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Supplementary Methods

Full Model Comparison
We report the full model comparison of 27 models, of which 12 (i.e., four learning models and three
sampling strategies) are included in the main text. We use different Models of Learning (i.e., Function
Learning and Option Learning), which combined with a Sampling Strategy can make predictions about
where a participant will search, given the history of previous observations. We also include comparisons
to Simple Heuristic Strategies1, which make predictions about search decisions without maintaining a
representation of the world (i.e., without a learning model). Supplementary Table 3 shows the predictive
accuracy, the number of participants best described, the protected probability of exceedance and the
median parameter estimates of each model. Supplementary Figure 1 shows a more detailed assessment
of predictive accuracy and model performance, with participants separated by payoff condition and
environment type.

Models of Learning

Function Learning. The Function Learning Model adaptively learns an underlying function mapping
spatial locations onto rewards. We use Gaussian Process (GP) regression as a Bayesian method of
function learning2. A GP is defined as a collection of points, any subset of which is multivariate
Gaussian. Let f : X → Rn denote a function over input space X that maps to real-valued scalar
outputs. This function can be modelled as a random draw from a GP:

f ∼ GP(m,k), (1)

where m is a mean function specifying the expected output of the function given input x, and k is a
kernel (or covariance) function specifying the covariance between outputs.

m(x) = E[ f (x)] (2)

k(x,x′) = E
[
( f (x)−m(x))( f (x′)−m(x′))

]
(3)

Here, we fix the prior mean to the median value of payoffs, m(x) = 50 and use the kernel func-
tion to encode an inductive bias about the expected spatial correlations between rewards (see Radial
Basis Function kernel). Conditional on observed data Dt = {x j,y j}tj=1, where y j ∼ N ( f (x j),σ

2) is

drawn from the underlying function with added noise σ2 = 1, we can calculate the posterior predictive
distribution for a new input x∗ as a Gaussian with mean mt(x∗) and variance vt(x∗) given by:

E[ f (x∗)|Dt ] = mt(x∗) = k>∗ (K+σ
2I)−1yt (4)

V[ f (x∗)|Dt ] = vt(x∗) = k(x∗,x∗)−k>? (K+σ
2I)−1k∗, (5)



where y = [y1, . . . ,yt ]
>, K is the t× t covariance matrix evaluated at each pair of observed inputs, and

k∗ = [k(x1,x∗), . . . ,k(xt ,x∗)] is the covariance between each observed input and the new input x∗.
We use the Radial Basis Function (RBF) kernel as a component of the GP function learning algo-

rithm, which specifies the correlation between inputs.

k(x,x′) = exp
(
−||x−x′||2

2λ 2

)
(6)

This kernel defines a universal function learning engine based on the principles of Bayesian regression
and can model any stationary function. Intuitively, the RBF kernel models the correlation between
points as an exponentially decreasing function of their distance. Here, λ modifies the rate of correlation
decay, with larger λ -values corresponding to slower decays, stronger spatial correlations, and smoother
functions. As λ → +∞, the RBF kernel assumes functions approaching linearity, whereas as λ → 0,
there ceases to be any spatial correlation, with the implication that learning happens independently for
each input without generalization (similar to traditional models of associative learning). We treat λ

as a free parameter, and use cross-validated estimates to make inferences about the extent to which
participants generalize.

Option Learning. The Option Learning Model uses a Bayesian Mean Tracker, which is a type of
associative learning model that assumes the average reward associated with each option is constant
over time (i.e., no temporal dynamics, as opposed to the assumptions of a Kalman filter or Temporal
Difference Learning)3, as is the case in our experimental search tasks. In contrast to the Function
Learning model, the Option Learning model learns the rewards of each option separately, by computing
an independent posterior distribution for the mean µ j for each option j. We implement a version
that assumes rewards are normally distributed (as in the GP Function Learning Model), with a known
variance but unknown mean, where the prior distribution of the mean is again a normal distribution.
This implies that the posterior distribution for each mean is also a normal distribution:

p(µ j,t |Dt−1) =N (m j,t ,v j,t) (7)

For a given option j, the posterior mean m j,t and variance v j,t are only updated when it has been
selected at trial t:

m j,t = m j,t−1 +δ j,tG j,t
[
yt−m j,t−1

]
(8)

v j,t =
[
1−δ j,tG j,t

]
v j,t−1 (9)

where δ j,t = 1 if option j was chosen on trial t, and 0 otherwise. Additionally, yt is the observed
reward at trial t, and G j,t is defined as:

G j,t =
v j,t−1

v j,t−1 +θ 2
ε

(10)

where θ 2
ε is the error variance, which is estimated as a free parameter. Intuitively, the estimated mean

of the chosen option m j,t is updated based on the difference between the observed value yt and the
prior expected mean m j,t−1, multiplied by G j,t . At the same time, the estimated variance v j,t is reduced
by a factor of 1−G j,t , which is in the range [0,1]. The error variance (θ 2

ε ) can be interpreted as an
inverse sensitivity, where smaller values result in more substantial updates to the mean m j,t , and larger
reductions of uncertainty v j,t . We set the prior mean to the median value of payoffs m j,0 = 50 and the
prior variance v j,0 = 500.
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Sampling Strategies

Given the normally distributed posteriors of the expected rewards, which have mean mt(x) and the
estimated uncertainty (estimated here as a standard deviation) st(x) =

√
vt(x), for each search option

x (for the Option Learning model, we let mt(x) = m j,t and vt(x) = v j,t , where j is the index of the
option characterized by x), we assess different sampling strategies that (with a softmax choice rule)
make probabilistic predictions about where participants search next at time t +1.

