechanical Turk for a two part experiment
(requiring 95% approval rate and 100 previously approved HITs, while excluding those who
participated in Experiments 1-3), where only those who completed part one were invited for
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part two. In total, 64 participants completed both parts of the experiment and were included in
the analyses (26 Female; mean age=34, SD=11). Participants were paid $1.25 for each part
of the experiment, with those completing both parts being paid an additional performance-
contingent bonus of up to $3.00. Participants earned $4.94 ± 0.29 and spent 26 ± 13 minutes
completing both parts. There was an average gap of 5.6 ± 4.7 hours between the two parts of
the experiment.

Task order varied between subjects, with participants completing the Spatial and Conceptual
task in counterbalanced order in separate sessions. We also varied between subjects the extent
of reward correlations in the search space by randomly assigning participants to one of two
different classes of environments (Smooth vs. Rough), with smooth environments corresponding
to stronger correlations, and the same environment class used for both tasks.

Materials and Procedure

Each search task comprised 20 rounds (i.e., grids), with a different reward function sampled
without replacement from the set of assigned environments. The reward function specified how
rewards mapped onto either the spatial or conceptual features. Between rounds, the locations
of each stick stimuli were randomly shuffled. In each round, participants had a limited search
horizon of 10 available actions (i.e., clicks), which could be used to either explore unrevealed
options or to exploit known options. Participants were instructed to accumulate as many points
as possible, which were later converted into monetary payoffs.

For both tasks, the first round was an interactive tutorial and the last round was a “bonus
round” (Fig. 5.1a). In the tutorial round, participants were shown instructions for the given task
alongside an interactive grid, which functioned identically to subsequent rounds. Participants
were told that options with either similar spatial features (Spatial task) or similar conceptual
features (Conceptual task) would yield similar rewards. Three comprehension questions
(different for spatial and conceptual tasks) were used to ensure full understanding of the task
(specifically whether spatial or conceptual features predicted reward) before participants were
allowed to continue. In the bonus round, participants made explicit judgments about the
expected rewards and their estimated uncertainty of five unrevealed tiles in the middle of the
round (i.e., after five clicks), in order to tap into beliefs supported by generalization. All
behavioral and computational modeling analyses exclude the tutorial and bonus rounds, except
for the analysis of the bonus round judgments.
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Spatial and Conceptual Search Tasks

At the beginning of each round, one random tile was revealed (i.e., showing numerical payoff
and color aid) and participants could click any of the 25 tiles in the grid until the search
horizon of ten clicks was exhausted, including re-clicking previously revealed tiles. Clicking an
unrevealed tile displayed the numerical value of the reward along with a corresponding color
aid, where darker colors indicated higher point values. Previously revealed tiles could also be
re-clicked, although there were variations in the observed value due to noise. Each observation
included normally distributed noise, ε ∼ N (0,1), where the rewards for each round were
scaled to a uniformly sampled maximum value in the range of 35 to 45, so that the value of
the global optima could not be easily guessed. For repeat clicks, the most recent observation
was displayed numerically, while hovering over the tile would display the entire history of
observations. The color of the tile corresponded to the mean of all previous observations.

Participants were awarded up to five stars based on their performance at the end of each
round (e.g., 4.4 out of 5), based on the ratio of their average reward to the global maximum.
The performance bonus (up to $3.00) was calculated based on the average number of stars
earned in each round, excluding the tutorial round.

Judgments about expected reward and confidence

In both tasks the last round was a “bonus round”, which solicited judgments about the expected
reward and estimated uncertainty of five unrevealed options. Participants were informed that
the goal of the task remained the same (maximize cumulative rewards), but that after five
clicks, they would be asked to provide judgments about five randomly selected options, which
had not yet been explored (sampled uniformly from unexplored options). Judgments about
expected rewards were elicited using a slider, which changed the displayed value and color of
the selected tile from 0 to 50 (in increments of 1). Judgments about uncertainty were elicited
using a slider from 0 to 10 (in increments of 1), with the endpoints labeled ‘Not at all’ and
‘Highly confident’. After providing the five judgments, participants were asked to choose one
of the five selected options to reveal, and subsequently completed the round like all others.

Environments

All environments were sampled from a GP prior parameterized with a radial basis function
(RBF) kernel (see below for details), where the length-scale parameter (λ ) determines the rate at
which the correlations of rewards decay over (spatial or conceptual) distance. Higher λ -values
correspond to stronger correlations. We generated 40 samples of each type of environments,
using λSmooth = 2 and λRough = 1, which was identical to Experiments 1-2. On each round, one



5.2 Experiment 5: Branch search 85

environment was sampled without replacement from the assigned class of environments and
used as the underlying reward function in each task.

5.2.2 Modeling Generalization and Exploration

We use a combination of a learning model with a decision strategy to make predictions about
each individual participant’s search decision. The learning model forms beliefs about the
expectations of rewards m(x) and the associated uncertainty v(x) for each option x, which are
then used by the decision strategy to make probabilistic predictions about search decisions. We
apply leave-one-round-out cross validation to estimate the free parameters of our models and
use out-of-sample model predictions to compare models for predicting human search behavior.
Additionally, we compare predictions of the learning models to judgments made by participants
about the expected reward and estimated uncertainty of five unrevealed options.

Learning models

Function Learning. We use Gaussian Process (GP) regression (Rasmussen & Williams,
2006; E. Schulz, Speekenbrink, & Krause, 2018) as a Function Learning model for inducing an
underlying value function mapping the features of the search task onto rewards, as a method for
generalization. A GP defines a distribution P( f ) over possible functions f (x) that map inputs
x to output y. In our case, either the spatial features (i.e., x- and y-coordinates on the grid) or
conceptual features (i.e., number of leaves and berries) of each option serve as inputs x to predict
reward y. Crucially, learning a value function by using either spatial or conceptual similarity
allows for predictive generalization of unobserved options (see Wu, Schulz, Speekenbrink, et
al., 2018).

A GP is completely defined by a mean function m(x) and a kernel function, k(x,x′):

m(x) = E [ f (x)] (5.1)

k(x,x′) = E
[
( f (x)−µ(x))( f (x′)−µ(x′))

]
(5.2)

We fix the prior mean to the median value of payoffs, m(x) = 25, while the kernel function
k(x,x′) encodes prior assumptions (or inductive biases) about the underlying function. Here,
we use the radial basis function (RBF) kernel:

kRBF(x,x′) = exp
(
−||x−x′||2

2λ 2

)
(5.3)
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The RBF kernel models similarity by assuming correlations between two options x and x′

decay as an exponential function of their (spatial or conceptual) distance. The length-scale
parameter λ determines how far correlations extend, with larger values of λ assuming stronger
correlations over longer distances, whereas λ → 0+ assumes complete independence of options.
We use recovered parameter estimates of λ to learn about the extent to which each participant
generalize about unobserved rewards.

Option Learning. The Option Learning model uses a Bayesian Mean Tracker (BMT) and
is an associative learning model (Speekenbrink & Konstantinidis, 2015). In contrast to the
GP Function Learning model, the Option Learning model learns the rewards of each option
independently by computing independent posterior distributions for the mean µ j for each option
j:

p(µ j,t |Dt−1) =N (m j,t ,v j,t) (5.4)

The rewards of each option j are learned independently, with the posterior mean m j,t and
variance v j,t only updated when selected at trial t, based on the observed reward yt :

m j,t = m j,t−1 +δ j,tG j,t
[
yt −m j,t−1

]
(5.5)

v j,t =
[
1−δ j,tG j,t

]
v j,t−1 (5.6)

where δ j,t = 1 if option j was chosen on trial t, and 0 otherwise. Additionally, the learning
factor G j,t is defined as:

G j,t =
v j,t−1

v j,t−1 +θ 2
ε

(5.7)

where θ 2
ε is the error variance, which is estimated as a free parameter. Intuitively, the estimated

mean of the chosen option m j,t is updated based on the prediction error yt −m j,t−1, multiplied
by the learning factor G j,t . At the same time, the estimated variance v j,t is reduced by a factor
of 1−G j,t , which is in the range [0,1]. The error variance θ 2

ε can be interpreted as an inverse
sensitivity, where smaller values result in more substantial updates to the mean m j,t , and larger
reductions of uncertainty v j,t . We set the prior mean to the median value of payoffs m j,0 = 25
and the prior uncertainty v j,0 = 250.
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Decision Strategy

Both Function Learning and Option learning models generate normally distributed predictions
about the expected reward mt(x) and estimated uncertainty vt(x) for each option. These
estimates are used by the decision strategy for evaluating the quality q(x) of each option and
making a prediction about where to sample next. We use Upper Confidence Bound sampling
(UCB) to compute a weighted sum of the expected reward m(x) and the estimated uncertainty
s(x):

qUCB(x) = m(x)+β
√

v(x) (5.8)

where the exploration factor β determines how the reduction of uncertainty trades off against
exploiting high expected rewards; a strategy that has been found to predict search behav-
ior in a variety of contexts (E. Schulz, Konstantinidis, & Speekenbrink, 2017; Wu, Schulz,
Speekenbrink, et al., 2018).

We then use a softmax function to convert the value of an option q(x) into a choice
probability:

P(x) =
exp(q(x)/τ)

∑
N
j=1 exp(q(x j)/τ)

(5.9)

where τ is the temperature parameter. Whereas β encodes exploration directed towards
uncertain options, τ encodes undirected (noisy) exploration as a distinct (Wilson et al., 2014)
and separately recoverable (Wu, Schulz, Speekenbrink, et al., 2018) phenomenon. As τ → 0
the highest-value arm is chosen with a probability of 1 (i.e., argmax); when τ → ∞, predictions
converge to random choice.

5.2.3 Behavioral results

Overall, rewards were lower in the conceptual task than in the spatial task (paired t-test:
t(63) =−3.7, p < .001, d = 0.34, BF = 50), although Figure 5.2a shows how this is largely
due to an effect of task order. When the spatial task was performed first (Fig. 5.2a left), we find
no performance differences between the two tasks (t(34) = 0.6, p = .55, d = 0.07, BF = 0.2).
However, in the reverse order (conceptual first), mean rewards were lower in the conceptual task
than in the spatial task (t(28) = −5.6, p < .001, d = 0.68, BF > 100). Thus, searching first
for spatially correlated rewards improved performance in the conceptual domain (two-sample
t-test: t(62) = 2.6, p = .01, d = 0.66, BF = 4.6), but not vice versa. Across the two tasks,



88 From Spatial to Conceptual Search

Fig. 5.2 Experiment 5 behavioral results. a) Mean performance, where each dot is a single participant, and the
boxplot indicates the median and 1.5 IQR, with the diamond showing group means. Comparing performance
across the counter-balanced task order, we found performing the spatial task first boosted performance on the
conceptual task. b) Performance in the spatial and the conceptual tasks were correlated, where each point is a
single participant, with the dashed line indicating y = x. c) Learning over trials and d) learning over rounds, where
lines indicate aggregated means and the ribbon shows the standard error. The dashed line provides comparison to
a random baseline. e) Histogram of distances between choices, measured either in terms of spatial distance (left
column) or conceptual distance (right column). The black line provides a comparison to a random baseline (10k
replications). f-g) Relationship between the value of the previous reward and the Manhattan distance to the next
selected option (f: spatial distance; g: conceptual distance), showing mean (line) and standard error (ribbon). h-i)
Heatmaps of chosen options (h: leaf and berry features; i: grid location) aggregated over all participants, where
the color shows the frequency of each option relative to the task (left column: conceptual; right column: spatial).
Colors are centered on yellow representing random chance (1/25), with orange and red indicating higher than
chance, while green and blue were lower than chance.

performance was highly correlated (Pearson’s r = .74, p < .001, BF > 100; Fig. 5.2b), with
participants who performed better in one task, also performing better in the other.

The learning curves in Figure 5.2c show that participants systematically found higher
rewards over subsequent trials (r = .51, p < .001, BF > 100), performed better in smooth than
in rough environments (t(62) = 4.4, p < .001, d = 1.1, BF > 100), and that the performance
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gap between spatial and conceptual performance was larger in smooth environments. Looking
only at participants assigned to smooth environments, performance was better in the spatial task
than in the conceptual task (t(27) = 3.2, p = .003, d = 0.59, BF = 11), consistent with the
larger gap between learning curves in Figure 5.2c. We did not find any systematic improvements
over rounds (r = .02, p = .42, BF = 0.1; Fig. 5.2d).

Patterns of search

Figure 5.2e shows the Manhattan distance between sequential choices, measured in either the
spatial domain (distance between tiles) and in the conceptual domain (distance in feature space)
for each task type (rows). Overall, we see that participants searched more locally than random
chance (black line), with a high proportion of repeat clicks (distance of 0) and also locally
similar options. Participants tended to make more repeat clicks in the conceptual task (distance
of 0; t(63) = 2.4, p = .02, d = 0.21, BF = 1.8), whereas participants in the spatial task were
more likely to search neighboring options (distance of 1; t(63) = 4.0, p < .001, d = 0.37,
BF > 100). We also see the trend that participants in the conceptual task (top row) displayed a
pattern of spatial locality (similar to conceptual locality), even though spatial features did not
predict rewards. This was not the case on the spatial task, where the distribution of distances
measured in the conceptual domain resembled the random baseline, with the exception of a
high number or repeat samples (distance=0). Thus, participants displayed spatial “stickiness”
(Gershman et al., 2009) in the conceptual task, but not vice versa.

Looking at the relationship between the value of a reward and the distance searched on the
subsequent trial (Fig. 5.2f-g), we see that participants responded appropriately, with a stronger
influence of reward value on spatial distance in the spatial task, and a stronger influence of
reward on conceptual distance in the conceptual task. This suggests that participants used
information from the relevant dimension (spatial or conceptual) to make their decisions, where
lower rewards lead to larger jumps in the appropriate domain. Figures 5.2h-i show heatmaps
of the frequency of selecting the different options, defined in terms of the conceptual features
(number of leaves and berries) or spatial features (x-y coordinates on the grid). The colors of
the heatmap tiles correspond to the frequency of selecting each option, with random chance
(1/25) centered on yellow, while orange and red correspond to higher than chance, and green
and blue correspond to lower than chance. The most pronounced trend is that participants in
the conceptual task had a preference for the maximum number of leaves and berries (top right
corner of heatmap), indicating a potential prior belief that larger feature values correspond to
higher rewards, similar to the preference for positive linear functions found in the function
learning studies (Kalish et al., 2007). All other heatmaps appear well distributed.
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Fig. 5.3 Experiment 5 modeling results. a) Predictive accuracy of models on out-of-sample predictions, where 0
corresponds to random chance and 1 is a theoretically perfect model. Each dot is a single participant, and the
boxplot indicate the median and 1.5 IQR, with the diamond showing group means. b) The relationship between
participant estimates in the bonus round and model estimates (parameterized using the median participant parameter
estimates). Each dot is a single participant, while the lines represent a linear regression (with ribbons showing
standard error). c) Simulated learning curves (10k replications) using models specified with parameters sampled
from participant estimates. We include comparison to a random model (black line) and human performance (pink).
d) Median GP parameters from the spatial (y-axis) and the conceptual tasks (x-axis), where each point is a single
participant and the dotted line shows a linear regression. Outliers are excluded from the plot but not from the rank
correlations and boxplots (showing median and 1.5 IQR range).
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5.2.4 Modeling results

How did participants use the respective spatial and conceptual features to guide search deci-
sions? And how did they balance the exploration-exploration dilemma? We first compared
models based on their ability to predict participants’ behavior using leave-one-round-out cross
validation (Fig. 5.3a), where the Conceptual GP and the Spatial GP utilize either conceptual
or spatial features, respectively, while the BMT learns independent reward distributions for
each option. In the spatial task, the Spatial GP performed better than both the Conceptual
GP (i.e., using leaf and berry features; t(63) = 8.5, p < .001, d = 0.61, BF > 100) and the
BMT (t(63) = 4.6, p < .001, d = 0.36, BF > 100) replicating previous findings reported in
Wu, Schulz, Speekenbrink, et al. (2018). However, all models performed equally well in the
conceptual task (F(2,189) = 0.27, p = .76, BF = 0.07).

Bonus round judgments

The correspondence between participant judgments from the bonus round and model predictions
based on the median parameter estimates for each participant are shown in Figure 5.3b. The
corresponding GP had lower error than the BMT in the spatial task (t(63) = 2.2, p = .03,
d = 0.2, BF = 1.2), but there was no difference in the conceptual task (t(63) = 0.9, p = .35,
d = 0.05, BF = 0.2). GP predictions were correlated with participant judgments in both
the spatial task (r = .38, p < .001, BF > 100) and the conceptual task (r = .21, p < .001,
BF > 100), whereas the BMT invariably predicted a mean of 25 for all unobserved options,
making correlations undefined.

To understand how well GP uncertainty estimates predicted participant confidence judg-
ments, we use a mixed-effects model with participant as a random effect to account for individ-
ual variability (e.g., some participants may generally have lower confidence judgments for all
options). We found that high GP uncertainty estimates predicted low confidence judgments
in the spatial task (standardized effect size: β =−.14, t(312) =−2.8, p = .005, BF = 70)†,
but not in the conceptual task (β =−.02, t(284) =−0.6, p = .557, BF = 4). Again the BMT
invariably estimates the uncertainty of unobserved options based on the prior variance, making
it equivalent to the null model that the GP is compared against. Thus, the Bayes Factors
reported in the mixed-effects results also indicate the log-odds of the GP as a model of how
people represent uncertainty, relative to the BMT.

†Note that β is the standardized effect size of a mixed effects model, and should not be confused with the
exploration bonus of the UCB sampling strategy. See Appendix A for clarification on the reporting of statistical
tests and Bayes Factor calculation used throughout the thesis.
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Learning curves

We also simulate model performance on the task over 10,000 replications, where model param-
eters were sampled (with replacement) from the set of cross-validated participant estimates.
Figure 5.3c) shows the aggregated learning curves together with human performance (pink)
and a random baseline (black). Both the GP and BMT learning curves produced similarly good
approximations of human performance in rough environments. However, the gap is much wider
in smooth environments, where the GP closely trails human-like performance while the BMT
simulations achieves a visibly slower rate of learning. The results of these simulations are
heavily dependent on our parameter estimates, which from our model comparison (Fig. 5.3a)
indicate there are some identifiability issues in the conceptual task. Thus, it is not surprising
that the gap between the GP and BMT is strongest in the spatial task, but also amplified by
the stronger reward correlations in smooth environments, which provide more traction for
generalization.

Parameter estimates

Looking at the parameter estimates of the GP for the two different tasks (Fig. 5.3d), we find that
λ (extent of generalization) and β (exploration bonus) were rank-correlated† within participants
(λ correlation: rτ = .38, p < .001, BF > 100; β correlation: rτ = .42, p < .001, BF > 100),
whereas the softmax temperature τ was not correlated (rτ = .1, p = .26, BF = 0.33) and
did not reliably differ between tasks (Wilcoxon signed-rank test: Z = 1.1, p = .13, r = .14,
BF = 1.1). Thus, participants who generalized more or displayed more directed exploration in
one task, also did so in the other. While λ -values were correlated across the two tasks, they
were significantly smaller in the conceptual task than in the spatial task (Wilcoxon signed-rank
test; Z =−5.1, p < .001, r = .64, BF > 100), meaning participants generalized over relatively
smaller conceptual distances than spatial distances. This may have contributed to the similar
predictive accuracy of the GP and BMT models, since the GP will behave like the BMT in
the limit of λ → 0, by assuming complete independence between options. We also found that
larger lambdas were correlated with higher performance across both tasks (rτ = .44, p < .001,
BF > 100). Estimates for the exploration factor β did not differ between tasks (Z = 1.1,
p = .86, r = .14, BF = 0.2).

†Kendall’s tau (rτ ) is used to report rank-correlation and should not be confused with the temperature
parameter of the softmax choice rule τ .
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5.2.5 Discussion

We investigated whether the search for spatially or conceptually correlated rewards can be con-
nected via common principles of generalization. Our results showed that participants performed
well in both domains, with correlated performance across the two tasks. Using a Gaussian Pro-
cess (GP) regression framework as a model of generalization and postulating Upper Confidence
Bound (UCB) sampling as an optimistic approach to the exploration-exploitation dilemma, we
made progress towards understanding the computational mechanisms of generalization and
search across spatial and conceptual domains. Our model produced good out-of-sample predic-
tions in both tasks, made predictions of unobserved rewards that correlated with participants’
judgments, and produced human-like learning curves based on meaningful parameter estimates
that showed levels of generalization and directed exploration that correlated across the two
domains.

Although the GP predicted participants better than the BMT in the spatial task, we found
no difference between models in the conceptual domain, although the behavioral data indicates
successful generalization (see Fig. 5.2f-g). This could be explained by two different—not
mutually exclusive—reasons. One explanation could be that by presenting both spatial and
conceptual features in each task, it was simply harder to ignore the spatial features when
they were irrelevant. We have some evidence of this from Figure 5.2e, where we see that
participants in the conceptual task tended to sample locally in spatial distance, whereas we
see an asymmetric pattern in the spatial task, where participants tended to resemble the
random baseline in terms of conceptual distance, with the exception of repeat clicks. Another
explanation could be that conceptual stimuli induce different priors over features than in the
spatial domain. The heatmap in Figure 5.2h indicates that participants may have had linear
priors for conceptual features (e.g., more berries or more leaves lead to higher rewards), which
was not the case in the spatial task (see 5.2h-i). We address both issue in the next experiment,
where we change the task to only present either the relevant spatial or conceptual features
and replace the leaf and berry stimuli with Gabor patches, which are commonly used in
psychophysical and vision research (Polat, Mizobe, Pettet, Kasamatsu, & Norcia, 1998; Rolfs,
Lawrence, & Carrasco, 2013) and are less likely to induce directional priors on reward.

5.3 Experiment 6: Gabor search

In order to avoid an overlap between conceptual and spatial features, we constructed a new
experiment where participants used the arrow keys to select a single option at a time, where
each option had only spatial features or conceptual features, but not both (Fig. 5.4). Options
were displayed as a single highlighted tile in the spatial task, or as a unique Gabor patch in the
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Fig. 5.4 Experiment 6 design. a) In the spatial task, options were defined as a highlighted tile on a 8x8 grid, where
the arrow keys could be used to move the highlighted square around the grid. b) In the conceptual task, each
option was represented as a Gabor patch, where the arrow keys changed the tilt and the number of stripes.

conceptual task. Pressing one of the arrow keys would move the highlighted option (spatial) or
alter the features of the Gabor patch (conceptual) by changing the tilt or the number of stripes.
The tilt and stripes of the Gabor patch stimuli are not as clearly countable as the leaf and berry
stimuli, and were chosen to reduce the possibility of directional prior beliefs about reward (e.g.,
more leaves or berries produce higher rewards). The environment was designed as a torus, such
that moving to the extreme of one feature direction would result in starting from the opposite
end (a la Mrs. Pacman).

Selections were made by pressing the space bar, at which point the reward value for the
selected option was displayed for 800 milliseconds, and then subsequently added to the history
at the bottom of the page. The history included all previous selections and reward values for
the current round. After making a selection, a randomly selected option was displayed as the
new initial position, at which point the participant could again use the arrow keys to navigate to
the desired selection.
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5.3.1 Methods

Participants and design

120 participants were recruited through Amazon Mechanical Turk (requiring 95% approval
rate and 100 previously approved HITs, while excluding those who participated in previous
experiments) for a two part experiment, where only those who completed part one were invited
for part two. In total, 95 participants completed both parts of the experiment and were included
in the analyses (31 Female; mean age=36, SD=10). Participants were paid $2.00 for each part
of the experiment, with those completing both parts being paid an additional performance-
contingent bonus of up to $6.00. Participants earned $8.22 ± 0.57 and spent 36 ± 12 minutes
completing both parts. There was an average gap of 17 ± 7.8 hours between the two parts of
the experiment.

We varied the task order between subjects, with participants completing the Spatial and
Conceptual task in counterbalanced order in separate sessions. We also varied between subjects
the extent of reward correlations in the search space by randomly assigning participants to
one of two different classes of environments (Smooth vs. Rough), with smooth environments
corresponding to stronger correlations. The same environment class was used for both tasks.

Materials and procedure

Each search task comprised 10 rounds, with a different reward function sampled without
replacement from the set of assigned environments (see below). The reward function specified
how rewards mapped onto either the spatial or conceptual features. In each round, participants
had a limited search horizon of 20 available actions (i.e., choices), which could be used to
either explore unrevealed options or to exploit previously selected options. Participants were
instructed to accumulate as many points as possible, which were later converted into monetary
payoffs.

Participants were told that options with either similar spatial features (spatial task) or similar
conceptual features (conceptual task) would yield similar rewards. Three comprehension
questions (different for spatial and conceptual tasks) were used to ensure full understanding of
the task (specifically whether spatial or conceptual features predicted reward) before participants
were allowed to continue. The last round was the “bonus round”, where participants made
explicit judgments about the expected rewards and their estimated uncertainty of five unrevealed
tiles in the middle of the round (i.e., after 15 choices), in order to tap into beliefs about
unobserved options supported by generalization. All behavioral and computational modeling
analyses exclude the last round, except for the analysis of the bonus round judgments.
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As in the previous experiment, each observation included normally distributed noise,
ε ∼N (0,1), where the rewards for each round were scaled to a uniformly sampled maximum
value in the range of 35 to 45, so that the value of the global optima could not be easily guessed.
All environments were sampled as a 8 x 8 bivariate function from a GP prior parameterized
with a RBF kernel. We again generated 40 samples of each type of environments, but this time
using λSmooth = 4 and λRough = 1, since the smoothness of λ is defined relative to the size of
the environment. Participants performed the task on 10 environments (one per round) that were
sampled without replacement from the set of 40 generated environments in each task.

After each round, participants were given feedback about how well they performed as a
percentage of the best possible score (i.e., compared to always selecting the global optimum).
The performance bonus (up to $3.00 for each task) was also calculated based on this percentage,
averaged over all rounds excluding the tutorial round.

Bonus round judgments

In both tasks the last round was a “bonus round”, which solicited judgments about the expected
reward and estimated uncertainty of five unrevealed options. Participants were informed that the
goal of the task remained the same (maximize cumulative rewards), but that after 15 selections,
they would be asked to provide judgments about five randomly selected options, which had not
yet been explored (sampled uniformly from unexplored options). Judgments about expected
rewards were elicited using a slider, which changed the displayed value of the selected option
from 0 to 50 (in increments of 1). Judgments about uncertainty were elicited using a slider
from 0 to 10 (in increments of 1), with the endpoints labeled ‘Not at all’ and ‘Highly confident’.
After providing the five judgments, participants were asked to choose one of the five selected
options by clicking with their mouse. The round was subsequently completed the same as all
others.

5.3.2 Behavioral results

Overall, participants performed better in the spatial task than the conceptual task (t(94) = 11.2,
p < .001, d = 1.1, BF > 100; Fig. 5.5a), and better in smooth than in rough environments
(t(93) = 5.7, p < .001, d = 1.2, BF > 100), with performance correlated across the two tasks
(r = .59, t(93) = 7.0, p < .001, BF > 100; Fig. 5.5b). In contrast to Experiment 5, we found no
evidence of any order effect, with equivalent performance in both spatial (t(93) = 1.43, p = .16,
d = 0.29, BF = 0.5) and conceptual tasks (t(93) = 0.39, p = .70, d = 0.08, BF = 0.23), no
matter the order in which they were performed. Figure 5.5c-d show the learning curves for
trials and rounds, respectively, where we see a strong positive correlation between trials and
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Fig. 5.5 Experiment 6 behavioral results. a) Mean participant performance in each task, where each dot is a
participant and boxplots indicate the median and 1.5 IQR across all search decisions, with the diamond showing
the group mean. b) Correlation of performance across the two tasks, where each dot is a participant and the dashed
line indicates y = x. c) Learning over trials and d) learning over rounds, where each line is the aggregate mean
and the ribbons show the standard error. The dashed line provides a comparison to a rnadom baseline. e) The
Manhattan distance between selections compared to a random baseline (black line), where participants made more
repeat selections in the spatial condition (distance=0) compared to the conceptual condition. f) Distribution of
trajectory length (i.e., number of steps taken before a selection was made), where the dashed line indicates the
median in each condition. Participants had longer spatial trajectories on average, although the distribution for
the conceptual task has a longer tail. g) The correspondence between previous reward value and the Manhattan
distance to the next selected option. Lines indicate aggregate mean, with ribbons indicating the standard error.
Lower rewards led to participants moving further in the relevant feature space. h-i) Heatmaps of the distribution
of choices, aggregated over all participants. Colors are centered on yellow representing random chance (1/64),
with orange and red indicating higher than chance, while green and blue were lower than chance.

rewards (r = .91, p < .001, BF > 100), but only anecdotal evidence of a correlation between
rounds and rewards (r = .63, p = .07, BF = 1.8).
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Patterns of search

Looking at the distance between sequential selections, participants searched more locally in the
spatial than the conceptual task (t(94) = 9.3, p < .001, d = 1.5, BF > 100), but there was no
difference across environments (t(93) = 1.0, p = .32, d = 0.2, BF = 0.3). The driving factor
behind this increased locality of choices in the spatial task can be seen in Figure 5.5e, where
participants made more repeat selections in the spatial task (distance=0; t(94) = 4.27, p < .001,
d = 0.62, BF > 100) than in the conceptual task. The tendency towards locality was not due to
lack of effort, because recall that each trial began with a random initialization of the stimuli.
Figure 5.5f shows the average trajectory length (i.e., number of steps) before a selection was
made, where overall, participants had an average trajectory length of 5.5 steps. Participants in
the conceptual task produced longer trajectories than in the spatial task (t(94) = 3.4, p < .001,
d = 0.4, BF = 24), but with no difference across environments (t(93) = 0.1, p = .89, d = 0.03,
BF = 0.2).

Figure 5.5g shows the relationship between the value of a reward and the Manhattan distance
to the next selection, measured in the relevant feature space. These response curves indicate
that participants responded similarly in both task, with a tendency to jump further in space
when encountering low rewards. Figures 5.5h-i show the frequency of selecting the various
options. Participants had a preference for sampling the four extremities of the feature space
(i.e., corners), although the conceptual task also produced a sampling pattern along the outer
perimeter that was not found in the spatial task. However, compared to Experiment 5, we see
less of a tendency to sample a single value in the conceptual space (i.e., selecting five leaves
and five berries; Fig. 5.1h).

5.3.3 Model Comparison

We again use leave-one-round-out cross validation to estimate model parameters and compare
models based on the out-of-sample prediction accuracy, where R2 = 0 is equivalent to a random
model and R2 = 1 represents a theoretically perfect model. The GP made small but meaningfully
better predictions than the BMT in both the conceptual task (t(94) = 3.75, p < .001, d = 0.06,
BF = 67; Fig. 5.6a) and in the spatial task (t(94) = 4.59, p < .001, d = 0.03, BF > 100).
Overall, the GP best predicted 72 out of 95 participants in the conceptual task and 67 out of 95
participants in the spatial task.

Bonus round judgments

Figure 5.6b shows the correspondence between participant and model predictions in the bonus
round. Even though the BMT invariable makes the same prediction of 25 for all unobserved
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Fig. 5.6 Experiment 6 modeling results. a) Predictive accuracy of models on out-of-sample predictions, where
0 corresponds to random chance and 1 is a theoretically perfect model. Each dot is a single participant, with
boxplots showing the median and 1.5 IQR, and the diamond indicating group means. b) The relationship
between participant estimates in the bonus round and model estimates (parameterized using the median participant
parameter estimates). Each dot is a single estimate, while lines represent a linear regression (with ribbons showing
standard error). c) Simulated learning curves (10k replications) using models specified with parameters sampled
from participant estimates. We include comparison to a random model (black line) and human performance (pink).
d) Median GP parameters from the conceptual (x-axis) and spatial tasks (y-axis), where each point is a single
participant. Outliers (using the Tukey criteria) are excluded from the plot but not from the rank correlations.

options (based on the prior mean), it still managed to make marginally better predictions of
participant judgments than the GP in both the conceptual task (comparing mean absolute error:
t(94) = 2.10,p = .039, d = 0.20, BF = 0.92) and in the spatial task (t(94) = 2.48,p = .015,
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d = 0.25, BF = 2.07). While not necessarily accurate, GP predictions were correlated with
participant judgments in both the conceptual task (r = .20, p < .001, BF > 100) and in the
spatial task (r = .28, p < .001, BF > 100), with correlations stronger in the latter. Correlations
for the BMT are undefined, since it invariably makes the same predictions for all unobserved
options (based on the prior mean of 25).

We again use mixed-effects regression to compare model predictions about uncertainty
to confidence ratings, in order to account for individual variability. We find that higher
GP uncertainty estimates predicted lower confidence ratings in the spatial task (β = −.16,
t(466) = −3.8, p < .001, BF > 100), and in the conceptual task (β = −.10, t(473) = −2.1,
p = .039, BF = 9), albeit with lower predictive power in the latter. In both cases, the Bayes
Factor is computed based on a comparison to a null intercept only model. This is also equivalent
to a comparison against the BMT, since it invariantly makes the same uncertainty predictions
about unobserved options.

Learning curves

We again simulated learning curves for each model over 10,000 replications by sampling (with
replacement) from the set of cross-validated participant parameter estimates. Figure 5.6c shows
the aggregated learning curves together with a random baseline (black) and human performance
(pink). We see a very strong correspondence between the GP and human learning curves, while
the BMT simulations performed visibly worse. The relatively better performance of human
participants in the spatial vs. conceptual task and in smooth vs. rough environments is also
mirrored by the simulated GP curves.

Parameter estimates

Figure 5.6d shows the correspondence between GP parameters across the conceptual and
spatial tasks. We find a marginal correlation between λ estimates across the two tasks (rτ = .14,
p = .04, BF = .99), with participants tending to have lower λ estimates in the conceptual task
(Z =−2.6, r =−.27, p = .005, BF = 1.6). This indicates that participants tended to generalize
less in the conceptual domain compared to the spatial domain. Environment type also influenced
the level of generalization, with participants assigned to the smooth condition generalizing
more than those in the rough condition (Mann-Whitney U test: U = 3451, p = .006, rτ = .16,
BF = 2.4).

We find no correlation between β across the two tasks (rτ = .12, p = .08, BF = .58), in
contrast to Experiment 5. This is potentially due to the substantially lower estimates for β

in the conceptual task (Z =−5.29, r =−.54, p < .001, BF > 100), where there was close to
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negligible levels of directed exploration. Participants had marginally higher levels of directed
exploration (β ) in smooth environments compared to rough (U = 3737, p = .047, rτ = .12,
BF = 0.83), but more so when only comparing estimates from the spatial task (U = 726,
p = .003, rτ = .25, BF = 2.9)

Looking at the correspondence between levels of undirected, random exploration as captured
by the softmax temperature parameter τ , we find correlations across the two tasks (rτ = .29,
p < .001, BF > 100). Additionally, participants had substantially higher levels of τ in the
conceptual task than in the spatial task (Z = 7.12, r = .73, p < .001, BF > 100). Thus, while
directed exploration was reduced in the conceptual task, random exploration increased.

5.3.4 Discussion

The results of Experiment 6 show that by only showing the relevant spatial of conceptual
features of the task (thereby removing potential interference), we eliminated the order effect
found in Experiment 5. The use of Gabor patches as conceptual stimuli also reduced preferential
sampling towards a single extreme region of the conceptual space. By accounting for these
potential confounds, we find that the GP function learning model is able to best predict behavior
compared to a non-generalizing BMT model in both domains and produce simulated learning
curves that closely match the differences across tasks and environments of human performance.
This provides evidence of a common search process across domains, although the comparison to
Experiment 5 informs us that the choice of stimuli and the design of the task play an important
role in influencing behavior.

While there are similarities, we also find differences in how people search in spatial and
conceptual domains. Participants performed systematically better in the spatial task than the
conceptual task, indicating a difference in difficulty. One possibility is that the Gabor patches
induced more perceptual error than the grid locations. Participant may have been more likely
to confuse a a selected Gabor patch for an intended target, compared to the likelihood of
confusing two separate grid locations. We see some evidence for this possibility in the higher
proportion of repeat samples in the spatial domain, although this may also be due to differences
in generalization and sampling strategies.

While the GP was the best predictive model in both domains, the overall accuracy was lower
in the conceptual task for both models. Indeed, the parameter estimates of the GP show that
there was a shift in exploration strategy, leading to less directed exploration and more random
exploration in the conceptual task. Based on the lower performance and lower estimates of λ in
the conceptual task, participants may have put less confidence in the effectiveness of directed
exploration as a function of their ability to make accurate generalizations. This could explain
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why they favored random instead of directed exploration. When your model of the world is
less accurate, a more simple and random strategy may become adaptive.

A different (and non-mutually exclusive) explanation could be that because participants
were only shown a single target stimuli in the conceptual task (i.e., a single variant of the Gabor
patch that could be altered using the arrow keys), it may have been more difficult to make
predictive generalizations about other unseen stimuli. In contrast, all potential grid locations
were visible at all times in the spatial domain. Thus, the entire map of possibilities were
available at all times in the spatial task, whereas participants could only see a single point in the
conceptual search space. While the modeling results and bonus round judgments indicate that
participants were capable of generalizing in both domains, the presentation of the task may have
played a role in how people organized a cognitive map of the search space. Indeed, theories
about a generalized search processes are typically unidirectional, with the argument that a
spatial organization of knowledge is more primary and has been adapted through evolution for
representing more complex conceptual information (Hills et al., 2008; Todd et al., 2012)

5.4 General Discussion and Conclusion

Humans search for rewards across a multitude of different domains, using effective gener-
alization and clever exploration to great success. Historic psychological findings explained
adaptive generalization in spatial domains by evoking the concept of a cognitive map, whereas
more recent neuroscientific evidence suggests cognitive maps can be found in both spatial and
conceptual domains. We investigated whether the search for spatially or conceptually correlated
rewards can be connected via common principles of generalization.

Our results showed correlated performance in both domains, with evidence for common
computational principles of generalization and search. However, the choice of stimuli and the
design of the task played a consequential role in influencing behavior. In Experiment 5, where
both spatial and conceptual features were simultaneously presented, we found that irrelevant
spatial features were more difficult to ignore, leading to a task order effect and less effective
generalization in the conceptual domain. In Experiment 6, we adapted the design to show only
the relevant spatial or conceptual features, where we found that a Gaussian Process (GP) model
of generalization combined with Upper Confidence Bound (UCB) sampling was the best model
of behavior in both tasks. Our model produced the best out-of-sample predictions in both
tasks, made predictions of unobserved rewards that correlated with participants’ judgments,
and produced human-like learning curves based on participant parameter estimates.

Nevertheless, we also find notable differences between how people search in spatial and
conceptual domains. The parameter estimates from Experiment 6 indicate that participants
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swapped directed exploration in favor of more random exploration in the conceptual domain.
Consistent with the lower level of correspondence between participant and GP predictions
about the expected reward and the underlying uncertainty of unobserved options, this suggests
that generalization was more difficult in the conceptual domain. We present two potential
explanations in the Discussion section of Experiment 6 related to the design of the experiment
(perceptual error and seeing only a single conceptual stimuli at a time), but there may also be
more general domain differences. Spatial relationships may in principle be easier to learn due
to the extended nature of our awareness of the world around us, whereas conceptual stimuli are
more commonly experienced one at a time (e.g., a single idea in a sequential train of thought).
Currently our model does not account for attentional mechanisms (Radulescu, Niv, & Ballard,
2019) or working memory (Collins & Frank, 2018; Ohl & Rolfs, 2018) constraints on how
people integrate information, although this may be a crucial source of domain differences.
Indeed, the “stretchy birds” paradigm used by Constantinescu et al. (2016) as evidence for
a common neural representation of spatial and conceptual knowledge required several hours
of training before being measured in the scanner. Thus, while both spatial and conceptual
knowledge are capable of being organized into a common map-like representation, there may
be domain differences in terms of the ease of learning such a map, owing to different demands
on cognitive resources.