Upper Confidence Bound Sampling. Given the posterior predictive mean mt(x) and the estimated
uncertainty st(x), we calculate the upper confidence bound (UCB) using a simple weighted sum

UCB(x) = mt(x)+β st(x), (11)

where the exploration factor β determines how much reduction of uncertainty is valued (relative to
exploiting known high-value options) and is estimated as a free parameter.

Pure Exploitation and Pure Exploration. Upper Confidence Bound sampling can be decomposed into
a Pure Exploitation component, which only samples options with high expected rewards, and a Pure
Exploration component, which only samples options with high uncertainty.

PureExploit(x) = mt(x) (12)

PureExplore(x) = st(x) (13)

Expected Improvement. At any point in time t, the best observed outcome can be described as
x+ = argmaxxi∈x1:t mt(xi). Expected Improvement (EXI) evaluates each option by how much (in the
expectation) it promises to be better than the best observed outcome x+:

EXI(x) =

{
Φ(Z)(mt(x)−mt(x+))+ st(x)φ(Z), if st(x)> 0
0, if st(x) = 0

(14)

where Φ(·) is the normal CDF, φ(·) is the normal PDF, and Z = (mt(x)−mt(x+))/st(x).

Probability of Improvement. The Probability of Improvement (POI) strategy evaluates an option based
on how likely it will be better than the best outcome (x+) observed so far:

POI(x) = P
(

f (x)≥ f (x+)
)

= Φ

(
mt(x)−mt(x+)

st(x)

)
(15)

Probability of Maximum Utility. The Probability of Maximum Utility (PMU) samples each option
according to the probability that it results in the highest reward of all options in a particular context3.
It is a form of probability matching and can be implemented by sampling from each option’s predictive
distributions, and then choosing each option proportional to the number of times it has the highest
sampled payoff.

PMU(x) = P
(

f (x j)> f (xi6= j)
)

(16)
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We implement this sampling strategy by Monte Carlo sampling from the posterior predictive distri-
bution of a learning model for each option, and evaluating how often a given option turns out to be
the maximum over 1,000 generated samples.

Simple Heuristic Strategies

We also compare various simple heuristic strategies that make predictions about search behaviour
without learning about the distribution of rewards.

Win-Stay Lose-Sample. We consider a form of a win-stay lose-sample (WSLS) heuristic4, where a win
is defined as finding a payoff with a higher or equal value than the previously best observed outcome.
When the decision-maker “wins”, we assume that any tile with a Manhattan distance ≤ 1 is chosen
(i.e., a repeat or any of the four cardinal neighbours) with equal probability. Losing is defined as the
failure to improve, and results in sampling any unrevealed tile with equal probability.

Local Search. Local search predicts that search decisions have a tendency to stay local to the previous
choice. We use inverse Manhattan distance (IMD) to quantify locality:

IMD(x,x′) =
1

∑
n
i=1 |xi− x′i|

(17)

where x and x′ are vectors in Rn. For the special case where x = x′, we set IMD(x,x′) = 1.

Localization of Models

With the exception of the Local Search model, all other models include a localized variant, which
introduced a locality bias by weighting the predicted value of each option q(x) by the inverse Manhattan
distance (IMD) to the previously revealed tile. This is equivalent to a multiplicative combination with
the Local Search model, similar to a “stickiness parameter”5,6, although we implement it here without
the introduction of any additional free parameters. Localized models are indicated with an asterisk
(e.g., Function Learning*).

Model Comparison
We use maximum likelihood estimation (MLE) for parameter estimation, and cross-validation to measure
out-of-sample predictive accuracy as well as the probability of exceedance to estimate a model’s posterior
probability to be the underlying predictive model of our task, given the pool of all models in our
comparison. A softmax choice rule transforms each model’s valuations into a probability distribution
over options:

p(x) =
exp(q(x)/τ)

∑
N
j=1 exp(q(x j)/τ)

, (18)

where q(x) is the predicted value of each option x for a given model (e.g., q(x) = UCB(x) for the UCB
model), and τ is the temperature parameter. Lower values of τ indicate more concentrated probability
distributions, corresponding to more precise predictions. All models include τ as a free parameter.
Additionally, Function Learning models estimate λ (length-scale), Option Learning models estimate θ 2