In summary, we have presented a detailed set of experimental data studying how people
generalize and search in both spatial and conceptual domains. Our behavioral and computational
modeling results enrich our understanding of the similarities and differences in how people
represent and perform search across domains. While people employ similar principles of
generalization and search, we also find domain differences that open up an intriguing avenue
for future research.





Chapter 6

Generalization in Structured Spaces

Life is not like water. Things in life don’t
necessarily flow over the shortest possible route.

—Haruki Murakami

This chapter extends theories of spatial and conceptual generalization into the domain of
structured representations, where transitions rather than singular features define relationships
in the environment. We use a diffusion kernel to model structural similarity based on transition
properties of discrete graphs, and show that the RBF kernel emerges as a special case when the
environment is perfectly symmetrical and transitions are unrestricted.

In two experiments, we demonstrate that people are able to use structural similarity to make
inferences about unobserved outcomes and to guide the search for graph-correlated rewards.
Our results provide evidence for the theory that generalization is supported by a predictive map
of the world that is sensitive to the transition dynamics that define structured environments.

This chapter is based on the following publication in addition to new unpublished research:

Wu, C. M., Schulz, E., & Gershman, S. J. (2019). Generalization as diffusion: human function
learning on graphs. In A.K. Goel and C.M. Seifert & C. Freksa (Eds.), Proceedings of the
41st Annual Conference of the Cognitive Science Society. (pp. 3122–3128). Montreal, QB:
Cognitive Science Society.
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6.1 Introduction

From encountering a new move in a game of chess, to finding your way through a foreign
airport, representing and reasoning about structured environments is a pervasive feature of
intelligence. Any adaptive agent must be able to respond and act appropriately in novel
situations (Lake et al., 2017), where leveraging the structure of the environment is an essential
ingredient for intelligent behavior (Gigerenzer & Todd, 2012; Simon, 1990). Specifically, we
focus on the problem of how people generalize over structured spaces, by making predictive
inferences to guide efficient learning. For instance, by predicting which sequence of moves
will lead to a checkmate or which route through the airport will lead you to the gate the fastest.

Generalization as a means for adapting to new situations has featured prominently in
research on classification (Erickson & Kruschke, 2002; Nosofsky, 1988b) and reinforcement
learning (Wu, Schulz, Garvert, et al., 2018; Wu, Schulz, Speekenbrink, et al., 2018), where a
common assumption is that similarity is a guiding principle (Tenenbaum & Griffiths, 2001).
Shepard (1987) famously showed that once trained to react to a stimulus, an animal’s probability
of showing the same response to new stimuli decays exponentially as the similarity between
stimuli decreases.

Here, we examine whether principles of similarity-based generalization can be used to
perform inference and guide exploration in structured environments, where transitions rather
than stimuli features define the distribution of rewards. We use a function learning framework to
describe generalization, where previous observations can be interpolated or extrapolated to make
predictions about unobserved stimuli. We show that traditional models of function learning in
continuous domains can be subsumed under a model of structure-based generalization, offering
a unifying framework for understanding adaptive behavior across spatial, conceptual, and
structured domains.

6.1.1 Generalization as function learning

How much hot sauce should you add to a meal to enhance the flavor? How hard should you
push a child on a swing? There is a wealth of literature devoted to studying how humans
learn functions in the world, which has traditionally focused on how people learn an explicit
relationship between two continuous variables (Brehmer, 1974; Busemeyer et al., 1997; Carroll,
1963; Koh & Meyer, 1991).

While the majority of function learning research has studied continuous spaces, many
real-world problems are better represented using discrete graph structures, where transition
dynamics rather than Cartesian distance between features define the relationship between
inputs and outputs. For example, the domain of Reinforcement Learning (RL; Sutton & Barto,
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2018) assumes that the problem of learning through interactions with the environment can be
described as a Markov Decision Process (MDP). MDPs are graph structures representing each
state of the world as a node and transitions between states as edges. Function learning in RL
often means learning a value function over possible states, in order to train a policy that will
guide the agent to rewarding states. In vast problems where not all states can be observed,
modern implementations of RL often use neural network to learn an approximation of the value
function (Mnih et al., 2015; Silver et al., 2016).

An early and influential approach to generalization in RL was the Successor Representation
(SR; Dayan, 1993). The SR describes a similarity metric based on the state dynamics (i.e., the
transition structure between states), which allows the value function to generalize observations
of rewards to unobserved states. This can also be understood as a similarity-based approach for
function learning on discrete spaces, using similarity between future expected state transitions
as the basis for generalization. A simple example is that if one’s goal is to get on an airplane,
one should not drive directly to where the plane is parked on the tarmac and try to board.
Rather, it would be better to head towards into terminal, because from there the chain of state
transitions (e.g., check-in, security screening, then boarding) is more likely to lead to a pleasant
flight. Thus, function learning in discrete spaces can also be guided by similarity, but one based
on transition structure as opposed to distance.

6.1.2 Goals and scope

We describe a method for learning functions and performing Bayesian inference over graph
structures using a diffusion kernel. The diffusion kernel provides a similarity metric of a
graph based on its transition structure, and when combined with the Gaussian Process (GP)
framework, allows us to make Bayesian predictions about unobserved nodes. We show that
a prominent model of function learning in continuous spaces is a special case of this model,
and that both have theoretical equivalencies to the Successor Representation. To put our theory
into practice, we present two experiments studying how people make inferences and search for
rewards on graph structures. Experiment 7 is a function learning task where participants are
shown a series of generated subway maps and asked to predict the number of passengers at
unobserved stations. Our GP model using a diffusion kernel is able to capture both participant
prediction and confidence judgments. Experiment 8 is a multi-armed bandit tasks, where nodes
on a graph yield normally distributed rewards with a mean that is correlated across the graph
structure (i.e., similarly connected nodes have similar rewards). We show that the GP model
best predicts choices, produce human-like learning curves, and also describes judgments about
unobserved nodes. Overall, these results extend the scope of all previous chapters in this
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Fig. 6.1 Inference over graphs. a) An example of a graph structure, where nodes represent states and edges
indicate the transition structure. b) A diffusion kernel is a similarity metric between nodes on a graph, allowing us
to generalize to unobserved nodes based on the assumption that correlations of rewards decays as an exponential
function of the distance between two nodes. The diffusion parameter (α) governs the rate of decay. c) Given
some observations on the graph (colored nodes), we can use the diffusion kernel combined with the Gaussian
Process framework to make predictions (d) about expected rewards (numbers in grey nodes) and the underlying
uncertainty (size of halo) for each of the unobserved nodes.

thesis to structured spaces, opening a rich connection to the neurological basis for how people
organize structured knowledge and perform generalization.

6.2 Generalization on graph structures

We can specify a graph G = (S,E) with nodes si ∈ S and edges ei ∈ E to represent a structured
state space (Fig. 6.1a). Nodes represent states and edges represent allowed transitions. For now,
we assume that all edges are undirected (i.e., if x → y then y → x). The connectivity structure of
the graph determines which states are accessible from a given prior state, and is often described
using the graph Laplacian L:

L = D−A (6.1)

where A is the adjacency matrix and D is the degree matrix. Each element ai j ∈ A is 1 when
nodes i and j are connected, and 0 otherwise, while the diagonals of D describe the number of
connections of each node†.

6.2.1 The diffusion kernel

The diffusion kernel (DF; Kondor & Lafferty, 2002) defines a similarity metric k(s,s′) between
any two nodes based on the matrix exponentiation of the graph Laplacian:

k(s,s′) = expαL (6.2)

†The graph Laplacian can also describe graphs with weighted edges, where we substitute the weighted
adjacency matrix W for A and the degree matrix describes the weighted degree of each node. All analyses apply
in the weighted case.
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Intuitively, the diffusion kernel assumes that rewards diffuse along the graph similar to a
heat diffusion process (i.e., by assuming a continuous random walk). Thus, closely connected
nodes are assumed to be more similar and to have similar rewards. The free parameter α

models the level of diffusion, where α → 0 assumes complete independence between nodes,
while α → ∞ assumes all nodes are perfectly correlated. In practice, the matrix exponentiation
described in Eq. 6.2 can be accomplished by first decomposing L into its eigenvectors ui ∈U
and eigenvalues λi ∈ Λ, and then substituting matrix exponentiation with real exponentiation
using k(s,s′) = expαL = ∑i ui expαλi u⊤i .

Gaussian Process regression

From the similarity metric created by the diffusion kernel, we can use Gaussian Process (GP)
regression (Rasmussen & Williams, 2006) to perform Bayesian inference over observations on
structured graphs. A GP defines a distribution over functions f : S → Rn that map the state
space S to real-valued scalar outputs (e.g., rewards). Functions are modeled as a random draw
from a multivariate normal distribution:

f ∼ GP
(
m(s),k(s,s′)

)
, (6.3)

where m(s) is a mean function specifying the expected output of s, and k(s,s′) encodes prior
assumptions about the underlying function. We use the diffusion kernel (Eq. 6.2) to represent
the covariance based on the connectivity structure of the graph, and follow the convention of
setting the mean function to zero, such that the GP prior is fully defined by the kernel.

Given some observations Dt = {st ,yt} of observed rewards yt at states st , we can com-
pute the posterior distribution p( f (s∗)|Dt) for any target state s∗. The posterior is a normal
distribution with mean and variance defined as:

m(s∗|Dt) = k⊤
∗,t(K+σ

2
ε I)−1yt (6.4)

v(s∗|Dt) = K(s∗,s∗)−k⊤
∗,t(Kt +σ

2
ε I)−1k∗,t (6.5)

where Kt is the t × t covariance matrix evaluated at each pair of observed inputs, and k∗,t =

[k(s1,s∗), . . . ,k(st ,s∗)] is the covariance between each observed input and the target input s∗,
and σ2

ε is the noise variance. Thus, for any node in the graph, we can make Bayesian predictions
about the expected reward m(s∗|Dt) and also the level of uncertainty v(s∗|Dt) (Fig. 6.1e).
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The posterior mean function of a GP can be rewritten as:

m(s) =
t

∑
i=1

wik(si,s) (6.6)

where each si is a previously observed state and the weights are collected in the vector w =[
k(st ,st)+σ2

ε I
]−1 yt . Intuitively, this means that GP regression is equivalent to a linearly-

weighted sum using basis functions k(si,s) to project observed states onto a feature space
(E. Schulz, Speekenbrink, & Krause, 2018). To generate new predictions for an unobserved
state s, each output yt is weighted by the similarity between observed states st and the target
state s.

6.2.2 Connecting spatial and structured generalization

The Gaussian Process framework allows us to relate similarity-based generalization on graphs
to theories of generalization in continuous domains. Consider the case of an infinitely fine
lattice graph (i.e., a grid-like graph with equal connections for every node and with the number
of nodes and connections approaching continuity). Following Kondor and Lafferty (2002) and
using the diffusion kernel defined by Eq. 6.2, this limit can be expressed as

k(s,s′) =
1√

(4πα)
exp
(
−|s− s′|2

4α

)
, (6.7)

which is equivalent to the Radial Basis Function (RBF) kernel that has been used throughout
this thesis. Thus, the RBF can be understood as a special case of the diffusion kernel, offering
a rich set of connections to theories of generalization over spatial and conceptual features
(E. Schulz et al., in press; Wu, Schulz, Garvert, et al., 2018; Wu, Schulz, et al., 2017; Wu,
Schulz, Speekenbrink, et al., 2018).

This equivalency between the RBF and diffusion kernel holds when knowledge is repre-
sented as a continuous Cartesian coordinate system, where all neighboring points are sym-
metrically reachable and movement through this representational space is unrestricted. In this
case, relationships between stimuli are defined purely in terms of geometry, such that any
distance or feature-based assessment of similarity is equivalent to the transition-based similarity
metric of the diffusion kernel. However, once we introduce restrictions on transitions (such as
a wall preventing movement or sequential dynamics where past actions restrict the set of future
possible actions), this equivalency fails. Thus, one could consider spatial representations of
similarity to be subsumed under a broader representation of similarity based on the transition
structure of the environment.
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While we have presented evidence for a spatial organization of knowledge (Constantinescu
et al., 2016; Hills, 2006; Theves et al., 2019; Todd et al., 2012; Wu, Schulz, Garvert, et
al., 2018; Wu, Schulz, Speekenbrink, et al., 2018), there is more to the story. The neural
encoding of spatial information in the hippocampus is sensitive to the transition structures of
the environment (Stachenfeld et al., 2014, 2017), such that representations of spatial location
become skewed along commonly travelled directions. This suggests that the organization of
knowledge in the brain produces a predictive rather than a static map of the world. Specifically,
our cognitive map (Tolman, 1948) is organized for predicting future outcomes, such that our
representation of similarity captures the transition structures of the environment.

6.2.3 The Successor Representation

The Successor Representation (SR) originated as a method for improving the generalization
of Temporal Difference learning (TD learning; Dayan, 1993), but recent work has discovered
striking similarities to the neural basis for how humans encode state transitions (Momennejad
& Howard, 2018; Momennejad et al., 2017; Stachenfeld et al., 2017).

Dayan (1993) showed that the value function of a TD-learning agent (Eq. 1.5) can be decom-
posed into a linear combination of state transitions M(s,s′) and learned reward representation
R(s′):

V (s) = ∑
s′

M(s,s′)R(s′). (6.8)

This matrix of state representations M(s,s′) is the SR, where each element m jk encodes the sim-
ilarity of successor states for states s j and sk (Dayan, 1993; Gershman, 2018b). Intuitively, the
SR can be understood as a similarity measure based on expectations of future state transitions,
rather than the singular features of each state.

When the transition structure of the task is known a priori, the SR can be computed in
closed form:

M(s,s′) = (I − γT )−1, (6.9)

where I is the identity matrix, γ is the TD discount factor, and T is the transition matrix where
t jk = P(s′ = k|s = j). A common approach is to assume a random walk over the state space,
and substitute T with a modified form of the graph Laplacian:

T = I −D−1L (6.10)

As suggested by Eq. 6.2 and Eq. 6.10, both the diffusion kernel and the SR provide a
similarity metric for generalization based on the transition structure captured by the graph
Laplacian. Indeed, in the limit of latent function space, both methods are exactly equivalent
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(originally shown in Stachenfeld et al., 2014, but also see Stachenfeld et al., 2017). Given that
the SR and the GP parameterized by a diffusion kernel both predict the expected value of a
state using a similarity-weighted sum of the rewards of other states (Eqs. 6.6 and 6.8), it can be
shown that both similarity measures are the same by an equivalency of their eigenvectors (see
Machado et al., 2018).

If M(s,s′) = (1− γT )−1 and given a normalized graph Laplacian L̃ = D−1/2LD−1/2, the
i-th eigenvalue λi of the SR and the j-th eigenvalue λ j of the normalized Laplacian can be
equated as

λ j =
(
1− (1−λ

−1
i )γ−1) , (6.11)

and the i-th eigenvector ui of the SR and the j-th eigenvector u j of the normalized Laplacian
are related by

u j = (γ−1D1/2)ui (6.12)

Therefore, since both the SR and the GP make predictions as a function of their eigendecom-
positions, these two models are equivalent in the limit of the latent function space (Stachenfeld
et al., 2014). Thus, popular models of human function learning, theories of generalization in
reinforcement learning, and historic accounts of psychological laws of generalization laws can
all be linked via Gaussian Process inference over graph structures.

This chapter proceeds by presenting two experiments. Experiment 7 is a function learning
task, where participants are asked to make predictions about the number of passengers on gen-
erated subway maps. We use a GP with the diffusion kernel to describe participant predictions,
which we find to be better than several nearest-neighbor averaging rules. Additionally, the
uncertainty estimates of the GP also predict participant confidence judgments. Experiment 8
uses a graph-structured bandit task, where participants search for rewards by clicking the nodes
of a graph.

6.3 Experiment 7 - Subway prediction task

In this task, we assess how well a GP using the diffusion kernel corresponds to human intuitions
about structured spaces. Participants were shown various graph structures (Fig. 6.2) and
asked to make a prediction about unobserved nodes by generalizing from the values of other
observations. Participants also gave confidence judgments for each judgment, which we also
predict using the uncertainty estimates of the GP.
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Fig. 6.2 Screenshot from Experiment 7. Observed nodes (3, 5, or 7 depending on the information condition) are
shown with a numerical value and a corresponding color aid (darker indicates larger values. The target node is
indicated by the dashed line, and would dynamically change color and display a numerical value when participants
moved the top slider. Confidence judgments were used to compute a weighted error (i.e., more confident answers
having a larger contribution), which was used to determine the performance contingent bonus.

6.3.1 Methods and procedure

We recruited 100 participants (Mage = 32.7; SD= 8.4; 28 female) on Amazon MTurk (requiring
95% approval rate and 100 previously completed HITs) to perform 30 rounds of a graph
prediction task. On each graph, numerical information was provided about the number of
passengers at 3, 5, or 7 other stations (along with a color aid), from which participants
were asked to predict the number of passengers at a target station and provide a confidence
judgment (Likert scale from 1 - 11). The subway passenger cover story was used to provide
intuitions about graph correlated functions. Additionally, participants observed 10 fully revealed
graphs to familiarize themselves with the task and completed a comprehension check before
starting the task. Participants were paid a base fee of $2.00 USD for participation with
an additional performance contingent bonus of up to $3.00 USD. The bonus payment was
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Fig. 6.3 Experiment 7 results. a-b) Participant judgment errors and confidence estimates. Each dot is a single
participant (averaged over each number of observed nodes), with Tukey boxplots and diamonds indicating group
means. The dotted line in a) is a random baseline. c) Judgment error and confidence. Each colored dot is a
participant (averaged over each confidence level), dashed line is a linear regression, with black dots and error
bars indicating group means and 95% CI. We report the mixed-effects regression coefficient and Bayes Factor
above. d) Cross-validated model comparison between the Gaussian Process with diffusion kernel (GP), d-nearest
neighbors (dNN), and k-nearest neighbors (kNN). Each point is a single participant with a Tukey boxplot overlaid
and diamonds indicating group means. Comparisons are for a Bayesian one-sample t-test. e) Parameter estimates,
where each dot is the mean cross-validated estimate for each participant, with Tukey boxplots and diamonds
indicating group means. f) GP uncertainty estimates and participant confidence judgments. Dotted line is a linear
regression, with black dots and error bars indicating mean and 95% CI.

based on the mean absolute judgement error weighted by confidence judgments: Rbonus =

$3.00× (25−∑i c̃iεi)/25 where c̃i is the normalized confidence judgment c̃i =
ci

∑c j
and εi is

the absolute error for judgment i. On average, participants completed the task in 8.09 minutes
(SD = 3.7) and earned $3.87 USD (SD = $0.33).

All participants observed the same set of 40 graphs that were sampled without replacement
for the 10 fully revealed examples in the familiarization phase and for the 30 graphs in the
prediction task. We generated the set of 40 graphs by iteratively building 3×3 lattice graphs
(also known as mesh or grid graphs), and then randomly pruning 2 out of the 12 edges. In order
to generate the functions (i.e., number of passengers), we fit a diffusion kernel to the graph and
then sampled a single function from a GP prior, where the diffusion parameter was set to α = 2
(see Fig. 6.2).
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6.3.2 Results

Figure 6.2 shows the behavioral and model-based results of the experiment. We applied linear
mixed-effects regression to estimate the effect of the number of observed nodes on participant
prediction errors, with participants as a random effect. Participants made systematically lower
error predictions as the number of observations increased (β =−.11, t(2899) =−6.3, p< .001,
BF > 100†; Fig. 6.3a). Repeating the same analysis but using participant confidence judgments
as the dependent variable, we found that confidence increased with the number of available
observations (β = .16, t(2899) = 11.3, p < .001, BF > 100; Fig. 6.3b). Finally, participants
were also able to calibrate confidence judgments to the accuracy of their predictions, with higher
confidence predictions having lower error (β =−.19, t(1637) =−9.0, p < .001, BF > 100;
Fig. 6.3c). There were no substantial effects of learning over rounds (β = .01, t(2899) = 0.5,
p = .614, BF = 0.4), suggesting the familiarization phase and cover story were sufficient for
providing intuitions about graph correlated structures.

6.3.3 Model comparison

We compare the predictive performance of the GP with two heuristic models that use a nearest-
neighbors averaging rule (see below). We fit our models to individual participants using
leave-one-graph-out cross-validation, and then make out-of-sample predictions for the left-out
judgment. We repeat this procedure for all trials and compare predictive performance using
Root Mean Squared Error (RMSE) over all left-out trials.

Heuristic models

We compare the GP model to two heuristic strategies for function learning on graphs, which
make predictions about the rewards of a target state s∗ based on a simple nearest neighbors
averaging rule. The k-Nearest Neighbors (kNN) strategy averages the values of the k nearest
nodes (including all nodes with same shortest path distance as the k-th nearest), while the
d-Nearest Neighbors (dNN) strategy averages the values of all nodes within path distance d.
Both kNN and dNN default to a prediction of 25 when the set of neighbors are empty (i.e., the
median value in the experiment).

Both the dNN and kNN heuristics approximate the local structure of a correlated graph
structure with the intuition that nearby states have similar function values. While they some-
times make the same predictions as the GP model and have lower computational demands, they

†β is the standardized effect size and we approximate the Bayes Factor using bridge sampling (Gronau,
Singmann, & Wagenmakers, 2017) to compare our model to an alternative intercept only null model. See
Appendix A for further details.
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fail to capture the connectivity structure of the graph and are unable to learn directional trends.
Additionally, they only make point-estimate predictions, and thus do not capture the underlying
uncertainty of a prediction (which we use to model confidence judgments).

Model results

Figure 6.3d shows that the GP made better predictions than both the dNN (t(99) = −4.06,
p < .001, d = 0.41, BF > 100) and kNN models (t(99) =−7.19, p < .001, d = 0.72, BF >

100). Overall, 58 out of 100 participants were best predicted by the GP, 31 by the dNN,
and 11 by the kNN. Figure 6.3e shows individual parameter estimates of each model. The
estimated diffusion parameter α was not substantially different from the ground truth of α = 2
(t(99) = −0.66, p = .51, d = 0.07, BF = 0.14), although the distribution appeared to be
bimodal, with participants often underestimating or overestimating the correlational structure.
Estimates for d and k were highly clustered around the lower limit of 1, suggesting that
averaging over larger portions of the graph were not consistent with participant predictions.

Lastly, an advantage of the GP is that it produces Bayesian uncertainty estimates for
each prediction. While the dNN and kNN models make no predictions about confidence,
the GP uncertainty estimates correspond to participant confidence judgments (β = −.10,
t(2043) =−3.4, p < .001, BF > 100; linear mixed-effects model with participant as a random
effect).

6.3.4 Discussion

How do people generalize on structured spaces? We show how a GP with a diffusion kernel
can be used as a model of generalization that produces Bayesian predictions about unobserved
nodes. Our model integrates existing theories of human function learning in continuous spaces,
where the RBF kernel (commonly used in continuous domains) can be seen as a special limiting
case of the diffusion kernel. Using a virtual subway task, we show that the GP was able to
capture how people make judgments about unobserved nodes and is also able to generate
uncertainty estimates that correspond to participant confidence ratings.

Next, we assess the suitability of the diffusion kernel as a model for more complex problems,
by transitioning into a choice paradigm using a multi-armed bandit task with structured rewards
E. Schulz, Franklin, and Gershman (2018). One advantage of the GP diffusion kernel model is
that it makes prediction with estimates of the underlying uncertainty. In comparison, the SR
model only makes point-estimates about the value of a state. Thus, the GP framework offers
opportunities for uncertainty-guided exploration strategies (e.g., Auer, 2002).



6.4 Experiment 8: Graph bandit 117

Fig. 6.4 Experiment 8 screenshots. a) Four fully revealed environments were shown to participants prior to
beginning the task. b) During the task participants were instructed to click nodes to earn as much reward as
possible. Clicked nodes displayed the numeric value of the earned reward and a color guide (darker colors indicate
higher rewards). c) Zoomed in screenshot of the bonus round, which activated after the 20th trial on the last round.
10 unclicked nodes were uniformly sampled and participants were sequentially asked to make judgments about
expected rewards and their confidence rating. The expected reward slider was mapped to the selected node such
that the color and numerical value dynamically changed as the slider was moved.

6.4 Experiment 8: Graph bandit

As an extension of previous work on spatially (E. Schulz, Wu, Huys, Krause, & Speekenbrink,
2018; E. Schulz et al., in press; Wu, Schulz, et al., 2017; Wu, Schulz, Speekenbrink, et al.,
2018) and conceptually correlated bandits (Wu, Schulz, Garvert, et al., 2018), we constructed a
task where rewards are defined by the connectivity structure of a graph. Participants search
for rewards by clicking the various nodes of a graph, where the connections between nodes
influence rewards. This provides a reward structure allowing for similarity-based generalization
to aid in search, but where similarity is defined based on connectivity rather than perceptual
features.

6.4.1 Methods

Participants and design

We recruited 100 participants on Amazon MTurk (requiring 95% approval rate and 100 pre-
viously completed HITs). Two participants were excluded because of missing data, making
the total sample size N = 98 (Mage = 34.3; SD = 8.7; 32 female). Participants were paid $2.00
for completing the task and earned an additional performance contingent bonus of up to $3.00.
Overall, the task took 7.2 ± 3.3 minutes and participants earned $4.32 ± $0.24 USD.
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Materials and procedure

Participants were instructed to earn as many points as possible by clicking on the nodes of a
graph. Each node represented a reward generating arm of the bandit, where connected nodes
yielded similar rewards, such that across the whole graph the expected rewards were defined by
a graph-correlated structure (see Fig. 6.4a). Along with the instructions indicating the correlated
structure of rewards, participants were shown four fully revealed graphs to familiarize them
with the reward structure and had to correctly answer three comprehension questions before
starting the task.

After completing the comprehension questions, participants performed a search task over a
10 rounds, each corresponding to a different randomly generated graph structures. In each task,
participants were initially shown a single randomly revealed node, and had 25 clicks to either
explore unrevealed nodes or to reclick previously observed nodes, where each observation
included normally distributed noise ε ∼N (0,1). Each clicked node displayed the numerical
value (most recent observation if selected multiple times) and a color aid, where darker colors
corresponded to larger rewards (Fig. 6.4b). After finishing each round, participants were
informed about their performance as a percentage of the best possible score (compared to
selecting the global optimum each trial). The final performance bonus (up to $3.00) was also
calculated based on this percentage, averaged over all rounds.

In total we generated 40 different graphs by building 8x8 lattice graphs and then randomly
pruning 40% of the edges, with the constraint that the resulting graph be comprised of a
single connected component. We then sampled a single reward function for each graph from
a GP prior, parameterized by a diffusion kernel fit on the graph (with α = 2). The layout for
each graph was pre-generated using the Fruchterman-Reingold (1991) force-directed graph
placement algorithm, such that a single canonical layout for each graph was observed by all
participants. For each participant, we sampled (without replacement) from the same set of 40
pre-generated graphs to build the set of 4 fully revealed graphs shown in the instructions and
the 10 graphs used in the main experiment.

Judgments

Prior to beginning the very last round, participants were informed that it was a “bonus round”.
The goal of acquiring as many points as possible remained the same, but after 20 clicks,
participants were shown a series of 10 unrevealed nodes and asked to make judgments about
the expected reward and their confidence (Fig. 6.4c). After all 10 judgments were completed,
participants were forced to choose one of the 10 options, and then the task was completed as
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Fig. 6.5 Experiment 8 results. a) Mean performance over trials, where each blue line is a single participant and
the red line is the group mean. The dotted line provides a comparison to a random baseline. b) Average degree
(i.e,. number of connected nodes) of selected nodes over trials, where the dotted line indicates the mean node
degree over the set of 40 environments. Each blue dot indicates the mean with 95% CI error bars with the red line
showing the trend towards lower degree nodes over trials. c) Reward distribution of the 40 environments separated
by node degree, where the white diamond indicates the mean with black 95% CI error bars. The red line is a linear
regression. d) The distribution of graph distances (shortest path length) between choices, where the black line is a
random baseline. e) The distribution of spatial distances between choices (based on the Fruchterman-Reingold
projected coordinates), where the black line is a random baseline. f) The correlation between the overall proportion
of repeat clicks and mean score, where each dot is a single participant and the red line is a linear regression. g-i)
Reaction times (RT) in milliseconds (ms), over trials, rounds, and as a function of the previous reward value (split
into four quartiles per participant, where Q4 represents the highest set of rewards).

normal. Behavioral and modeling results exclude the bonus round, except for the analyses of
the judgment data.

6.4.2 Results

Participants performed well in the task, achieving higher rewards over successive trials (r = .93,
p < .001, BF > 100; Fig. 6.5a) and decisively outperformed a random baseline (t(97) = 29.6,
p < .001, d = 3.0, BF > 100). We find no influence of round number on performance (r = .49,
p = .182, BF = 1), indicating that the fully revealed environments in the instructions (Fig.
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6.4a) and comprehension questions were sufficient for conveying the goal of the task and the
correlational structure.

Participants increasingly selected lower degree nodes over successive trials (r = −.95,
p < .001, BF > 100; Fig. 6.5b). While this does not correspond to differences in expected
rewards for the underyling reward distribution (Fig. 6.5c), lower degree nodes did tend to
have more eccentric reward values. Indeed, the maximum reward across environments had an
average degree of 1.28. However, the minimum reward was also more likely to be found on a
low degree node, with an average degree of 1.2. This trend of preferentially sampling lower
degree nodes may reflect a high-risk high-reward heuristic (Leuker, Pachur, Hertwig, & Pleskac,
2018), although the causality may also be reversed, with participants ceasing exploration once
a suitably high reward has been found, which is also likely to correspond to a low degree node.

Participants also had a strong tendency to search locally, in terms of both graph distance (Fig.
6.5d) and spatial distance (Fig. 6.5e) measured using the Fruchterman-Reingold projection
coordinates of the graph. Both spatial and graph distance are highly rank correlated (rτ = .92,
p < .001, BF > 100), since the purpose of the projection algorithm is to accurately represent
the connection structure of the graph on a 2-dimensional plane. Overall, participants had a mean
rate of 62% repeat selections, with the proportion of repeats correlating with mean performance
(r = .78, p < .001, BF > 100; Fig 6.5f). This seems to suggest that much of the improvement
in the learning curves (Fig. 6.5a) are owed to few but effective exploration decisions.

Figures 6.5g-i show the reaction times (RT) of participants. Participants sped up over trials
(correlated with log(RT): r = −.64, p < .001, BF > 100) and to a lesser extent over rounds
(r =−.20, p < .001, BF > 100). Additionally, participants responded faster when the previous
reward value was high (r =−.59, p < .001, BF > 100).

6.4.3 Modeling Comparison

In order to understand how participants search for rewards, we used computational modeling to
make predictions about choices and the judgments from the bonus round. Models were fit using
leave-one-round-out cross validation, and then compared using the summed out-of-sample
prediction accuracy of the left out rounds. Altogether, we compared five different models
corresponding to different strategies for generalization and exploration (see below).

Each model computes a value for each option q(s), which is then transformed into a
probability distribution using a softmax choice rule:

P(si) =
exp(q(si)

τ
)

∑ j exp(q(s j)
τ

)
, (6.13)
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where the temperature parameter τ is a free parameter controlling the level of random explo-
ration. In addition, all models also use a stickiness parameter ω that adds a bonus onto the
value of the most recently chosen option. This is a common feature of reinforcement learning
models (Christakou, Gershman, et al., 2013; Gershman et al., 2009), which we include here to
account for the high proportion of repeat clicks.

Gaussian process with diffusion kernel

The Gaussian process (GP) model uses the diffusion kernel (Eq. 6.2) to make predictive
generalizations about reward, where we fit α as a free parameter defining the extent to which
generalizations diffuse along the graph structure. For each node s, the GP produces normally
distributed predictions that can be summarized in terms of an expected value m(s) and the
underlying uncertainty v(s). In order to model how participants balance between exploiting
high value rewards and exploring highly uncertain options, we use upper confidence bound
(UCB) sampling (Auer, 2002) to produce a valuation of each node:

qUCB(s) = m(s)+β
√

v(s), (6.14)

where the exploration bonus β is a free parameter that governs the level of exploration directed
towards highly uncertain options.

Bayesian mean tracker

The Bayesian mean tracker (BMT) is a prototypical reinforcement learning model that can be
interpreted as a Bayesian variant of the traditional Rescorla-Wagner (1972) model (Gershman,
2015). The BMT also produces normally distributed predictions of reward m(s) and v(s) for
each node, but without generalization (see subsection 2.3.1). The rewards of each node are
learned independently, with predictions of unobserved nodes defaulted to a prior of m0 = 50
and v0 = 500. The BMT has the error variance σ2

ε as a free parameter, which can be interpreted
as inverse sensitivity. Smaller values result in larger updates to the learned mean m(s) and
larger reductions of uncertainty v(s). The BMT also uses UCB as a sampling strategy, along
with stickiness and a softmax choice rule.

Successor representation

The successor representation (SR; Dayan, 1993) is a reinforcement learning model that performs
generalization based on building a predictive map of the connection structure

M(s,s′) = (I − γT )−1. (6.15)
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M(s,s′) is the success representation matrix that models the similarity of node s to node s′

based on future expected state occupancy, where we assume a random walk policy by setting
the transition matrix T to the row normalized graph Laplacian T = I −D−1L. The extent of
generalization is governed by the temporal discount parameter γ , which we treat as a free
parameter.

While the SR has theoretical equivalencies to the diffusion kernel (Stachenfeld et al., 2014),
there are practical differences when computed on finite graphs and also by modeling the extent
of generalization using the temporal discount rate γ rather than the diffusion parameter α .
Additionally, the SR only makes predictions about expected value

m(s) = ∑
s′

M(s,s′)R(s′), (6.16)

where R(s′) is the observed reward at state s′. Because there are no uncertainty estimates, the
SR does not implement any directed sampling using UCB. Instead, we set q(s) = m(s) and
apply stickiness along with a softmax choice rule.

Nearest neighbors models

In additional to reinforcement learning models, we also consider two simple nearest neighbor
averaging models. The d-nearest neighbors (dNN) model estimates expected reward for
unobserved node by averaging the rewards of all observed nodes within a distance of d. The
k-nearest neighbors (kNN) model estimates expected reward by averaging the observed rewards
for the k nearest nodes, including all ties. Both d and k are estimated as free parameters. For
predictions where no observed nodes satisfied the averaging rule (i.e., all observations were
too far away), we defaulted to an expected value of m(s) = 50. Both dNN and kNN apply
stickiness and use a softmax choice rule.

6.4.4 Model results

Figure 6.6a shows model performance in terms of predictive accuracy, which is an R2 measure
comparing the out-of-sample loss logL(Mk) of each model k to a random model Mrand:

R2 = 1− logL(Mk)

logL(Mrand)
, (6.17)

Intuitively, R2 = 0 represents random chance (i.e., predicting each of the 64 nodes with equal
probability) and R2 = 1 corresponds to a theoretically perfect model.
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We evaluate the relative performance of models using the protected exceedence proba-
bility (pxp) as a Bayesian model selection framework for estimating the prevelance of each
model in the population, corrected for chance (Rigoux et al., 2014; Stephan et al., 2009).
Overall, the GP had the highest predictive accuracy (R2 = .56) and produced an estimated
prevalence of pxp(GP) = .90, with the other models having pxp(BMT ) = .07, pxp(SR) = .001,
pxp(dNN) = .02, and pxp(kNN) = .001. It should be noted that the high proportion of repeats
contributed towards all models having high predictive accuracy levels. As a benchmark, we
also fit a null model that makes the same prediction for every node, which combined with
stickiness and the softmax choice rule achieved a mean predictive accuracy of R2 = .45.

We also simulate the behavior of each model by sampling (with replacement) from the set
of participant parameter estimates (10k samples) and computing the average learning curves
(Fig. 6.6b). Although all models underperform the human curves, the GP achieves the closest
levels of performance, with the BMT performing next best.

Parameter Estimates

We now turn to the parameter estimates to interpret characteristics of participant behavior
captured by the models (Fig. 6.6c). The GP uses the diffusion parameter (α) to define the
extent of generalization, where larger values of α imply wider influences of observed rewards
over the graph structure. While the model provides evidence that generalization occurs, α

estimates were systematically lower than the underlying value of α = 2 used to generate the
environments (t(97) = −13.5, p < .001, d = 1.4, BF > 100). Undergeneralization rather
than overgeneralization is the norm, consistent with the results of Chapter 3, where we found
potential benefits of a bias towards undergeneralization in a similar search context. Additionally,
the GP not only makes predictions of reward, but also of the underlying uncertainty, where
the exploration bonus (β ) is used to balance the exploitation of expected rewards with the
exploration of the most uncertain options. Thus, the results of the GP model capture both forms
of exploration in participant behavior, suggesting a combination of both directed and random
exploration describes participant behavior. Lastly, we also define a stickiness parameter (ω),
which captures an aspect of the high rates of repeat clicks by adding an additional bonus to the
value of the last selected options.

In comparison, while the BMT also makes uncertainty estimates, these are defaulted to
the prior variance (v0 = 500) for all unobserved options, making the same estimate for nodes
near and far from previous observations. In contrast to the GP model, the BMT shows little
evidence of directed exploration, with β estimates only marginally different from the lower
bound of .007 (t(97) = 2.1, p = .038, d = 0.2, BF = .92). The BMT also made similar use of
the stickiness parameter compared to the GP (t(97) = 0.7, p = .460, d = 0.1, BF = .15).



124 Generalization in Structured Spaces

Fig. 6.6 Experiment 8 modeling results. a) Predictive accuracy (R2). Each dot is a single participant with the
diamond indicating group means. Tukey boxplots indicate median and 1.5 IQR. b) Simulated learning curves by
sampling (with replacement) from participant parameter estimates (10k replications), where the black line shows
a random baseline and the pink line shows mean participant performance. c) Participant parameter estimates,
where each dot is the median cross-validated estimate, the diamond indicates group mean, and Tukey boxplots
show the median and 1.5 IQR. Note that the y-axis is log-scaled for parameters except d and k, which are natural
numbers. d) Model predictions of bonus round judgments, using the median parameter estimates from the other
rounds. Performance is reported in root mean squared error (RMSE). Each dot is a single participant, with
diamonds indicating group mean and the error bars showing 95% CI. The dotted line indicates a random baseline.
e) Only the DF and BMT make uncertainty estimates. Here we show the correspondence between rank ordered
(per participant) confidence judgments and model uncertainty estimates. Dots indicate means with error bars
showing 95% CI, and colored lines represent a linear regreesion. f) The correspondence between each bonus
round judgment and model predictions, where each dot is one data point and each line is a linear regression at the
individual level. Model predictions were limited to the same 0-100 range as participant responses.
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While the SR did not perform as well in terms of predictive accuracy or simulated learning
curves, we still find sensible parameter estimates. It should be noted that the SR is better
suited for sparse reward environments—in contrast to the task here—since lacking a prior over
rewards, it is prone to either over or under inflation of predictions. Nevertheless, we still find
estimates of the temporal discount parameter (γ) within the range commonly used in RL tasks
(near the upper limit of 1). Because the SR does not make predictions about uncertainty, it only
has access to random exploration, showing larger values of τ than both the GP (t(97) = 3.6,
p < .001, d = 0.5, BF = 49) and BMT models (t(97) = 4.2, p < .001, d = 0.5, BF > 100),
perhaps as a means to compensate for lacking directed exploration.