ε

(error variance), and Upper Confidence Bound sampling models estimate β (exploration bonus).
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Supplementary Figure 1. Full model comparison of all 27 models. The learning model is indicated
above (or lack of in the case of simple heuristic strategies), and sampling strategy are along the x-axis.
Bars indicate predictive accuracy (group mean) along with standard error, and are separated by payoff
condition (colour) and environment type (darkness), with individual participants overlaid as dots. Icon
arrays (right) show the number participants best described (out of the full 27 models) and are
aggregated over payoff conditions, environment types, and sampling strategy. Supplementary Table 3
provides more detail about the number of participants best described by each model as well as the
protected probability of exceedance.
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Cross Validation. We fit all models—per participant—using cross-validated MLE, with either a Dif-
ferential Evolution algorithm7 or a grid search if the model contained only a single parameter. Pa-
rameter estimates are constrained to positive values in the range [exp(−5),exp(5)]. Cross-validation
is performed by first separating participant data according to horizon length, which alternated between
rounds (within subjects). For each participant, half of the rounds corresponded to a short horizon
and the other half corresponded to a long horizon. Within all rounds of each horizon length, we use
leave-one-out cross-validation to iteratively form a training set by leaving out a single round, computing
a MLE on the training set, and then generating out-of-sample predictions on the remaining round. This
is repeated for all combinations of training set and test set, and for both short and long horizon sets.
The cross-validation procedure yielded one set of parameter estimates per round, per participant, and
out-of-sample predictions for 120 choices in Experiment 1 and 240 choices in Experiments 2 and 3 (per
participant).

Predictive Accuracy. Prediction error (computed as log loss) is summed up over all rounds, and is
reported as predictive accuracy, using a pseudo-R2 measure that compares the total log loss prediction
error for each model to that of a random model:

R2 = 1− logL(Mk)

logL(Mrand)
, (19)

where logL(Mrand) is the log loss of a random model (i.e., picking options with equal probability) and
logL(Mk) is the log loss of model k’s out-of-sample prediction error. Intuitively, R2 = 0 corresponds
to prediction accuracy equivalent to chance, while R2 = 1 corresponds to theoretical perfect prediction
accuracy, since logL(Mk)/ logL(Mrand)→ 0 when logL(Mk)� logL(Mrand). R2 can also be below
zero when the model predictions are worse than random chance.

Simulated learning curves

We use participants’ cross-validated parameter estimates to specify a given model and then simulate
performance. At each trial, model predictions correspond to a probabilistic distribution over options,
which was then sampled and used to generate the observation for the next trial. In order to correspond
with the manipulations of horizon length, payoff condition, and environment type, each simulation was
performed at the participant level, producing data resembling a virtual participant for each replication.
Iterating over each round, we selected the same environment as seen by the participant and then
simulated data using the cross-validated parameters that were estimated using that round as the left-
out round. Thus, just as model comparison was performed out-of-sample, the generated data was also
out-of-sample, based on parameters that were estimated on a different set of rounds than the one being
simulated. We performed 100 replications for each participant in each experiment, which were then
aggregated to produce the learning curves in Figure 3b.

Model Recovery
We present model recovery results that assess whether or not our predictive model comparison procedure
allows us to correctly identify the true underlying model. To assess this, we generated data based on
each individual participant’s parameter estimates (see above). We generated data using the Option
Learning and the Function Learning Model for Experiment 1 and the Option Learning* Model and the
Function Learning* Model for Experiments 2 and 3. In all cases, we used the UCB sampling strategy
in conjunction with the specified learning model. We then utilized the same cross-validation method
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Supplementary Figure 2. Model recovery results. Data was generated by the specified generating
model (left and right columns) using individual participant parameter estimates. The recovery process
used the same cross-validation method used in the model comparison. We report the predictive
accuracy of each candidate recovery model (colours). Boxplots show the median (line), mean
(diamond), interquartile range (box), and 1.5x IQR (whiskers). Each individual (simulated) participant
is represented as a dot, with lines connecting each simulated participant. Icon arrays show the number
of simulated participants best described. For both generating and recovery models, we used UCB
sampling. Supplementary Table 3 reports the median values of the cross-validated parameter
estimates used to specify each generating model.

as before in order to determine if we could successfully identify which model generated the underlying
data. Supplementary Figure 2 shows the cross-validated predictive performance (half boxplot with each
data point representing a single simulated participant) for the simulated data, along with the number
of simulated participants best described (inset icon array).

Experiment 1

In the simulation for Experiment 1, our predictive model comparison procedure shows that the Option
Learning Model is a better predictor for data generated from the same underlying model, whereas the
Function Learning model is only marginally better at predicting data generated from the same underlying
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model. This suggests that our main model comparison results are robust to Type I errors, and provides
evidence that the better predictive accuracy of the Function Learning model for participant data is
unlikely due to overfitting.

When the Function Learning Model has generated the underlying data, the same Function Learning
Model achieves a predictive accuracy of R2 = .4 and describes 41 out of 81 simulated participants
best, whereas the Option Learning model achieves a predictive accuracy of R2 = .39 and describes 40
participants best. Furthermore, the protected probability of exceedance for the Function Learning Model
is pxp = 0.51. This makes our finding of the Function Learning Model as the best predictive model
even stronger as, technically, the Option Learning Model could mimic parts of the Function Learning
behaviour.