Turning to the nearest-neighbor models, the dNN generated predictions by averaging
the rewards of observed nodes within a distance of d. The mean estimate of distance was
d = 2.4, although the mode and median were both 1. Thus, the dNN predominately made
predictions solely based on the observations of directly connected nodes. Nonetheless, it was
still able to predict participant choices fairly accurately. While the dNN had no access to
directed exploration, we nevertheless find similar levels of random exploration (τ : t(97) = 1.2,
p = .230, d = 0.1, BF = .23) and stickiness (ω: t(97) =−1.0, p = .317, d = 0.1, BF = .18)
compared to the GP. Thus, one potential source of the gap in simulated learning performance
compared to the GP (Fig. 6.6b), could be the due to the dNN lacking a form of directed
exploration. The kNN model also performed similar to the dNN, by averaging the k nearest
nodes rather than selecting nodes at a fixed distance. The mean number of neighbors was
k = 3, and with a mode and median of 2. Thus, like the dNN, generalizations were on the basis
of integrating a small number of other observations. The dNN and kNN also shared similar
levels of both undirected exploration (t(97) = 1.8, p = .077, d = 0.3, BF = .52), and stickiness
(t(97) = 1.1, p = .290, d = 0.2, BF = .19).

Bonus Round

To provide additional support for our modeling results, we also predicted participant judgments
in the bonus round using participant parameter estimates. Since model parameters were esti-
mated through cross-validation on all rounds except the bonus round, we used each participant’s
median parameter estimates (over rounds 1 to 9) to make out-of-sample predictions about the
bonus round judgments. Figure 6.6d shows the root mean squared error (RMSE) of these pre-
dictions. The GP had the lowest prediction error on average, although there was no difference in
comparison to the dNN, which had the second lowest prediction error (t(97) =−0.1, p = .897,
d = 0.01, BF = .11). However, accuracy alone does not indicate a good correspondence
between model predictions and participant judgments. The BMT makes the same prediction
for all unobserved nodes (based on the prior mean of m0 = 50), yet still achieves a substantial
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margin below random chance (dotted line) and comparable performance to the other models.
Looking more closely at the individual correlation between participant judgments and model
predictions (Fig. 6.6f), we find that overall, the GP had the highest average correlation (r = .41),
which was better than the dNN (comparing Z-transformed correlation coefficients: t(97) = 3.0,
p = .004, d = 0.2, BF = 7), and kNN models (t(97) = 3.0, p = .003, d = 0.2, BF = 8), but
equally good as the SR (t(97) = 0.1, p = .901, d = 0.0, BF = .11). Correlations are undefined
for the BMT, since it invariably makes the same prediction.

Lastly, we look at how predictions of uncertainty correspond to participant confidence
ratings, where we interpret confidence to be the inverse of uncertainty. In this analysis, we
consider only the GP and BMT models, since no other models make uncertainty estimates.
Figure 6.6e shows a comparison between the (per participant) rank-ordered confidence ratings
and rank-ordered uncertainty estimates of the models. While the BMT estimates the same
level of uncertainty for all unobserved nodes (making correlations undefined), we find that
the GP uncertainty estimates correspond to participant confidence ratings. In order to test this
relationship by accounting for individual differences in subjective ratings of confidence, we fit
a mixed effects model to predict the raw confidence judgment (Likert scale 1-11) using the GP
uncertainty estimate as a fixed effect and participant as a random effect. These results show a
strong correspondence between lower confidence ratings and higher GP uncertainty estimates
(β =−.30, t(414) =−5.7, p < .001, BF > 100).

6.4.5 Discussion

Experiment 8 provides a rich set of behavioral and modeling results analyzing how people
perform inference and search in structured environments. Participants learned efficiently,
searched locally, and may have adopted the high-risk high-reward heuristic of preferentially
clicking terminal nodes, which tended to have more extreme reward values. Additionally, the
proportion of repeat clicks correlated strongly with performance, suggesting that lower scoring
participants suffered from over-exploration rather than over-exploitation of the environment.

Our modeling results provide evidence that a Gaussian process (GP) model using the
diffusion kernel is able to capture how people use generalization to guide search in structured
environments. The GP provides the best predictive accuracy of choices, produces similar
learning curves to human performance, and can robustly predict judgments about expected
reward and confidence. Nevertheless, we also find that the dNN and kNN heuristic models are
able to closely match the GP in terms of predicting choices and judgments (expected reward but
not confidence). However, lacking access to directed exploration, dNN and kNN fail to produce
simulated learning curves at the same level as the GP. Yet the nearest neighbor averaging rule
used by the dNN and kNN models operated largely at low distances d or with small numbers
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of nodes k. This highly local averaging strategy is able to effectively mimic the generalizations
of the GP, where we also found lower levels of α compared to the ground truth. In both
cases, overgeneralization is likely prone to larger errors than undergeneralization. Additionally,
local averaging is a sensible heuristic given the local search patterns of participants. While
the SR matches the GP in terms of the correspondence between participant judgments and
model predictions, it performed poorly in predicting choices and in simulating human-like
learning curves. Thus, while there is a theoretical equivalency between the SR and the diffusion
kernel, the ability to estimate uncertainty within the GP framework gives it a clear advantage in
describing search behaviour.

6.4.6 General discussion

We studied how people generalize in structured spaces, where transition structure rather than
the singular stimuli features define the distribution of rewards in the environment. We use
a diffusion kernel as a similarity metric capturing the transition dynamics of a graph, which
offers a unifying framework subsuming distance or feature-based generalization (Shepard,
1987; Tenenbaum & Griffiths, 2001; Tversky, 1977; Wu, Schulz, Garvert, et al., 2018; Wu,
Schulz, Speekenbrink, et al., 2018) as a special case where transitions are unrestricted. Across
both inference and choice paradigms, we find that a Gaussian process (GP) implementation of
the diffusion kernel describes how participants generalize and search for rewards, capturing
intuitions about both expected rewards and underlying uncertainty.

These results provide insights into how people organize knowledge and represent similarity
in structured environments. Evidence for a common encoding of both spatial and conceptual
knowledge (Behrens et al., 2018; Constantinescu et al., 2016; Garvert et al., 2017) in the
grid cells of the entorhinal cortex has provided neurological support for Tolman’s (1948)
theory of a cognitive map. Yet these representations are not only spatial, but also responsive
to the transition structures of the environment. Spatial encodings are skewed based on how
people move through the environment (Gustafson & Daw, 2011; Momennejad & Howard,
2018; Stachenfeld et al., 2017), creating a predictive map of the transition dynamics. Our
findings support this hypothesis, by showing people are able to use a representation of structural
similarity to guide exploration

We also find that variants of a simple nearest-neighbor averaging rule are surprisingly
effective heuristics in environments with graph-correlated rewards. Both the dNN and kNN
can be understood as binarized simplification of the similarity metric used by the GP. While
the GP predicts expected rewards using a similarity-weighted sum of previous observations
(Eq. 6.6), the dNN and kNN use either a distance or count-based threshold of similarity, such
that nodes are either similar if considered a neighbor, or dissimilar otherwise. Similar nodes
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are then averaged, equivalent to an equal-weight regression model (Lichtenberg & Simsek,
2016; Wesman & Bennett, 1959). Although these heuristics are able to efficiently capture many
aspects of judgments and choices, our results also show that human behavior is more sensitive
to the transition structure of the environment, as evidenced by the better predictive power of
the GP—particularly in its ability to represent uncertainty, which is an essential ingredient for
directed exploration.

One limitation of the diffusion kernel is that it assumes a priori knowledge of the graph
structure. While this may be a reasonable assumption in problems such as navigating a a
subway network where a map is readily available, this is not always the case. In contrast, the
SR can learn the graph structure through experience, using prediction-error learning to update
M(s,s′). Thus, the connection between the SR and the diffusion kernel presents a promising
avenue for integrating a method for structure learning into the GP framework (but also see
Kemp & Tenenbaum, 2008, 2009). The benefits of this equivalency go both ways, because the
results of Experiment 8 show that that the uncertainty estimates of the GP play a key role in
how participants actively explore the environment and estimate confidence about predictions.
Thus, one remaining challenge for theories linking the SR to the predictive coding of grid cells
is to explain how people represent uncertainty.



Chapter 7

Conclusions

O snail
Climb Mount Fuji
But slowly, slowly!

—Issa

This chapter provides concluding remarks about the main findings, discusses related re-
search work that has not been included, and proposes future directions.
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7.1 Summary of major contributions

The central question of this thesis is how people are able to adapt to endlessly novel situations
and to learn efficiently in vast and complex environments. Inspired by influential theories of
stimulus and category generalization, we adapted the principles of similarity-based general-
ization into a function learning framework, where functions represent inferred relationships
between actions and outcomes. This provides a model of predictive generalization operating
across an entire continuum of possibilities. Our framework uses kernel similarity to describe
relationships in both metric and structured representations of knowledge, allowing us to sidestep
influential critiques (Tversky, 1977) and to draw connections to neurological theories about
how knowledge is represented in the brain (Behrens et al., 2018; Kaplan et al., 2017; Schuck et
al., 2016; Stachenfeld et al., 2017; Theves et al., 2019).

Across spatial, conceptual, and structured domains, we have shown that our model of
generalization provides compelling predictions about how people search, make judgments, and
rate confidence about novel items. Not only does our model produce predictive generalizations
about unobserved rewards that correspond to human choices and judgments, but it also tracks
uncertainty in a manner consistent with how people judge confidence and direct their exploration
towards uncertain regions of the environment. Our model comparisons are recoverable, the
parameters are identifiable, and we are able to reliably simulate learning curves resembling
human performance.

7.1.1 Domain general principles

The results of the 8 experiments presented in this thesis point towards domain general principles
governing how people reason about novel situations, by leveraging the predictive power of
related experience. A central component for our framework of generalization is the theory that
people organize knowledge in a way that facilitates the representation of similarity. This is not
a new idea, and owes a great deal to Shepard’s (1987) theory of “psychological space” and
Tolman’s (1948) concept of a “cognitive map”. However, the contribution of this thesis has
been to provide a common framework for generalization, based on a similarity representation
that bridges the gap between spatial and structured organizations of knowledge.

Our framework closely mirrors current advances in neuroscience, which propose grid cells
in the entorhinal cortex as the physical instantiation of a predictive map of the environment
(Behrens et al., 2018; Hafting et al., 2005). Grid cells use the same encoding for representing
both spatial and conceptual information (Constantinescu et al., 2016; Theves et al., 2019), and
are also sensitive to the transition dynamics of the environment (Momennejad et al., 2017;
Stachenfeld et al., 2017). The Successor Representation (SR; Dayan, 1993) has emerged as
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a prominent model of how grid cells encode state dynamics (Gershman, 2018b; Gustafson &
Daw, 2011; Stachenfeld et al., 2017), which has equivalencies to the diffusion kernel we use to
represent similarity in Chapter 6. The diffusion kernel is in turn equivalent to the RBF kernel
(used throughout this thesis) when the environment is continuous and unrestricted, which is
specifically the type of flat topology used by Shepard (1987) to construct his psychological
space and produce the law of generalization. These connections offer rich opportunities
for theory integration, with the captivating implication that generalization depends how we
represent the world.

7.1.2 Undergeneralization

An outstanding question that appears repeatedly in this thesis, is why the tendency towards
undergeneralization? In Chapter 3 we show that this is not necessarily a maladaptive bias
(Figs. 3.4,B.3), but can in fact lead to better outcomes than even an exact match to the
true correlation structure of the environment. However, in Chapter 4 we find even lower
levels of generalization in children, where simulation results make it harder to justify the
undergeneralization of children as purely beneficial (Fig. C.3). Rather, this could also be due
to computational limitations, where computing generalizations over larger representational
distances is more demanding. One way to simplify the computational complexity of our model
would be to set the similarity of k(x,x′) = 0 when the distance between x and x′ is sufficiently
large. Conceptually similar approaches are used in sparse Gaussian process implementations
(Bauer, van der Wilk, & Rasmussen, 2016; Quiñonero-Candela & Rasmussen, 2005), while the
nearest neighbors models in Chapter 6 can also be interpreted as implementing a simplified
similarity metric by using only binary values k(x,x′)∈ {0,1}, for neighbors and non-neighbors,
respectively. Although it may be tempting to empirically test the exact sparsity of human
similarity representations (spanning a continuum between our current GP implementation and
the radical simplification of the nearest neighbors model), we advise caution due to concerns
with model identifiability. Nevertheless, this is an important component in our future enterprise
of building a process level theory of generalization.

7.2 Towards a process level theory

While the GP model of generalization provides a useful computational level description of
human behavior (Marr, 1982; Marr & Poggio, 1976), how could such a model be plausibly
implemented? On one side, we are faced with the challenges of explaining attentional mech-
anisms and working memory limitations, which work together to define the set of previous
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experiences we can draw from. On the other side, we require a computationally plausible
implementation of our GP model, where in our current implementation, an important question
is how people measure and represent uncertainty.

7.2.1 Working memory and attentional mechanisms

In the experiments presented in this thesis, we side-stepped the issue of working memory
limitations by presenting the full history of observations. This is not generally true in most
human environments, where we depend on an internal (and capacity limited) representation of
previous experience. Limitations on what we can represent plays a large role in RL problems
(Collins & Frank, 2012), and has been proposed as a causal mechanism underlying learning
impairments in schizophrenia (Collins, Brown, Gold, Waltz, & Frank, 2014). An account of
working memory my also introduce new sources of noise during storage and retrieval, which
have been related to selective overweighting of numerical information (Spitzer, Waschke, &
Summerfield, 2017) and attributed as a source of random exploration (Findling, Skvortsova,
Dromnelle, Palminteri, & Wyart, 2018). However, rate-distortion theory (Sims, 2018) is able
to relate Shepard’s law of generalization to capacity limits on information channels, where an
exponential generalization function arises naturally from a boundedly rational agent attempting
to reduce costly errors. Thus, in the search for new details to add to our model, we may find
ourselves at its origin.

Integrating a theory of working memory into our GP model requires selecting an appropriate
subset of previous observations in order to compute posterior predictions. The question of
which experiences to include is closely connected to the problem of selective attention (Dayan
et al., 2000). Indeed, models of reinforcement learning are becoming increasingly popular
as tools for studying affective disorders (Addicott, Pearson, Sweitzer, Barack, & Platt, 2017;
Ziegler, Pedersen, Mowinckel, & Biele, 2016), where the modulation of attention is thought
to play a key role. Additionally, the majority of the experiments presented in this thesis use
two dimensional environments†, whereas naturalistic problems may have an arbitrarily large
number of dimensions. Consider how many potentially relevant features are at play when
deciding where to go for holidays or selecting a job applicant. From this panoply of feature
dimensions, we must selectively allocate attention to a compact set of relevant features (Niv et
al., 2015). The building of this compact and relevant representation is an important question in
reinforcement learning (Radulescu et al., 2019), which might be closely related to the problem
of learning structured representations (Gershman & Niv, 2010) we discussed in Chapter 6.

†It is an NP-hard problem to determine the dimensionality of the graph structures used in Experiments 7 and
8, although there exists an upper bound of twice the maximal degree plus one (Erdős & Simonovits, 1980).
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This might also be a type of search problem, where one must selectively explore which feature
dimensions are most predictive of reward.

7.2.2 Representing uncertainty

Throughout this thesis, we find that representations of uncertainty play an essential role in
guiding exploration. This is one of the main advantages of the GP framework, allowing us to
model directed exploration and predict confidence judgments about unobserved stimuli. The
expected reward predictions of the GP are quite straightforward to compute as a weighted sum
of similarities (Eq. 6.6). This is equivalent to an RBF network†, which has been proposed as
a model of how the brain processes perceptual information (Poggio & Girosi, 1989, 1990).
However, there is still a gap between how a GP and a human processes uncertainty.

In recent work not included in this thesis, we looked at how cognitive limitations imposed
by time pressure influence how people respond to uncertainty (Wu, Schulz, Gerbaulet, et al.,
2019). We constructed a simple four-armed bandit task with independent reward distributions
specifically chosen to disentangle differences in expected value from differences in uncertainty.
We found that given unlimited time, participants were positively influenced by both high
rewards and high uncertainty, consistent with results throughout this thesis. But given only 400
milliseconds to make each decision, we found that participants responded by changing their
behavior to actively avoid uncertainty. These results are a useful probe into how learning and
exploration strategies are influenced by computational limitations (either internally or externally
imposed). We hypothesized that compared to random exploration, direction exploration may
require more deliberation and control, which would be negatively affected by time pressure.
These results suggest that grappling with uncertainty takes time and effort, yet in Chapter 4 we
find that even children as young seven are capable of using uncertainty directed exploration.
Current work in progress is extending the framework of Experiment 4 to even younger children,
by removing numbers (to avoid limitations on how high they can count) and relying only instead
on colors instead. Taken together, these are the first steps towards building a process-level and
developmental theory of how people represent uncertainty.

†There is also a more exact equivalency between GPs and Bayesian neural networks (Neal, 1994, 2012),
which accounts for both expected rewards and uncertainty estimates. While Bayesian neural networks are certainly
useful in machine learning, there lacks a theory of how Bayesian neural networks might be related to human
information processing.
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7.3 Related work

In defining the scope of this thesis, it was necessary to omit other bodies of research conducted
during my PhD in order to present a more coherent account of a focused research question.
Nevertheless, these other lines of research warrant a brief overview, since they address related
and equally important questions about the nature of human learning and cognition.

7.3.1 Search in risky environments

The search tasks presented in this thesis described only situations where outcomes had positive
and immediate rewards. This is of course only a useful abstraction to focus on the phenomena
of generalization. However, a justifiable critique would be to ask how our results carry over
to the domain of losses (Palminteri, Khamassi, Joffily, & Coricelli, 2015; Seymour, Daw,
Dayan, Singer, & Dolan, 2007) or for alternative reward distributions (e.g., binary gambles;
Brandstätter, Gigerenzer, & Hertwig, 2006; Hertwig et al., 2004; Lejarraga, Pachur, Frey, &
Hertwig, 2016).

Using a search task similar to Experiments 1 and 2, we conducted two experiments where
instead of only positive rewards, included a condition with risky outcomes (E. Schulz, Wu, et al.,
2018). Specifically, if participants revealed a reward below a specified threshold, the rest of the
round would be forfeit, along with any future rewards that could have been earned. In this risky
context, we still find that a GP model of generalization provided the best prediction of human
behavior, but instead of an optimistic UCB sampling strategy, participants were best described
by a probability of being safe (POS) strategy to avoid potentially risky outcomes. This strategy
resembles the probability of improvement (POI) strategy (Eq. 2.24), but rather than trying to
improve on the current best outcome, it selectively samples options by the likelihood they are
above the safe threshold. Thus, people are able to adapt to risky contexts by changing their
sampling strategy, but still use similar principles of generalization.

Additionally, not all choices have the same reward structure. In Analytis, Wu, and
Gelastopoulos (2019), we studied a dynamic decision-making problem where effort is al-
located between a safe task with relatively predictable linear rewards, or a make-or-break task
characterized by dramatic success or failure outcomes. This type of heterogeneous choice
problem is quite familiar to anyone who has had to balance writing a risky yet potentially
life-changing grant proposal with submitting a paper to a “safe” journal with a more predictable
outcome. While it is possible to define an optimal solution when the reward structure is known,
solving it via backwards induction is computationally expensive. We show that simple strategies
relying on myopic or heuristic principles perform competitively against the optimal strategy,
yet sidestep much of the computational burden. These boundedly rational strategies also seem
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to produce distinctive risk-averse or risk-seeking behaviors, hinting towards the possibility that
these behavioral patterns arise not only from inherent preferences, but perhaps also due to a
reliance on boundedly rational strategies.

7.3.2 Searching for information instead of rewards

Instead of searching for rewards, we sometimes search for answers to our questions (Crupi,
Nelson, Meder, Cevolani, & Tentori, 2018; Nelson, 2005; Wu, Meder, et al., 2017). For example,
consider a doctor selecting a medical test to facilitate the diagnosis of a patient with an unknown
disease, or a scientist designing an experiment to test a hypothesis. This paradigm of information
search as query selection often assumes either descriptive information about the underlying
environmental probabilities (Skov & Sherman, 1986; Slowiaczek, Klayman, Sherman, & Skov,
1992; Wu, Meder, et al., 2017) or sufficient experience such that hardly any uncertainty remains
(Meder & Nelson, 2012; Nelson, McKenzie, Cottrell, & Sejnowski, 2010). Yet, an important
questions is how people can learn what is a good and what is a bad question through experience.
Using a variant of a multi-armed bandit paradigm, where each option corresponds to a query
and yields information instead of rewards, we show that a take-the-difference (TTD) heuristic
using only the absolute difference between absolute frequencies of outcomes (Wu, Meder, et al.,
2017) produces competitive performance compared to substantially more complex Bayesian
sampling models (Wu, Meder, & Nelson, in prep). This highlights the importance of how
different representations (e.g., natural frequencies vs. conditional probabilities; Gigerenzer &
Hoffrage, 1995; McDowell & Jacobs, 2017) can facilitate different cognitive strategies.

7.3.3 The social dimension of search

In focusing on the individual mechanisms of learning and search, we have omitted a crucial
dimension of human cognition. We do not only learn from our own experiences, but also from
that of other people (Hills et al., 2015; March, 1991; Rendell et al., 2010). The metaphor
of “learning as search” is equally applicable in a social domain, where multiple individuals
simultaneously search for rewards and can interact with one another by exchanging information
or competing for resources.

In a social environment, the exploration-exploitation dilemma is distributed across the
collective, dependent on the flow of information between individuals. In order to resolve
contradictory results about which types of communication networks produce better collective
outcomes (Lazer & Friedman, 2007; Mason & Watts, 2012), we conducted an environmental
analysis using multi-agent simulations (Barkoczi, Analytis, & Wu, 2016). More connected
networks result in faster collective convergence and thus more exploitation, while less connected
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networks facilitate higher individual variability and more exploration at the group level (Mason,
Jones, & Goldstone, 2008). Thus, the contradictions in the literature (Lazer & Friedman, 2007;
Mason & Watts, 2012) were due to two separate research traditions studying disjoint sets of
environments, whereas different environments simply enforce different demands on rational
behavior.

Additionally, instead of only assuming information is unilaterally shared along a deter-
ministic social network, we also examined the rationality of when to freely share information
(Bouhlel, Wu, Hanaki, & Goldstone, 2018; Tump, Wu, Bouhlel, & Goldstone, 2019). Inspired
by the open source movement, we used both agent-based simulations and evolutionary algo-
rithms to study the conditions in which it is beneficial to openly share information without
any expectations of reciprocity. Similar to research on swarm intelligence in biology (Berdahl,
Torney, Ioannou, Faria, & Couzin, 2013; Brown, Brown, & Shaffer, 1991), we found that
shared information facilitates the formation of a spatially coordinated group that searches better
than any lone individual. This provides the original donor with by-product benefits that can
outweigh the costs of increased competition. This work provides guidance for developing
environments that can foster cooperation, even in anonymous settings (e.g., online) where
traditional reputation-based mechanisms of reciprocity are absent.

7.4 Conclusion

In summary, this thesis presents a theory of generalization across spatial, conceptual, and
structured spaces. Our theory offers compelling evidence about how generalization is used to
navigate uncertainty and efficiently direct search efforts. We use Gaussian process regression
as a model of generalization, which leverages feature-based or structural similarity to make
predictive generalizations about where search seems most promising. Predictions are in the
form of a distribution over functions, each corresponding to a hypothesis about the relationship
between actions and outcomes. These predictions can be decomposed into expectations of
reward along with an estimate of the underlying uncertainty, where both play a key role in
navigating the exploration-exploitation dilemma. Converging evidence from search behavior
and judgments about expected reward and confidence provide broad support for our model,
which is both recoverable and capable of simulating human-like learning curves. This work
is closely related to neurological theories of how the brain encodes a predictive map of the
environment, and offers broad implications for understanding the nature of adaptive behavior
in the face of uncertainty.
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Statistical tests

A.1 Comparisons

Both frequentist and Bayesian statistics are reported throughout this thesis. Frequentist tests
are reported as Student’s t-tests (specified as either paired or independent) for parametric
comparisons, while the Mann-Whitney U test or Wilcoxon signed-rank test are used for non-
parametric comparisons (for independent samples or paired samples, respectively). Each of
these tests are accompanied by a Bayes factors (BF) to quantify the relative evidence the data
provide in favor of the alternative hypothesis (HA) over the null (H0).

Parametric comparison are tested using the default two-sided Bayesian t-test for either
independent or dependent samples, where both use a Jeffreys-Zellner-Siow prior with its scale
set to

√
2/2, as suggested by Rouder, Speckman, Sun, Morey, and Iverson (2009). All statistical

tests are non-directional as defined by a symmetric prior (unless otherwise indicated).
Non-parametric comparisons are tested using either the frequentist Mann-Whitney-U test

for independent samples, or the Wilcoxon signed-rank test for paired samples. In both cases,
the Bayesian test is based on performing posterior inference over the test statistics (Kendall’s rτ

for the Mann-Whitney-U test and standarized effect size r = Z√
N

for the Wilcoxon signed-rank
test) and assigning a prior using parametric yoking (van Doorn, Ly, Marsman, & Wagenmakers,
2017). This leads to a posterior distribution for Kendall’s rτ or the standarized effect size r,
which yields an interpretable Bayes factor via the Savage-Dickey density ratio test. The null
hypothesis posits that parameters do not differ between the two groups, while the alternative
hypothesis posits an effect and assigns an effect size using a Cauchy distribution with the scale
parameter set to 1/

√
2.
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A.2 Correlations

For testing linear correlations with Pearson’s r, the Bayesian test is based on Jeffreys (1961)
test for linear correlation and assumes a shifted, scaled beta prior distribution B(1

k ,
1
k ) for r,

where the scale parameter is set to k = 1
3 (Ly, Verhagen, & Wagenmakers, 2016).

For testing rank correlations with Kendall’s tau, the Bayesian test is based on parametric
yoking to define a prior over the test statistic (van Doorn, Ly, Marsman, & Wagenmakers,
2018), and performing Bayesian inference to arrive at a posterior distribution for rτ . The
Savage-Dickey density ratio test† is used to produce an interpretable Bayes Factor.

A.3 ANOVA

We use a one-way analysis of variance (ANOVA) to compare the means of p ≥ 2 samples based
on the F distribution. In general terms, we can define ANOVA as a linear model:

y = µ1+σXθθθ + εεε (A.1)

where y is a vector of N observations, µ is the aggregate mean, 1 is a column vector of length
N, σ is the scale factor, X is the N × p design matrix, θθθ is a column vector of the standardized
effect sizes, and εεε is a column vector containing the i.i.d. errors where εi

i.i.d∼ N (0,σ2).
We assume independent g-priors (Zellner & Siow, 1980) for each effect size θ1 ∼N (0,g1σ2), · · · ,θp ∼

N (0,gpσ2), where each g-value is drawn from an inverse chi-square prior with a single degree

of freedom gi
i.i.d∼ inverse-χ2(1). For µ and σ2 we assume a Jeffreys (1946) prior. Following

Rouder, Morey, Speckman, and Province (2012), we compute the Bayes factor by integrating
the likelihoods with respect to the prior on parameters, where Monte Carlo sampling was used
to approximate the g-priors. The Bayes factor reported in the text can be interpreted as the
log-odds of the model relative to an intercept-only null model.

A.4 Regression coefficients

We use mixed effects regression to quantify the relationship between a fixed effect and the
observed data, by accounting for random effects due to individual variability. We can describe
the mixed-effects model as:

y = Xβββ +Zu+ εεε (A.2)

†If you are reading this footnote and you are on my committee, you win a bottle of whiskey! In the unlikely
event of multiple readers, the prize will be awarded to the first to point it out during the defense. However, the
prior probability of anybody reading this is extremely low and set to β (10120,1).
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where y is the vector of observations, βββ is a vector of fixed effects, u is a vector of random
effects, and where X and Z are the design matrices relating y to βββ and u, respectively. We
report the standarized effect size β ∈ [−1,1]†, the t-statistic and corresponding p-value based
on Satterthwaite’s (1946) approximation of the degrees of freedom, where parameters were
estimated using restricted maximum likelihood estimation (REML). However, because these
frequentist statistics in the mixed-effects framework are prone to being anti-conservative (Luke,
2017), we also report an interpretable Bayes factor.

In the Bayesian framework, we estimate the model posteriors using No-U-Turn sampling
(Hoffman & Gelman, 2014) as a form of Hamiltonian Monte Carlo Markov Chain method. We
compute the Bayes factor quantifying the log-odds of our model against a null intercept-only
model, where we use bridge sampling (Gronau et al., 2017) as a method to approximate the
marginal likelihood of both models.

A.5 Protected exceedance probability

Protected exceedance probability (pxp; Rigoux et al., 2014; Stephan et al., 2009) is defined
in terms of a Bayesian model selection framework for group studies. Intuitively, it can be
described as a random-effect analysis, where models are treated as random effects and are
allowed to differ between subjects. Inspired by the Polya’s urn model (e.g., Wei, 1979), we
can imagine a population containing K different types of models (i.e., people best described by
each model) much like an urn containing different colored marbles. If we assume that there is
a fixed but unknown distribution of models in the population, what is the probability of each
model being more frequent in the population than all other models in consideration?

This is modelled hierarchically, using variational Bayes to estimate the parameters of a
Dirichlet distribution describing the posterior probabilities of each model P(mk|y) given the
data y. The exceedance probability is thus defined as the posterior probability that the frequency
of a model rmk is larger than all other models rmk′ ̸=k

under consideration:

xp(mk) = p(rmk > rmk′ ̸=k
|y) (A.3)

Rigoux et al. (2014) extends this approach by correcting for chance, based on the Bayesian
Omnibus Risk (BOR), which is the posterior probability that all model frequencies are equal:

pxp(mk) = xp(mk)(1−BOR)+
BOR

K
(A.4)

†Note the difference between ther scalar standarized effect-size β and the vector of fixed effects βββ used in the
general equation for the linear mixed effects model
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This produces the protected exceedance probability (pxp) reported throughout this chapter, and
is implemented using https://github.com/sjgershm/mfit/blob/master/bms.m.

https://github.com/sjgershm/mfit/blob/master/bms.m
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Chapter 3 supplementary materials

B.1 Model recovery

We present model recovery results that assess whether or not our predictive model comparison
procedure allows us to correctly identify the true underlying model. To assess this, we generated
data based on each individual participant’s parameter estimates. We generated data using the
Option Learning and the Function Learning Model for Experiment 1 and the Option Learning*
Model and the Function Learning* Model for Experiments 2 and 3. In all cases, we used the
UCB sampling strategy in conjunction with the specified learning model. We then utilized the
same cross-validation method as before in order to determine if we could successfully identify
which model generated the underlying data. Figure B.1 shows the cross-validated predictive
performance (half boxplot with each data point representing a single simulated participant) for
the simulated data, along with the number of simulated participants best described (inset icon
array).

B.1.1 Experiment 1

In the simulation for Experiment 1, our predictive model comparison procedure shows that the
Option Learning Model is a better predictor for data generated from the same underlying model,
whereas the Function Learning model is only marginally better at predicting data generated
from the same underlying model. This suggests that our main model comparison results are
robust to Type I errors, and provides evidence that the better predictive accuracy of the Function
Learning model for participant data is unlikely due to overfitting.

When the Function Learning Model has generated the underlying data, the same Function
Learning Model achieves a predictive accuracy of R2 = .4 and describes 41 out of 81 simulated
participants best, whereas the Option Learning model achieves a predictive accuracy of R2 = .39
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Fig. B.1 Model recovery (Experiments 1-3). Data was generated by the specified generating model (left and right
columns) using individual participant parameter estimates. The recovery process used the same cross-validation
method used in the model comparison. We report the predictive accuracy of each candidate recovery model
(colours). Boxplots show the median (line), mean (diamond), interquartile range (box), and 1.5x IQR (whiskers).
Each individual (simulated) participant is represented as a dot, with lines connecting each simulated participant.
Icon arrays show the number of simulated participants best described. For both generating and recovery models,
we used UCB sampling. Table B.3 reports the median values of the cross-validated parameter estimates used to
specify each generating model.

and describes 40 participants best. Furthermore, the protected probability of exceedance for
the Function Learning Model is pxp = 0.51. This makes our finding of the Function Learning
Model as the best predictive model even stronger as, technically, the Option Learning Model
could mimic parts of the Function Learning behavior.

When the Option Learning Model generates data using participant parameter estimates, the
same Option Learning Model achieves an average predictive accuracy of R2 = .1 and describes
71 out of 81 simulated participants best. On the same generated data, the Function Learning
Model achieves an average predictive accuracy of R2 = .08 and only describes 10 out of 81
simulated participants best. The protected probability of exceedance for the Option Learning
Model is pxp = 0.99. If the counterfactual had occurred, namely that if data generated by
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the Option Learning Model had been best predicted by the Function Learning Model, we
would need to be sceptical about our modelling results on the basis that the wrong model could
describe data better than the true generating model. However, here we see that the Function
Learning Model does not make better predictions than the true model for data generated by the
Option Learning Model.

B.1.2 Experiment 2

In the simulations for Experiment 2, we used the localized version of each type of learning
model for both generation and recovery, since in both cases, localization improved model accu-
racy in predicting the human participants (Table B.3). Here, we find very clear recoverability in
all cases, with the recovering model best predicting the vast majority of simulated participants
when it is also the generating model (Fig. B.1).

When the Function Learning* Model generates the underlying data, the same Function
Learning* Model achieves a predictive accuracy of R2 = .34 and describes 77 out of 80
simulated participants best, whereas the Option Learning* Model describes only 3 out of 80
simulated participants best, with a average predictive accuracy of R2 = .32. The protected
probability of exceedance for the Function Learning* model is pxp = 1.

When the Option Learning* Model generates the data, the same Option Learning* Model
achieves a predictive accuracy of R2 = .33 and predicts 69 out of 80 simulated participants
best, whereas the Function Learning* Model predicts only 11 simulated participants best, with
an average predictive accuracy of R2 = .31. The protected probability of exceedance for the
Option Learning* model is pxp = 1. Again, we find evidence that the models are indeed
discriminable, and that the Function Learning* Model does not overfit data generated by the
wrong model.

B.1.3 Experiment 3

We again find in all cases the best recovery model is the same as the generating model. When
the Function Learning* Model generates data, the matched recovery with the same Function
Learning* Model best predicts 70 out of 80 participants, with an average predictive accuracy
of R2 = .34. The Option Learning* Model best predicts the remaining 10 participants, with
an average predictive accuracy of R2 = .32. The protected probability of exceedance for the
Function Learning* model is pxp = 1.

When the Option Learning* Model generates the data, the same Option Learning* Model
best predicts 68 out of 80 participants with an average predictive accuracy of R2 = .32, whereas
the Function Learning* Model only best predicts 12 out of 80 participants with an average
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predictive accuracy of R2 = .3. The protected probability of exceedance for the Option
Learning* model is pxp = 1.

In all simulations, the model that generates the underlying data is also the best performing
model, as assessed by predictive accuracy, the number of simulated participants predicted
best, and the protected probability of exceedance. Thus, we can confidently say that our
cross-validation procedure distinguishes between these model classes. Moreover, in the cases
where the Function Learning or Function Learning* Model generated the underlying data,
the predictive accuracy of the same model is not perfect (i.e., R2 = 1), but rather close to the
predictive accuracies we found for participant data (Table B.3).

B.1.4 High temperature recovery

We also assessed how much each model’s recovery can be affected by the underlying random-
ness of the softmax choice function. For every recovery simulation, we selected the 10 simula-
tions with the highest underlying softmax temperature parameter τ (ranges: τ10

Exp1 = [0.09,0.42],
τ10

Exp2 = [0.11,0.25], τ10
Exp3 = [0.21,9.7]) and again calculated the probability of exceedance for

the true underlying model. The results of this analysis led to a probability of exceedance for the
Function Learning Model in Experiment 1 of pxp = .81, for the Function Learning* Model in
Experiment 2 of pxp = 0.99, for the Function Learning* Model in Experiment 3 of pxp = 0.93,
for the Option Learning Model in Experiment 1 of pxp = 0.97, for the Option Learning*
Model in Experiment 2 of pxp = 0.99, and for the Option Learning Model in Experiment 3 of
pxp = 0.98. Thus, the models seem to be well-recoverable even in scenarios with high levels
of random noise in the generated responses.

B.2 Parameter recovery

Another important question is whether or not the reported parameter estimates of the two
Function Learning models are reliable and robust. We address this question by assessing the
recoverability of the three parameters of the Function Learning model, the length-scale λ , the
exploration factor β , and the temperature parameter τ of the softmax choice rule. We use
the results from the model recovery simulation described above, and correlate the empirically
estimated parameters used to generate data (i.e., the estimates based on participants’ data),
with the parameter estimates of the recovering model (i.e., the MLE from the cross-validation
procedure on the simulated data). We assess whether the recovered parameter estimates are
similar to the parameters that were used to generated the underlying data. We present parameter
recovery results for the Function Learning Model for Experiment 1 and the Function Learning*
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Fig. B.2 Parameter recovery (Experiments 1-3). The generating parameter estimate is on the x-axis and the
recovered parameter estimate is on the y-axis. The generating parameter estimates are from the cross-validated
participant parameter estimates, which were used to simulate data. Recovered parameter estimates are the result
of the cross-validated model comparison on the simulated data. While the cross-validation procedure yielded k
estimates per participant, one for each round (kExp1 = 16; kExp2 = kExp3 = 8), we show the median estimate per
(simulated) participant. The dashed line shows a linear regression on the data, with the rank correlation (Kendall’s
tau) and p-value shown above. For readability, colours represent the bivariate kernel density estimate, with red
indicating higher density. The axis limits are chosen based on 1.5× the IQR for the larger of the two values
(generating or recovered parameter estimates). Thus, some outliers are omitted from these plots (2.3% in Exp. 1,
1.7% in Exp. 2, and 5.2% in Exp. 3) but all datapoints are used to calculate the rank correlations.
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Model for Experiments 2 and 3, in all cases using the UCB sampling strategy. We report the
results in Supplementary Figure B.2, with the generating parameter estimate on the x-axis and
the recovered parameter estimate on the y-axis. We report rank-correlation using Kendall’s tau
(rτ ), which should not be confused with the temperature parameter τ of the softmax function.
Additionally, we calculate the Bayes Factor (BFτ ) to quantify the evidence for the presence of a
positive correlation using non-informative, shifted, and scaled beta-priors as recommended by
(Wagenmakers, Verhagen, & Ly, 2016).

For Experiment 1, the rank-correlation between the generating and the recovered length-
scale λ is rτ = .66, p < .001, BFτ > 100, the correlation between the generating and the
recovered exploration factor β is rτ = .30, p < .001, BFτ > 100, and the correlation between
the generating and the recovered softmax temperature parameter τ is rτ = .54, p < .001,
BFτ > 100. For Experiment 2, the correlation between the generating and the recovered λ is
rτ = .77, p < .001, BFτ > 100, for β the correlation is rτ = .59, p < .001, BFτ > 100, and for
τ the correlation is r =τ .61, p < .001, BFτ > 100. For Experiment 3, the correlation between
the generating and the recovered λ is rτ = .70, p < .001, BFτ > 100, for β the correlation is
rτ = .76, p < .001, BFτ > 100, and for τ the correlation is r = .79, p < .001, BFτ > 100.