When the Option Learning Model generates data using participant parameter estimates, the same
Option Learning Model achieves an average predictive accuracy of R2 = .1 and describes 71 out of 81
simulated participants best. On the same generated data, the Function Learning Model achieves an
average predictive accuracy of R2 = .08 and only describes 10 out of 81 simulated participants best. The
protected probability of exceedance for the Option Learning Model is pxp = 0.99. If the counterfactual
had occurred, namely that if data generated by the Option Learning Model had been best predicted by
the Function Learning Model, we would need to be sceptical about our modelling results on the basis
that the wrong model could describe data better than the true generating model. However, here we
see that the Function Learning Model does not make better predictions than the true model for data
generated by the Option Learning Model.

Experiment 2

In the simulations for Experiment 2, we used the localized version of each type of learning model for
both generation and recovery, since in both cases, localization improved model accuracy in predicting
the human participants (Supplementary Table 3). Here, we find very clear recoverability in all cases,
with the recovering model best predicting the vast majority of simulated participants when it is also the
generating model (Supplementary Figure 2).

When the Function Learning* Model generates the underlying data, the same Function Learning*
Model achieves a predictive accuracy of R2 = .34 and describes 77 out of 80 simulated participants
best, whereas the Option Learning* Model describes only 3 out of 80 simulated participants best, with
a average predictive accuracy of R2 = .32. The protected probability of exceedance for the Function
Learning* model is pxp = 1.

When the Option Learning* Model generates the data, the same Option Learning* Model achieves
a predictive accuracy of R2 = .33 and predicts 69 out of 80 simulated participants best, whereas the
Function Learning* Model predicts only 11 simulated participants best, with an average predictive
accuracy of R2 = .31. The protected probability of exceedance for the Option Learning* model is
pxp = 1. Again, we find evidence that the models are indeed discriminable, and that the Function
Learning* Model does not overfit data generated by the wrong model.

Experiment 3

We again find in all cases the best recovery model is the same as the generating model. When the
Function Learning* Model generates data, the matched recovery with the same Function Learning*
Model best predicts 70 out of 80 participants, with an average predictive accuracy of R2 = .34. The
Option Learning* Model best predicts the remaining 10 participants, with an average predictive accuracy
of R2 = .32. The protected probability of exceedance for the Function Learning* model is pxp = 1.
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When the Option Learning* Model generates the data, the same Option Learning* Model best
predicts 68 out of 80 participants with an average predictive accuracy of R2 = .32, whereas the Function
Learning* Model only best predicts 12 out of 80 participants with an average predictive accuracy of
R2 = .3. The protected probability of exceedance for the Option Learning* model is pxp = 1.

In all simulations, the model that generates the underlying data is also the best performing model, as
assessed by predictive accuracy, the number of simulated participants predicted best, and the protected
probability of exceedance. Thus, we can confidently say that our cross-validation procedure distinguishes
between these model classes. Moreover, in the cases where the Function Learning or Function Learning*
Model generated the underlying data, the predictive accuracy of the same model is not perfect (i.e.,
R2 = 1), but rather close to the predictive accuracies we found for participant data (Supplementary
Table 3).

High temperature recovery

We also assessed how much each model’s recovery can be affected by the underlying randomness of
the softmax choice function. For every recovery simulation, we selected the 10 simulations with the
highest underlying softmax temperature parameter τ (ranges: τ10

Exp1 = [0.09,0.42], τ10
Exp2 = [0.11,0.25],

τ10
Exp3 = [0.21,9.7]) and again calculated the probability of exceedance for the true underlying model.

The results of this analysis led to a probability of exceedance for the Function Learning Model in
Experiment 1 of pxp = .81, for the Function Learning* Model in Experiment 2 of pxp = 0.99, for the
Function Learning* Model in Experiment 3 of pxp = 0.93, for the Option Learning Model in Experiment
1 of pxp = 0.97, for the Option Learning* Model in Experiment 2 of pxp = 0.99, and for the Option
Learning Model in Experiment 3 of pxp = 0.98. Thus, the models seem to be well-recoverable even in
scenarios with high levels of random noise in the generated responses.

Parameter Recovery
Another important question is whether or not the reported parameter estimates of the two Function
Learning models are reliable and robust. We address this question by assessing the recoverability of
the three parameters of the Function Learning model, the length-scale λ , the exploration factor β , and
the temperature parameter τ of the softmax choice rule. We use the results from the model recovery
simulation described above, and correlate the empirically estimated parameters used to generate data
(i.e., the estimates based on participants’ data), with the parameter estimates of the recovering model
(i.e., the MLE from the cross-validation procedure on the simulated data). We assess whether the
recovered parameter estimates are similar to the parameters that were used to generated the underlying
data. We present parameter recovery results for the Function Learning Model for Experiment 1 and the
Function Learning* Model for Experiments 2 and 3, in all cases using the UCB sampling strategy. We
report the results in Supplementary Figure 3, with the generating parameter estimate on the x-axis and
the recovered parameter estimate on the y-axis. We report rank-correlation using Kendall’s tau (rτ),
which should not be confused with the temperature parameter τ of the softmax function. Additionally,
we calculate the Bayes Factor (BFτ) to quantify the evidence for the presence of a positive correlation
using non-informative, shifted, and scaled beta-priors as recommended by8.