These results show that the rank-correlation between the generating and the recovered
parameters is very high for all experiments and for all parameters. Thus, we have strong
evidence to support the claim that the reported parameter estimates of the Function Learning
Model (Table B.3) are reliable, and therefore interpretable. Importantly, we find that estimates
for β (exploration bonus) and τ (softmax temperature) are indeed separately identifiable,
providing evidence for the existence of a directed exploration bonus Wilson et al. (2014), as a
separate phenomena from noisy, undirected exploration (Daw et al., 2006) in our data.

B.3 Mismatched generalization

B.3.1 Generalized mismatch

A mismatch is defined as estimating a different level of spatial correlations (captured by the
per participant λ -estimates) than the ground truth in the environment. In Chapter 3 (Fig. 3.4),
we report a generalized Bayesian optimization simulation where we simulate every possible
combination between λ0 = {0.1,0.2, · · · ,1} and λ1 = {0.1,0.2, · · · ,1}, leading to 100 different
combinations of student-teacher scenarios. For each of these combinations, we sample a
continuous bivariate target function from a GP parameterized by λ0 and then use the Function
Learning-UCB Model parameterized by λ1 to search for rewards. The exploration parameter β

was set to 0.5 to resemble participant behaviour (Table B.3). The input space was continuous
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between 0 and 1, i.e., any number between 0 and 1 could be chosen and GP-UCB was optimized
(sometimes called the inner-optimization loop) per step using NLOPT (Johnson, 2014) for
non-linear optimization. It should be noted that instead of using a softmax choice rule, the
optimization method uses an argmax rule, since the former is not defined for continuous input
spaces. Additionally, since the interpretation of λ is always relative to the input range, a length-
scale of λ = 1 along the unit input range would be equivalent to λ = 10 in the x,y = [0,10]
input range of Experiments 2 and 3. Thus, this simulation represents a broad set of potential
mismatch alignments, while the use of continuous inputs extends the scope of the task to an
infinite state space.

B.3.2 Experiments 1 and 2

In both Experiments 1 and 2, we found that participant λ -estimates were systematically lower
than the true value (λRough = 1 and λSmooth = 2), which can be interpreted as a tendency to
undergeneralize compared to the spatial correlation between rewards. In order to test how this
tendency to undergeneralize (i.e., underestimate λ ) influences task performance, we conducted
two additional sets of simulations using the exact experimental design for Experiments 1 and 2
(Fig. B.3a-b). These simulations used different combinations of λ values in a teacher kernel
(x-axis) to generate environments and in a student kernel (y-axis), to simulate human search
behaviour with the Function Learning Model.

Both teacher and student kernels were always RBF kernels, where the teacher kernel (used
to generate environments) was parameterized with a length-scale λ0 and the student kernel
(used to simulate search behaviour) with a length-scale λ1. For situations in which λ0 ̸= λ1,
the assumptions of the student can be seen as mismatched with the environment. The student
overgeneralizes when λ1 > λ0 (Fig. B.3a-b above the dotted line), and undergeneralizes when
λ1 > λ0 (Fig. B.3a-b below the dotted line), as was captured by our behavioural data. We simu-
lated each possible combination of λ0 = {0.1,0.2, · · · ,3} and λ1 = {0.1,0.2, · · · ,3}, leading
to 900 different combinations of student-teacher scenarios. For each of these combinations,
we sampled a target function from a GP parameterized by λ0 and then used the Function
Learning-UCB Model parameterized by λ1 to search for rewards using the median parameter
estimates for β and τ from the matching experiment (see Table B.3).

Figures B.3a-b show the results of the Experiment 1 and Experiment 2 simulations, where
the colour of each tile shows the median reward obtained at the indicated trial number, for each
of the 100 replications using the specified teacher-student scenario. The first simulation assessed
mismatch in the univariate setting of Experiment 1 (Fig. B.3a), using the median participant
estimates of both the softmax temperature parameter τ = 0.01 and the exploration parameter
β = 0.50 and simulating 100 replications for every combination between λ0 = {0.1,0.2, · · · ,3}
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and λ1 = {0.1,0.2, · · · ,3}. This simulation showed that it can be beneficial to undergeneralize
(Fig. B.3a, area below the dotted line), in particular during the first five trials. Repeating
the same simulations for the bivariate setting of Experiment 2 (using the median participant
estimates τ = 0.02 and β = 0.47), we found that undergeneralization can also be beneficial
in a more complex two-dimensional environment (Fig. B.3b), at least in the early phases of
learning. In general, assumptions about the level of correlations in the environment (i.e., extent
of generalization λ ) only influence rewards in the short term, and can disappear over time once
each option has been sufficiently sampled Srivastava et al. (2015).

B.3.3 Experiment 3

Given the robust tendency to undergeneralize in Experiments 1 and 2 (where there was a true
underlying level of spatial correlation), we ran one last simulation to examine how adaptive
participant λ estimates were in the real-world datasets used in Experiment 3, compared to other
possible λ values. Figure B.3c shows the performance of different student λ values in the
range {0.1,0.2, · · · ,3} simulated over 10,000 replications sampled (with replacement) from
the set of 20 natural environments. Red lines show performance in terms of average cumulative
reward (Accumulation criterion) and blue lines show performance in terms of maximum reward
(Maximization criterion). Vertical dashed lines indicate the interquartile range of participant λ

estimates. As student λ values increase, performance by both metrics typically peaks within
the range of human λ estimates, with performance largely staying constant or decreasing for
larger levels of λ (with the exception of average reward at t = 40). Thus, we find that the extent
of generalization observed in participants is generally adaptive to the real-world environments
they encountered. It should also be noted that higher levels of generalization beyond what
we observed in participant data have only marginal benefits, yet could potentially come with
additional computational costs (depending on how it is implemented). Recall that a λ of 1
corresponds to assuming the correlation of rewards effectively decays to 0 for options with a
distance greater than 3. If we assume a computational implementation where information about
uncorrelated options is disregarded (e.g., in a sparse GP (Herbrich, Lawrence, & Seeger, 2003)),
then the range of participant λ estimates could suggest a tendency towards lower complexity
and memory requirements, while sacrificing only marginal benefits in terms of either average
cumulative reward or maximum reward.
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Fig. B.3 Mismatched length-scale (λ ) simulation results. a-b) The teacher length-scale λ0 is on the x-axis, the
student length-scale λ1 is on the y-axis, and each panel represents a different trial t. The teacher λ0 values were
used to generate environments, while the student λ1 values were used to parameterize the Function Learning-UCB
Model to simulate search performance. The dotted lines show where λ0 = λ1 and mark the difference between
undergeneralization and overgeneralization, with points below the line indicating undergeneralization. Each tile of
the heat-map indicates the median reward obtained for that particular λ0-λ1-combination, aggregated over 100
replications. Triangles and circles indicate mean participant λ estimates from Rough and Smooth conditions, with
boxplots showing the interquartile range, the median (line), and 1.5x IQR (whiskers). c) Simulations with student
λ values in the range [0,3] over 10,000 samples (sampled with replacement) from the set of 20 different natural
environments. Red lines show average cumulative reward and blue lines show the maximum reward. Vertical
dashed lines show the interquartile range of participant λ estimates.

B.4 Natural environments

The environments used in Experiment 3 were compiled from various agricultural datasets
(Table B.1), where payoffs correspond to normalized crop yield (by weight), and the rows and
columns of the 11x11 grid correspond to the rows and columns of a field. Because agricultural
data is naturally discretized into a grid, we did not need to interpolate or transform the data in
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any way (so as not to introduce any additional assumptions), except for the normalization of
payoffs in the range [0,100], where 0 corresponds to the lowest yield and 100 corresponds to
the largest yield. Note that as in the other experiments, Gaussian noise ∼N (0,1) was added to
each observed payoff in the experiment.

In selecting datasets, we used three inclusion criteria. Firstly, the datasets needed to be
at least as large as our 11x11 grid. If the dataset was larger, we randomly sampled a 11x11
subsection from the data. Secondly, to avoid datasets where payoffs were highly skewed (e.g.,
with the majority of payoffs around 0 or around 100), we only included datasets where the
median payoff was in the range [25,75]. Lastly, we required that the spatial autocorrelation of
each environment (computed using Moran’s I) be positive:

I =
N
W

∑i ∑ j wi j(xi − x̄)(x j − x̄)

∑i(xi − x̄)2 (B.1)

where N is the total number of samples (i.e., each of the 121 sections of land in a 11x11 grid), xi

is the normalized yield (i.e., payoff) for option i, x̄ is the mean payoff over all samples, and W
is the spatial weights matrix where wi j = 1 if i and j are the same or neighbouring samples and
wi j = 0 otherwise. Moran’s I ranges between [−1,1] where intuitively I =−1 would resemble
a checkerboard pattern (with black and white tiles reflecting the highest and lowest values in
the payoff spectrum), indicating maximum difference between neighbouring samples. On the
other hand, I → 1 would reflect a linear step function, with maximally high payoffs on one side
of the environment and maximally low payoffs on the other side. We included all environments
where I > 0, indicating that there exists some level of positive spatial correlation that could be
used by participants to guide search.

Although the structure of rewards in real-world data can sometimes be distributed differently
and in particular more discretely (for example, imagine a bitmap or other structural patterns
such as a checkerboard or a crop circle), we believe that our environment inclusion criteria
allow us to appropriately model generalization using our pool of models, while at the same
time extending the scope to more complex and challenging natural structures.

B.5 Additional behavioural analyses

B.5.1 Learning over trials and rounds

We assessed whether participants improved more strongly over trials or over rounds (Fig. B.4).
If they improved more over trials, this means that they are indeed finding better and better
options, whereas if they are improving over rounds, this would also suggest some kind of meta-
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Table B.1 Agricultural datasets used in Experiment 3

Dataset Name
Spatial Autocorrelation

Crop Source
(Moran’s I)

batchelor.lemon.uniformity 0.053 Lemon Batchelor and Reed (1918)
batchelor.navel1.uniformity 0.028 Navel Orange Batchelor and Reed (1918)
batchelor.valencia.uniformity 0.098 Valencia Orange Batchelor and Reed (1918)
draper.safflower.uniformity 0.075 Safflower Draper (1959)
goulden.barley.uniformity 0.036 Barley Goulden (1939)
iyer.wheat.uniformity 0.047 Wheat Krishna Iyer (1942)
kalamkar.wheat.uniformity 0.004 Wheat (Yeoman II) Kalamkar (1932)
khin.rice.uniformity 0.011 Rice Khin (2016)
kristensen.barley.uniformity 0.146 Barley Kristensen (1925)
montgomery.wheat.uniformity 0.243 Wheat (Winter) Montgomery (1912)
moore.polebean.uniformity 0.119 Blue Lake Pole Beans Moore and Darroch (1956)
moore.bushbean.uniformity 0.028 Bush Beans Moore and Darroch (1956)
moore.sweetcorn.uniformity 0.039 Sweet Corn Moore and Darroch (1956)
moore.carrots.uniformity 0.030 Carrots Moore and Darroch (1956)
moore.springcauliflower.uniformity 0.013 Spring Cauliflower Moore and Darroch (1956)
nonnecke.corn.uniformity 0.117 Sweet Corn Nonnecke (1959)
odland.soybean.uniformity 0.105 Soybean Odland and Garber (1928)
odland.soyhay.uniformity 0.069 Soyhay Odland and Garber (1928)
polson.safflower.uniformity 0.059 Safflower Polson (1964)
stephens.sorghum.uniformity 0.043 Sorghum Stephens and Vinall (1928)

learning as they would get better at the task the more rounds they have performed previously.
To test this, we fit a linear regression to every participant’s outcome individually, either only
with trials or only with rounds as the independent variable. Afterwards, we extract the mean
standardized slopes for each participant including their standard errors. Notice that these
estimates are based on a linear regression, whereas learning curves are probably non-linear.
Thus, this method might underestimate the true underlying effect of learning over time.

Results (from one-sample t-tests with µ0 = 0) show that participants’ scores improve
significantly over trials for Experiment 1 (t(80) = 5.57, p < .001, d = 0.6, 95% CI (0.2,1.1),
BF > 100), Experiment 2 (t(79) = 2.78, p < .001, d = 0.31, 95% CI (−0.1,0.8), BF = 4.4),
and Experiment 3 (t(79) = 5.91, p < .001, d = 0.7, 95% CI (0.2,1.1), BF > 100). Over
successive rounds, there was a negative influence on performance in Experiment 1 (t(80) =
−2.78, p = .007, d = −0.3, 95% CI (−0.7,0.1), BF = 4.3), no difference in Experiment
2 (t(79) = 0.21, p = .834, d = 0.02, 95% CI (−0.4,0.5), BF = 0.1), and a minor positive
influence in Experiment 3 (t(79) = 2.16, p = .034, d = 0.2, 95% CI (−0.2,0.7), BF = 1.1).
Overall, participants robustly improved over trials in all experiments, with the largest effect
sizes found in Experiments 1 and 3. There was no improvement over rounds in all of the
experiments, suggesting that the four fully revealed example environments presented prior to
the start of the task was sufficient for familiarizing participants with the task.
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Fig. B.4 Learning over trials and rounds. Average correlational effect size of trial and round on score per
participant as assessed by a standardized linear regression. Participants are ordered by effect size in decreasing
order. Dashed lines indicate no effect. Red lines indicate average effect size.

B.5.2 Experimental conditions and model characteristics

To further assess how the experimental conditions influenced the model’s behaviour, we per-
formed Bayesian linear regressions of the experimental conditions onto the models’ predictive
accuracy and parameter estimates. To do so, we assumed a Gaussian prior on the coefficients,
and an inverse Gamma prior on the conditional error variance, while inference was performed
via Gibbs sampling. The results of these regressions are shown in Table B.2. Whereas the
smoothness of the underlying environments (in Experiments 1 and 2) had no effect on the
model’s predictive accuracy and almost no effect on parameter estimates (apart from a small
effect on directed exploration in Experiment 1), participants in the Accumulation payoff con-
dition showed decreased levels of directed exploration (as captured by β ) in Experiment 1
and Experiment 3, and decreased levels of random exploration in Experiment 3. Thus, our
model seems to capture meaningful differences between the two reward conditions in these two
experiments.
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Table B.2 Bayesian linear regression of experimental conditions on model performance and parameter estimates
(Experiments 1-3)

Predictive Accuracy Generalization Exploration Bonus Temperature
R2 λ β τ

Experiment 1
Intercept 0.23 (0.18, 0.28) 0.71 (0.59, 0.84) 0.40 (0.33, 0.47) 0.02 (0.01, 0.02)
Smooth 0.02 (-0.03, 0.09) -0.07 (-0.22, 0.09) 0.09 (0.01, 0.18) 0.00 (-0.01, 0.01)
Accumulator 0.12 (0.05, 0.18) 0.03 (-0.13, 0.18) -0.10 (-0.19, -0.02) 0.00 (-0.01, 0.01)

Experiment 2
Intercept 0.33 (0.28, 0.37) 0.76 (0.69, 0.82) 0.50 (0.47, 0.53) 0.09 (0.08, 0.10)
Smooth 0.03 (-0.02, 0.08) 0.04 (-0.03, 0.06) 0.01 (-0.03, 0.04) 0.00 (-0.01, 0.01)
Accumulator 0.07 (0.01, 0.12) -0.01 (-0.08, 0.06) 0.00 (-0.04, 0.02) -0.01 (0.00, 0.01)

Experiment 3
Intercept 0.28 (0.24, 0.33) 0.64 (0.60, 0.69) 0.56 (0.49, 0.63) 0.11 (0.10, 0.12)
Accumulator 0.10 (0.03, 0.16) 0.06 (-0.01, 0.12) -0.15 (-0.24, -0.05) -0.03 (-0.04, -0.01)

Note: We use the Function Learning model for Experiment 1 and the localized Function Learning* model
for Experiment 2 and Experiment 3. Columns indicate dependent variable, whereas rows shows independent
variables’ regression coefficients including 95% posterior credible sets in brackets. Boldface indicates
estimates whose credible sets do not overlap with 0.

B.6 Individual learning curves

To better understand why the aggregated participant learning curves sometimes decrease in
average reward over time, whereas the simulated model curves tend not to (Fig. 3.3b), we
present individual participant learning curves in Fig, B.5. Here, we separate the behavioural
data by horizon (colour), payoff condition (rows), and environment (columns), where each line
represents a single participant. We report performance in terms of both average reward (top
section: Accumulation goal) and maximum reward (bottom section: Maximization goal).

The individual learning curves reveal two main causes for the decrease in reward over time
when aggregating over conditions and participants. Firstly, looking at the learning curves for
participants assigned to the Accumulation condition (Fig. B.5 top row), we see that roughly half
of participants in the long search horizon (blue lines) show a decreasing trend at the midway
point of the round. However, the other half of participants continue to gain increasingly higher
rewards, more like the simulated learning curves of the Function Learning model in Figure
3b. This may be a by-product of the alternating search horizon manipulation, since the curves
typically tend to decrease near the trial where a short horizon round would have ended, but also
a tendency towards over-exploration that more closely resembles the Maximization goal.

Secondly, in aggregating over conditions and participants, the performance of the Accu-
mulation and Maximization participants are averaged together. Whereas many Accumulation
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payoff condition participants display more positively increasing average reward, these data
points are washed out by the Maximization payoff condition participants who tend to have
flatter average reward curves in pursuit of the global optimization goal.

Lastly, one additional insight from the individual learning curves comes from the flat-
lined maximum reward lines (Fig. B.5, bottom section). Found more often in Accumulation
participants, these flat lines represent participants who have reached a satisfactory payoff and
cease additional exploration in order to exploit it. This is yet another behavioural signature of
the payoff manipulations.

B.7 Extended model comparison

We report the full model comparison of 27 models, of which 12 (i.e., four learning models and
three sampling strategies) are included in Chapter 3. We use different Models of Learning (i.e.,
Function Learning and Option Learning), which combined with a Sampling Strategy can make
predictions about where a participant will search, given the history of previous observations.
We also include comparisons to Simple Heuristic Strategies (Gigerenzer et al., 1999), which
make predictions about search decisions without maintaining a representation of the world
(i.e., without a learning model). Table B.3 shows the predictive accuracy, the number of
participants best described, the protected probability of exceedance (Stephan et al., 2009) and
the median parameter estimates of each model. Figure B.6 shows a more detailed assessment
of predictive accuracy and model performance, with participants separated by payoff condition
and environment type.
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Fig. B.5 Individual participant learning curves. Each line represents a single participant, separated by search
horizon (colour), by payoff condition (rows), and environment (columns). The top section shows performance in
terms of average reward, while the bottom section shows performance in terms of maximum reward.
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Fig. B.6 Extended model comparison of all 27 models for Experiments 1-3. The learning model is indicated above
(or lack of in the case of simple heuristic strategies), and sampling strategy are along the x-axis. Bars indicate
predictive accuracy (group mean) along with standard error, and are separated by payoff condition (colour) and
environment type (darkness), with individual participants overlaid as dots. Icon arrays (right) show the number
participants best described (out of the full 27 models) and are aggregated over payoff conditions, environment
types, and sampling strategy. Table B.3 provides more detail about the number of participants best described by
each model as well as the protected probability of exceedance.
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C.1 Other forms of random exploration

A softmax function with a temperature parameter τ is only one way to define random ex-
ploration. Another approach towards assessing random exploration is so-called ε-greedy
exploration. Given k number of arms (64 in Experiment 4), ε-greedy exploration chooses

p(x) =

1− ε, if argmaxUCB(x)

ε/(k−1), otherwise
(C.1)

where ε is a free parameter. We test the ε-greedy method of exploration by using it instead of a
softmax function in combination with the GP regression model and a UCB-sampling strategy.
The results of this comparison show that the ε-greedy exploration model was systematically
worse at predicting behavior than the softmax model reported in the main text (mean predictive
accuracy: R2 = 0.21, t(159) = 6.67, p < .001, d = 0.53, BF > 100). Additionally, the softmax
model also had better predictive accuracy than the ε-greedy exploration model for adults (mean
predictive accuracy: R2 = 0.26, t(49) = 9.29 p < .001, d = 1.31, BF > 100), and for older
children (mean predictive accuracy: R2 = 0.21, t(54) = 3.60, p < .001, d = 0.49, BF = 39),
but not for younger children (mean predictive accuracy: R2 = 0.17, t(54) = 0.33, p = .74,
d = 0.04, BF = 0.2).