For Experiment 1, the rank-correlation between the generating and the recovered length-scale λ is
rτ = .66, p < .001, BFτ > 100, the correlation between the generating and the recovered exploration
factor β is rτ = .30, p < .001, BFτ > 100, and the correlation between the generating and the recovered
softmax temperature parameter τ is rτ = .54, p < .001, BFτ > 100. For Experiment 2, the correlation
between the generating and the recovered λ is rτ = .77, p < .001, BFτ > 100, for β the correlation

9/24



Supplementary Figure 3. Parameter recovery. The generating parameter estimate is on the x-axis
and the recovered parameter estimate is on the y-axis. The generating parameter estimates are from
the cross-validated participant parameter estimates, which were used to simulate data. Recovered
parameter estimates are the result of the cross-validated model comparison on the simulated data.
While the cross-validation procedure yielded k estimates per participant, one for each round
(kExp1 = 16; kExp2 = kExp3 = 8), we show the median estimate per (simulated) participant. The
dashed line shows a linear regression on the data, with the rank correlation (Kendall’s tau) and
p-value shown above. For readability, colours represent the bivariate kernel density estimate, with red
indicating higher density. The axis limits are chosen based on 1.5× the IQR for the larger of the two
values (generating or recovered parameter estimates). Thus, some outliers are omitted from these
plots (2.3% in Exp. 1, 1.7% in Exp. 2, and 5.2% in Exp. 3) but all datapoints are used to calculate
the rank correlations.
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is rτ = .59, p < .001, BFτ > 100, and for τ the correlation is r =τ .61, p < .001, BFτ > 100. For
Experiment 3, the correlation between the generating and the recovered λ is rτ = .70, p < .001,
BFτ > 100, for β the correlation is rτ = .76, p < .001, BFτ > 100, and for τ the correlation is r = .79,
p < .001, BFτ > 100.

These results show that the rank-correlation between the generating and the recovered parameters
is very high for all experiments and for all parameters. Thus, we have strong evidence to support the
claim that the reported parameter estimates of the Function Learning Model (Supplementary Table 3)
are reliable, and therefore interpretable. Importantly, we find that estimates for β (exploration bonus)
and τ (softmax temperature) are indeed separately identifiable, providing evidence for the existence of a
directed exploration bonus9, as a separate phenomena from noisy, undirected exploration10 in our data.

Experimental conditions and model characteristics
To further assess how the experimental conditions influenced the model’s behaviour, we performed
Bayesian linear regressions of the experimental conditions onto the models’ predictive accuracy and
parameter estimates. To do so, we assumed a Gaussian prior on the coefficients, and an inverse Gamma
prior on the conditional error variance, while inference was performed via Gibbs sampling. The results
of these regressions are shown in Supplementary Table 1. Whereas the smoothness of the underlying
environments (in Experiments 1 and 2) had no effect on the model’s predictive accuracy and almost
no effect on parameter estimates (apart from a small effect on directed exploration in Experiment
1), participants in the Accumulation payoff condition showed decreased levels of directed exploration
(as captured by β ) in Experiment 1 and Experiment 3, and decreased levels of random exploration
in Experiment 3. Thus, our model seems to capture meaningful differences between the two reward
conditions in these two experiments.

Mismatched generalization
Generalized mismatch

A mismatch is defined as estimating a different level of spatial correlations (captured by the per par-
ticipant λ -estimates) than the ground truth in the environment. In the main text (Fig. 4), we report
a generalized Bayesian optimization simulation where we simulate every possible combination between
λ0 = {0.1,0.2, · · · ,1} and λ1 = {0.1,0.2, · · · ,1}, leading to 100 different combinations of student-
teacher scenarios. For each of these combinations, we sample a continuous bivariate target function
from a GP parameterized by λ0 and then use the Function Learning-UCB Model parameterized by λ1
to search for rewards. The exploration parameter β was set to 0.5 to resemble participant behaviour
(Supplementary Table 3). The input space was continuous between 0 and 1, i.e., any number between
0 and 1 could be chosen and GP-UCB was optimized (sometimes called the inner-optimization loop)
per step using NLOPT27 for non-linear optimization. It should be noted that instead of using a softmax
choice rule, the optimization method uses an argmax rule, since the former is not defined for contin-
uous input spaces. Additionally, since the interpretation of λ is always relative to the input range, a
length-scale of λ = 1 along the unit input range would be equivalent to λ = 10 in the x,y = [0,10]
input range of Experiments 2 and 3. Thus, this simulation represents a broad set of potential mismatch
alignments, while the use of continuous inputs extends the scope of the task to an infinite state space.

Experiments 1 and 2

In both Experiments 1 and 2, we found that participant λ -estimates were systematically lower than the
true value (λRough = 1 and λSmooth = 2), which can be interpreted as a tendency to undergeneralize com-
pared to the spatial correlation between rewards. In order to test how this tendency to undergeneralize
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Supplementary Table 1. Bayesian linear regression of experimental conditions on model
performance and parameter estimates.

Predictive Accuracy Generalization Exploration Bonus Temperature
R2 λ β τ

Experiment 1
Intercept 0.23 (0.18, 0.28) 0.71 (0.59, 0.84) 0.40 (0.33, 0.47) 0.02 (0.01, 0.02)
Smooth 0.02 (-0.03, 0.09) -0.07 (-0.22, 0.09) 0.09 (0.01, 0.18) 0.00 (-0.01, 0.01)
Accumulator 0.12 (0.05, 0.18) 0.03 (-0.13, 0.18) -0.10 (-0.19, -0.02) 0.00 (-0.01, 0.01)

Experiment 2
Intercept 0.33 (0.28, 0.37) 0.76 (0.69, 0.82) 0.50 (0.47, 0.53) 0.09 (0.08, 0.10)
Smooth 0.03 (-0.02, 0.08) 0.04 (-0.03, 0.06) 0.01 (-0.03, 0.04) 0.00 (-0.01, 0.01)
Accumulator 0.07 (0.01, 0.12) -0.01 (-0.08, 0.06) 0.00 (-0.04, 0.02) -0.01 (0.00, 0.01)

Experiment 3
Intercept 0.28 (0.24, 0.33) 0.64 (0.60, 0.69) 0.56 (0.49, 0.63) 0.11 (0.10, 0.12)
Accumulator 0.10 (0.03, 0.16) 0.06 (-0.01, 0.12) -0.15 (-0.24, -0.05) -0.03 (-0.04, -0.01)

Note: We use the Function Learning model for Experiment 1 and the localized Function Learning*
model for Experiment 2 and Experiment 3. Columns indicate dependent variable, whereas rows shows
independent variables’ regression coefficients including 95% posterior credible sets in brackets. Boldface
indicates estimates whose credible sets do not overlap with 0.

(i.e., underestimate λ ) influences task performance, we conducted two additional sets of simulations
using the exact experimental design for Experiments 1 and 2 (Supplementary Figure 4a-b). These sim-
ulations used different combinations of λ values in a teacher kernel (x-axis) to generate environments
and in a student kernel (y-axis), to simulate human search behaviour with the Function Learning Model.

Both teacher and student kernels were always RBF kernels, where the teacher kernel (used to
generate environments) was parameterized with a length-scale λ0 and the student kernel (used to
simulate search behaviour) with a length-scale λ1. For situations in which λ0 6= λ1, the assumptions of
the student can be seen as mismatched with the environment. The student overgeneralizes when λ1 > λ0
(Supplementary Figure 4a-b above the dotted line), and undergeneralizes when λ1 < λ0 (Supplementary
Figure 4a-b below the dotted line), as was captured by our behavioural data. We simulated each possible
combination of λ0 = {0.1,0.2, · · · ,3} and λ1 = {0.1,0.2, · · · ,3}, leading to 900 different combinations
of student-teacher scenarios. For each of these combinations, we sampled a target function from a GP
parameterized by λ0 and then used the Function Learning-UCB Model parameterized by λ1 to search
for rewards using the median parameter estimates for β and τ from the matching experiment (see
Supplementary Table 3).

Supplementary Figures 4a-b show the results of the Experiment 1 and Experiment 2 simulations,
where the colour of each tile shows the median reward obtained at the indicated trial number, for
each of the 100 replications using the specified teacher-student scenario. The first simulation assessed
mismatch in the univariate setting of Experiment 1 (Supplementary Figure 4a), using the median
participant estimates of both the softmax temperature parameter τ = 0.01 and the exploration parameter
β = 0.50 and simulating 100 replications for every combination between λ0 = {0.1,0.2, · · · ,3} and λ1 =
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{0.1,0.2, · · · ,3}. This simulation showed that it can be beneficial to undergeneralize (Supplementary
Figure 4a, area below the dotted line), in particular during the first five trials. Repeating the same
simulations for the bivariate setting of Experiment 2 (using the median participant estimates τ = 0.02
and β = 0.47), we found that undergeneralization can also be beneficial in a more complex two-
dimensional environment (Supplementary Figure 4b), at least in the early phases of learning. In general,
assumptions about the level of correlations in the environment (i.e., extent of generalization λ ) only
influence rewards in the short term, and can disappear over time once each option has been sufficiently
sampled11.