Next, we looked for age-related differences in the parameter estimates of the ε-greedy
model†, specifically the directed exploration parameter β and the alternative random exploration
parameter ε . As in the softmax-parameterized models, we find larger λ -estimates for adults
than for older children (0.99 vs. 0.24, U = 1975, rτ = 0.31, p < .001, BF > 100), whereas

†Note that interpreting estimates of inferior computational models can be problematic and should only be
done with caution.
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the two children groups do not differ in their λ -estimates (0.31 vs. 0.24, U = 1299, rτ = 0.10,
p = .20, BF = 0.4). Furthermore, we find more directed exploration (larger β parameters)
for older children than for adults (17.30 vs. 5.38, U = 555, rτ = 0.42, p < .001, BF > 100),
but no difference between the two groups of children (17.20 vs. 17.30, U = 1684,rτ = 0.12,
p = .3, BF = 0.3). We also found a difference in ε-greedy exploration parameter between
adults and older children (0.00012 vs. 0.00014, U = 960,rτ = 0.21, p = .007, BF = 7), but
not between the two groups of children (0.00014 vs. 0.00016, U = 1774, rτ = 0.12, p = .11,
BF = 0.5). Notice that the relative proportion of random exploration decisions according to
the ε-parameter estimates is so small, that over the 200 choices in our task, this accounts for a
difference of approximately 1 in every 250 choices. Thus, there is almost no practical difference
in participants’ ε-parameters. The overall age-related effect in the ε-greedy analysis was also
larger for directed exploration than for ε-greedy exploration (rτ = 0.40 vs. rτ = 0.25).

Thus, there are two reasons to believe that children are driven more strongly by directed
than by random exploration. Firstly, the GP-UCB model combined with a softmax formulation
of random exploration predicted participants better than an ε-greedy model, and finds no
age-related difference in terms of random exploration described by the temperature parameter
τ . Secondly, parameter estimates of the ε-greedy model find only small and practically
meaningless age-related difference in ε-exploration, but again a large age-related differences in
the directed exploration parameter β .

C.2 Parameter estimates

All parameter estimates were included in the statistical analyses, although we exclude outliers
larger than 5 in Figures 4.1e, C.2, and in Table C.1. For GP-UCB estimates, 1.1% of λ -estimates,
for 3.4% of β -estimates, and 2.7% of τ-estimates were removed this way. The presence of
these outliers motivated us to use non-parametric tests (without removing outliers) to compare
the different parameters across age groups, in order to achieve more robustness. However, the
significance of our test results does not change even if we use parametric t-tests, but remove
outliers before performing these tests. After removing values higher than 5, we still find
that adults show higher λ -estimates than older children (t(103) = 3.88, p < .001, d = 0.76,
BF > 100), who do not differ in their λ -estimates from younger children (t(108) = 1.00,
p = .32, d = 0.19, BF = 0.3). Moreover, the β -estimates are higher for older children than for
adults (t(103) = 4.41, p < .001, d = 0.87, BF > 100), but do not differ between the two groups
of children t(108) = 1.41, p = .160, d = 0.27, BF = 0.5). Crucially, the random exploration
parameters τ do neither differ between older children and adults (t(103) = .55, p = .58,
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d = 0.11, BF = 0.2), nor do they differ between the two groups of children (t(108) = 1.74,
p = .08, d = 0.33, BF = 0.8).

Our criterion for outlier removal is less strict than other criteria, such as removing values
higher than 1.5×IQR. In our data, this would remove 1.8% of λ -estimates, 5.1% of β -estimates,
and 11.2% of τ-estimates. For completeness, we also reanalyzed the data after performing
Tukey’s procedure of outlier removal, where we find the same results. Adults still show a
higher λ -estimates than older children (t(102) = 3.87, p < .001, d = 0.76, BF > 100), who
do not differ from younger children (t(108) = 1.04, p = .30, d = 0.20, BF = 0.3). The β -
estimates are again higher for older children than for adults (t(100) = 4.69, p < .001, d = 0.93,
BF > 100), and do not differ between the two groups of children (t(103) = 1.06, p = .29,
d = 0.21, BF = 0.3). Finally, estimates for τ-parameter do not differ between adults and older
children (t(103) = 1.36, p = .18, d = 0.26, BF = 0.5), nor between the two groups of children
(t(108) = 0.96, p = .34, d = 0.18, BF = 0.3). Taken together, our results hold no matter which
method of outlier removal is applied.

C.3 Model recovery

We present model recovery results that assess whether or not our predictive model comparison
procedure allows us to correctly identify the true underlying model. To assess this, we generated
data based on each individual participant’s mean parameter estimates (excluding outliers larger
than 5 as before). More specifically, for each participant and round, we use the cross-validated
parameter estimates to specify a given model, and then generate new data in the attempt to
mimic participant data. We generate data using the BMT and the GP regression model. In all
cases, we use the UCB sampling strategy in conjunction with the specified learning model.
We then utilize the same cross-validation method as before in order to determine if we can
successfully identify which model has generated the underlying data. Figure C.1 shows the
cross-validated predictive performance for the simulated data.

Our predictive model comparison procedure shows that the GP model is a better predictor
for data generated from the same underlying model, whereas the BMT model is only marginally
(if at all) better at predicting data generated from the same underlying model. This suggests
that our main model comparison results are robust to Type II errors, and provides evidence that
the better predictive accuracy of the GP model on participant data is unlikely due to differences
in model mimicry.

When the BMT model generates data using participant parameter estimates, the same Mean
Tracker model performs better than the GP model (t(159) = 1.42, p = .16, d = 0.11, BF = 4.1)
and predicts 86 out of 160 simulated participants best. Notice, however, that both models
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GP BMT
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Fig. C.1 Tukey box plots of model recovery results including individual data points (points) and overall means
(diamonds). Left: Model performance based on data generated by the GP-UCB model specified with participant
parameter estimates. The matching GP-UCB model makes better predictions than a mismatched BMT-UCB
model. Right: Model performance based on data generated by the BMT-UCB model specified with participant
parameter estimates. Both GP and BMT models predict this data poorly, and perform similar to a random model.

perform poorly in this case, with both models achieving an average pseudo-r-squared of around
R2 = −0.04. This also shows that the BMT is not a good generative model of human-like
behavior in our task.

When the GP model has generated the underlying data, the same model performs signifi-
cantly better than the BMT model (t(159) = 18.6, p < .001, d = 1.47, BF > 100) and predicts
153 of the 160 simulated participants best. In general, both models perform better when the GP
has generated the data with the GP achieving a predictive accuracy of R2 = .20 and the BMT
of achieving R2 = .12. This makes our finding of the GP model as the best predictive model
even stronger as—technically—the BMT model can mimic parts of its behavior. Moreover, the
resulting values of predictive accuracy are similar to the ones we found using participant data.
This indicates that our empirical values of predictive accuracy were as good as possible under
the assumption that a GP model generated the data.

C.4 Parameter recovery

Another important question is whether the reported parameter estimates of the GP-UCB model
are reliable and recoverable. We address this question by assessing the recoverability of the
three underlying parameters, the length-scale λ , the directed exploration factor β , and the
random exploration (temperature) parameter τ of the softmax choice rule. We use the results
from the model recovery simulation described above, and correlate the empirically estimated
parameters used to generate data (i.e., the estimates based on participants’ data), with the
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rτ = .85

0.0

0.5

1.0

1.5
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Fig. C.2 Parameter recovery results. The generating parameter estimate is on the x-axis and the recovered
parameter estimate is on the y-axis. The generating parameter estimates are from the cross-validated participant
parameter estimates, which were used to simulate data (see Model recovery). Recovered parameter estimates are
the result of the cross-validated model comparison on the simulated data. While the cross-validation procedure
yielded 8-estimates per participant, one for each round, we show the mean estimate per (simulated) participant.
The dashed line shows a linear regression on the data, while Kendall’s rank correlation rτ is shown in the plot. For
readability, colors represent the bivariate kernel density estimate, with red indicating higher density.

parameter estimates of the recovering model (i.e., the MLE from the cross-validation procedure
on the simulated data). We assess whether the recovered parameter estimates are similar to
the parameters that were used to generate the underlying data. We present parameter recovery
results for the Gaussian Process regression model using the UCB sampling strategy. We report
the results in Figure C.2, with the generating parameter estimate on the x-axis and the recovered
parameter estimate on the y-axis.

The correlation between the generating and the recovered length-scale λ is rτ = .85,
p < .001, the correlation between the generating and the recovered exploration factor β is
rτ = 0.75, p < .001, and the correlation between the generating and the recovered softmax
temperature parameter τ is rτ = 0.81, p < .001.

These results show that the correlation between the generating and the recovered parameters
is very high for all parameters. Thus, we have strong evidence to support the claim that the
reported parameter estimates of the GP-UCB model are recoverable, reliable, and therefore
interpretable. Importantly, we find that estimates for β (exploration bonus) and τ (softmax tem-
perature) are indeed recoverable, providing evidence for the existence of a directed exploration
bonus, as a separate phenomena from random exploration in our behavioral data.

Next, we analyze whether or not the same differences between the parameter estimates that
we found for the experimental data can also be found for the simulated data. Thus, we compare
the recovered parameter estimates from the data generated by the estimated parameters for
the different age groups. This comparison shows that the recovered data exhibits the same
characteristics as the empirical data. The recovered λ -estimates for simulated data from adults
was again larger than the recovered lambda estimates for older children (U = 2021, rτ = 0.33,
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p< .001, BF > 100), whereas there was no difference between the recovered parameters for the
two simulated groups of children (U = 1800, p = .08, rτ = 0.14, BF = 1). As in the empirical
data, the recovered estimates also showed a difference between age groups in their directed
exploration behavior such that the recovered β was higher for simulated older children than for
simulated adults (U = 730, p < .001, rτ = 0.33, BF > 100), whereas there was no difference
between the two simulated groups of children (U = 1730, p = .19, rτ = 0.10, BF = 0.6).
There was no difference between the different recovered τ-parameters (max-BF = 0.5). Thus,
our model can also reproduce similar group differences between generalization and directed
exploration as found in the empirical data.

C.5 Counter-factual parameter recovery

Another explanation of the finding that children differ from adult participants in their directed
exploration parameter β but not in their random exploration parameter τ could be that the
softmax temperature parameter τ can sometimes track more of the random behavioral difference
between participants than the directed exploration parameter β . If the random exploration
parameter τ indeed tends to absorb more of the random variance in the data than the directed
exploration parameter β , then perhaps one is always more likely to find differences in β rather
than differences in τ . To assess this claim, we simulate data using our GP-UCB model as
before but swap participants’ parameter estimates of β with their estimates of τ and vice versa.
Ideally, this simulation can reveal whether it is possible for our method to find differences
in τ but not β in a counter-factual parameter recovery where the age groups differ in their
random but not their directed exploration behavior. Thus, we generate data from the swapped
GP-UCB model and then use our model fitting procedure to assess the GP-UCB-model’s
parameters from this generated data. The results of this simulation reveal that simulated adults
do not differ from simulated older children in their estimated directed exploration parameters
β (U = 1170, rτ = 0.11, p = .19, BF = 0.7). Furthermore, the two simulated children groups
also do not differ in terms of their directed exploration parameter β (U = 1696,rτ = 0.09,
p = .27, BF = 0.4). However, the random exploration parameter τ is estimated to be somewhat
higher for simulated older children than for simulated adults (U = 1771, rτ = 0.21, p = .01,
BF = 2.5) and shows no difference between the two simulated children groups (U = 1631,
p = .48, rτ = 0.06, BF = 0.4). This means that the GP-UCB model can pick up on differences
in random exploration as well and therefore that our findings are unlikely due to a false positive.
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C.6 Comparison to optimal parameter estimates

We compare the performance of participants’ parameter estimates to the simulated performance
of alternative parameter combinations in the GP-UCB model (Fig. C.3). For this, we simulate
the GP-UCB model on both the smooth and the rough environments for the same number
of trials as participants experienced, and track performance for each run. Since there were
no meaningful differences for the random exploration parameter τ , we set τ = 0.03 (i.e., the
median over all participants) for all simulations. We vary the parameter values of the directed
exploration bonus β and the generalization parameter λ to all permutations of values stemming
from [0.05,0.1, · · · ,2], leading to 1,600 differently parameterized models in total. We then run
each model for 100 replications on both the smooth and the rough environments individually,
always calculating mean performance over all runs. Figure C.3 shows the performance of
different λ -β -combinations with participants’ parameter estimates overlaid.

We extract the best parameters of this simulation by using all parameters that are not
significantly different in their performance from the overall best-performing parameters using
an α-level of 0.05. The best-performing parameters for the rough condition have a median
generalization parameter of λ = 0.95 (range: 0.65-1.30) and a median exploration parameter
of β = 0.15 (range: 0.1-0.15). The best-performing parameters for the smooth condition
have a median generalization parameter of λ = 1.78 (range: 1.4-2) and a median exploration
parameter of β = 0.15 (range: 0.05-0.2). Unsurprisingly, adults’ parameter estimates are closer
to best-performing parameters than children’s parameter estimates. These simulations also
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replicate earlier findings (Wu, Schulz, Speekenbrink, et al., 2018) showing that lower values of
λ (i.e., undergeneralization) can lead to better performance than values of λ that are higher and
closer to the true underlying λ that generated the environments.

C.7 Further behavioral analyses

C.7.1 Learning over trials and rounds
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Fig. C.4 Posterior regression coefficients of mean performance and the effects of both trials and rounds onto
participants’ rewards. Individual lines densities correspond to participant-wise estimates, whereas red lines show
hierarchical estimates.

We analyze participants learning over trials and rounds using a hierarchical Bayesian
regression approach. Formally, we assume the regression weight parameters θx for x ∈ {0,1,2}
are hierarchically distributed as

θx ∼N (µx,σ
2
x ); (C.2)

we further assume a weakly informative prior of the means and standard deviation over the
regression equation, defined as:

µx ∼N (0,100) (C.3)

σ
2
x ∼ Half-Cauchy(0,100) (C.4)

We fit one hierarchical model of means and standard deviations over all participants using
Hamiltonian Markov chain Monte Carlo sampling as implemented in the PyMC-environment.
This yields hierarchical estimates for each regression coefficient overall as well as individual
estimates for each participant. Doing so for a model containing an intercept (mean performance),
a standardized coefficient of the effect of trials on rewards, as well as a standardized coefficient
of the effect of rounds on rewards results into the posterior distributions shown in Figure C.4.

The overall posterior mean of participants’ rewards is estimated to be 34.4 with a 95%-
credible set of [33.5,35.4]. The standardized effect of trials onto rewards is estimated to be
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1.48 with a 95%-credible set of [1.1,1.9], indicating a strong effect of learning over trials.
The standardized effect of rounds onto participants’ rewards is estimated to be 0.11 with a
95%-credible set of [−0.4,0.6], indicating no effect. Taken together, these results indicate that
participants performed well above the chance-level of 25 overall and improved their score
greatly over trials. They did not, however, learn or adapt their strategies across rounds.

C.7.2 Reaction times

7−8

9−11

>18

100 300 1000 3000

RT in ms

A
ge

Reaction timesa
Rough Smooth

0 10 20 30 40 50 0 10 20 30 40 50

700

1000

2000

Reward on t

M
ea

n 
R

T
 (

m
s)

 o
n 

t+
1

Age

7−8

9−11

>18

Reaction time and rewardsb

Fig. C.5 Reaction times. a) Reaction time (RT) in miliseconds (ms) by age group and condition, with the x-axis
on log-scale. b) Reaction times as a function of previous reward.

We analyze participants log-reaction times as function of previous reward, age group, and
condition. Reaction times are filtered to be smaller than 5000ms and larger than 100ms (3.05%
removed in total). We find that reaction times are slower for the rough as compared to the
smooth condition (see Fig. C.5a; t(158) = 4.44, p < .001, d = 0.70, BF > 10). Moreover,
adults are somewhat faster than children aged 9-11 (t(103) = −2.60, p = .01, d = 0.51,
BF = 4). The difference in reaction times between children aged 9-11 and children aged 7-8 is
only small (t(108) = 2.27, p = .03, d = 0.43, BF = 2).

We also analyze how the value of the previous reward influences reaction times, i.e.,
whether participants slow down after a bad outcome and/or speed up after a good outcome
(see Fig. C.5b). The correlation between the previous reward and reaction times is negative
overall with r = −0.18, t(159) = −15, p < .001, BF > 100, indicating that larger rewards
lead to faster reaction times, whereas participants might slow down after having experienced
low rewards. This effect is even stronger for the smooth as compared to the rough condition
(t(158) = −4.43, p < .001, d = 0.70, BF > 100). Moreover, this effect is also stronger for
adults than for older children (t(103) =−5.51, p < .001, d = 1.08, BF > 100) and does not
differ between the two groups of children (t(108) = 1.93, p = .06, d = 0.37, BF = 1).
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Table C.1 Extended modeling results (Experiment 4).

Model R2 # Best Log-loss pxp Generalization
λ

Exploration
β

Error Var.√
θ 2

ε

Softmax
τ

Overall:
BMT-PureExploit 0.02 10 103.9 0 – – 2.98 0.01
BMT-PureExplore 0.01 3 102.7 0 – – 0.58 0.08
BMT-UCB 0.05 5 99.3 0 – 0.41 1.60 0.16
GP-PureExploit 0.09 34 94.4 0 1.46 – – 0.16
GP-PureExplore 0.02 2 102.1 0 0.18 – – 0.56
GP-UCB 0.28 106 74.8 1 0.59 0.45 – 0.03

Age 7-8:
BMT-PureExploit 0.00 3 103.9 0 – – 0.53 0.01
BMT-PureExplore 0.00 3 100.8 0 – – 1.22 0.08
BMT-UCB 0.03 3 100.5 0 – 0.47 1.20 0.11
GP-PureExploit 0.07 14 96.9 0 1.37 – – 0.18
GP-PureExplore 0.01 0 102.7 0 0.17 – – 0.41
GP-UCB 0.14 32 89.2 1 0.46 0.48 – 0.03

Age 9-11:
BMT-PureExploit 0.01 0 103.9 0 – – 2.86 0.01
BMT-PureExplore 0.01 0 101.7 0 – – 0.65 0.08
BMT-UCB 0.05 0 99.3 0 – 0.33 1.34 0.07
GP-PureExploit 0.08 9 95.1 0 1.52 – – 0.17
GP-PureExplore 0.01 2 101.5 0 0.17 – – 0.38
GP-UCB 0.26 44 76.6 1 0.74 0.53 – 0.02

Adults:
BMT-PureExploit 0.29 7 72.8 0 – – 3.38 0.03
BMT-PureExplore 0.00 0 103.4 0 – – 0.13 0.87
BMT-UCB 0.29 2 74.2 0 – 0.18 2.94 0.03
GP-PureExploit 0.33 11 69.1 0 1.38 – – 0.07
GP-PureExplore 0.01 0 103.9 0 0.10 – – 0.23
GP-UCB 0.40 30 62.7 1 0.85 0.24 – 0.03

Note: Columns indicate (from left to right) the average predictive accuracy of each model (R2), how many participants each model
best predicted (# Best), the average log-loss over all 8 rounds of predictions (Log-loss), the protected probability of exceedance
(pxp), the GP’s generalization parameter (λ ), the directed exploration parameter (β ) for all models involving a UCB sampling
strategy, the BMT’s error variance (

√
θ 2

ε ), and the random exploration (softmax temperature) parameter (τ). Parameter estimates
are based on median over per-participant mean parameter estimates (excluding estimates larger than 5 as outliers).
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