Experiment 3

Given the robust tendency to undergeneralize in Experiments 1 and 2 (where there was a true underlying
level of spatial correlation), we ran one last simulation to examine how adaptive participant λ estimates
were in the real-world datasets used in Experiment 3, compared to other possible λ values. Supple-
mentary Figure 4c shows the performance of different student λ values in the range {0.1,0.2, · · · ,3}
simulated over 10,000 replications sampled (with replacement) from the set of 20 natural environments.
Red lines show performance in terms of average cumulative reward (Accumulation criterion) and blue
lines show performance in terms of maximum reward (Maximization criterion). Vertical dashed lines
indicate the interquartile range of participant λ estimates. As student λ values increase, performance
by both metrics typically peaks within the range of human λ estimates, with performance largely staying
constant or decreasing for larger levels of λ (with the exception of average reward at t = 40). Thus,
we find that the extent of generalization observed in participants is generally adaptive to the real-world
environments they encountered. It should also be noted that higher levels of generalization beyond what
we observed in participant data have only marginal benefits, yet could potentially come with additional
computational costs (depending on how it is implemented). Recall that a λ of 1 corresponds to assum-
ing the correlation of rewards effectively decays to 0 for options with a distance greater than 3. If we
assume a computational implementation where information about uncorrelated options is disregarded
(e.g., in a sparse GP12), then the range of participant λ estimates could suggest a tendency towards
lower complexity and memory requirements, while sacrificing only marginal benefits in terms of either
average cumulative reward or maximum reward.

Natural Environments

The environments used in Experiment 3 were compiled from various agricultural datasets13–26 (Sup-
plementary Table 2), where payoffs correspond to normalized crop yield (by weight), and the rows and
columns of the 11x11 grid correspond to the rows and columns of a field. Because agricultural data is
naturally discretized into a grid, we did not need to interpolate or transform the data in any way (so
as not to introduce any additional assumptions), except for the normalization of payoffs in the range
[0,100], where 0 corresponds to the lowest yield and 100 corresponds to the largest yield. Note that as
in the other experiments, Gaussian noise was added to each observed payoff in the experiment.

In selecting datasets, we used three inclusion criteria. Firstly, the datasets needed to be at least as
large as our 11x11 grid. If the dataset was larger, we randomly sampled a 11x11 subsection from the
data. Secondly, to avoid datasets where payoffs were highly skewed (e.g., with the majority of payoffs
around 0 or around 100), we only included datasets where the median payoff was in the range [25,75].
Lastly, we required that the spatial autocorrelation of each environment (computed using Moran’s I)
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Supplementary Figure 4. Mismatched length-scale (λ ) simulation results. a-b) The teacher
length-scale λ0 is on the x-axis, the student length-scale λ1 is on the y-axis, and each panel represents
a different trial t. The teacher λ0 values were used to generate environments, while the student λ1
values were used to parameterize the Function Learning-UCB Model to simulate search performance.
The dotted lines show where λ0 = λ1 and mark the difference between undergeneralization and
overgeneralization, with points below the line indicating undergeneralization. Each tile of the
heat-map indicates the median reward obtained for that particular λ0-λ1-combination, aggregated over
100 replications. Triangles and circles indicate mean participant λ estimates from Rough and Smooth
conditions, with boxplots showing the interquartile range, the median (line), and 1.5x IQR (whiskers).
c) Simulations with student λ values in the range [0,3] over 10,000 samples (sampled with
replacement) from the set of 20 different natural environments. Red lines show average cumulative
reward and blue lines show the maximum reward. Vertical dashed lines show the interquartile range of
participant λ estimates.
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Supplementary Table 2. Agricultural datasets used in Experiment 3

Dataset Name
Spatial Autocorrelation

Crop Source
(Moran’s I)

batchelor.lemon.uniformity 0.053 Lemon 14

batchelor.navel1.uniformity 0.028 Navel Orange 14

batchelor.valencia.uniformity 0.098 Valencia Orange 14

draper.safflower.uniformity 0.075 Safflower 15

goulden.barley.uniformity 0.036 Barley 16

iyer.wheat.uniformity 0.047 Wheat 17

kalamkar.wheat.uniformity 0.004 Wheat (Yeoman II) 18

khin.rice.uniformity 0.011 Rice 19

kristensen.barley.uniformity 0.146 Barley 20

montgomery.wheat.uniformity 0.243 Wheat (Winter) 21

moore.polebean.uniformity 0.119 Blue Lake Pole Beans 22

moore.bushbean.uniformity 0.028 Bush Beans 22

moore.sweetcorn.uniformity 0.039 Sweet Corn 22

moore.carrots.uniformity 0.030 Carrots 22

moore.springcauliflower.uniformity 0.013 Spring Cauliflower 22

nonnecke.corn.uniformity 0.117 Sweet Corn 23

odland.soybean.uniformity 0.105 Soybean 24

odland.soyhay.uniformity 0.069 Soyhay 24

polson.safflower.uniformity 0.059 Safflower 25

stephens.sorghum.uniformity 0.043 Sorghum 26

be positive:

I =
N
W

∑i ∑ j wi j(xi− x̄)(x j− x̄)

∑i(xi− x̄)2 (20)

where N is the total number of samples (i.e., each of the 121 sections of land in a 11x11 grid), xi
is the normalized yield (i.e., payoff) for option i, x̄ is the mean payoff over all samples, and W is the
spatial weights matrix where wi j = 1 if i and j are the same or neighbouring samples and wi j = 0
otherwise. Moran’s I ranges between [−1,1] where intuitively I = −1 would resemble a checkerboard
pattern (with black and white tiles reflecting the highest and lowest values in the payoff spectrum),
indicating maximum difference between neighbouring samples. On the other hand, I→ 1 would reflect
a linear step function, with maximally high payoffs on one side of the environment and maximally low
payoffs on the other side. We included all environments where I > 0, indicating that there exists some
level of positive spatial correlation that could be used by participants to guide search.

Although the structure of rewards in real-world data can sometimes be distributed differently and
in particular more discretely (for example, imagine a bitmap or other structural patterns such as a
checkerboard or a crop circle), we believe that our environment inclusion criteria allow us to appropriately
model generalization using our pool of models, while at the same time extending the scope to more
complex and challenging natural structures.
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Additional Behavioural Analyses

Learning over trials and rounds

We assessed whether participants improved more strongly over trials or over rounds (Supplementary
Figure 5). If they improved more over trials, this means that they are indeed finding better and better
options, whereas if they are improving over rounds, this would also suggest some kind of meta-learning
as they would get better at the task the more rounds they have performed previously. To test this, we fit
a linear regression to every participant’s outcome individually, either only with trials or only with rounds
as the independent variable. Afterwards, we extract the mean standardized slopes for each participant
including their standard errors. Notice that these estimates are based on a linear regression, whereas
learning curves are probably non-linear. Thus, this method might underestimate the true underlying
effect of learning over time.

Results (from one-sample t-tests with µ0 = 0) show that participants’ scores improve significantly
over trials for Experiment 1 (t(80) = 5.57, p < .001, d = 0.6, 95% CI (0.2,1.1), BF > 100), Experiment
2 (t(79) = 2.78, p < .001, d = 0.31, 95% CI (−0.1,0.8), BF = 4.4), and Experiment 3 (t(79) = 5.91,
p< .001, d = 0.7, 95% CI (0.2,1.1), BF > 100). Over successive rounds, there was a negative influence
on performance in Experiment 1 (t(80) =−2.78, p = .007, d =−0.3, 95% CI (−0.7,0.1), BF = 4.3),
no difference in Experiment 2 (t(79) = 0.21, p = .834, d = 0.02, 95% CI (−0.4,0.5), BF = 0.1),
and a minor positive influence in Experiment 3 (t(79) = 2.16, p = .034, d = 0.2, 95% CI (−0.2,0.7),
BF = 1.1). Overall, participants robustly improved over trials in all experiments, with the largest effect
sizes found in Experiments 1 and 3. There was no improvement over rounds in all of the experiments,
suggesting that the four fully revealed example environments presented prior to the start of the task
was sufficient for familiarizing participants with the task.

Individual Learning Curves

To better understand why the aggregated participant learning curves sometimes decrease in average
reward over time, whereas the simulated model curves tend not to (Fig. 3b), we present individual
participant learning curves in Supplementary Figure 6. Here, we separate the behavioural data by
horizon (colour), payoff condition (rows), and environment (columns), where each line represents a
single participant. We report performance in terms of both average reward (top section: Accumulation
goal) and maximum reward (bottom section: Maximization goal).

The individual learning curves reveal two main causes for the decrease in reward over time when
aggregating over conditions and participants. Firstly, looking at the learning curves for participants
assigned to the Accumulation condition (Supplementary Figure 6 top row), we see that roughly half of
participants in the long search horizon (blue lines) show a decreasing trend at the midway point of the
round. However, the other half of participants continue to gain increasingly higher rewards, more like
the simulated learning curves of the Function Learning model in Figure 3b. This may be a by-product
of the alternating search horizon manipulation, since the curves typically tend to decrease near the trial
where a short horizon round would have ended, but also a tendency towards over-exploration that more
closely resembles the Maximization goal.

Secondly, in aggregating over conditions and participants, the performance of the Accumulation
and Maximization participants are averaged together. Whereas many Accumulation payoff condition
participants display more positively increasing average reward, these data points are washed out by the
Maximization payoff condition participants who tend to have flatter average reward curves in pursuit of
the global optimization goal.

Lastly, one additional insight from the individual learning curves comes from the flat-lined maximum
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Supplementary Figure 5. Learning over trials and rounds. Average correlational effect size of trial
and round on score per participant as assessed by a standardized linear regression. Participants are
ordered by effect size in decreasing order. Dashed lines indicate no effect. Red lines indicate average
effect size.

reward lines (Supplementary Figure 6, bottom section). Found more often in Accumulation participants,
these flat lines represent participants who have reached a satisfactory payoff and cease additional
exploration in order to exploit it. This is yet another behavioural signature of the payoff manipulations.

Experiment Instructions
Supplementary Figures 7-9 provide screenshots from each experiment, showing the instructions provided
to participants, separated by payoff condition. The top row of each figure shows the initial instructions,
while the bottom row shows a set of summarized instructions provided alongside the task. Links to
each of the experiments are also provided below.

• Experiment 1:
https://arc-vlab.mpib-berlin.mpg.de/wu/gridsearch1/experiment1.html

• Experiment 2:
https://arc-vlab.mpib-berlin.mpg.de/wu/gridsearch2/experiment2.html

• Experiment 3:
https://arc-vlab.mpib-berlin.mpg.de/wu/gridsearch3/experiment3.html
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Supplementary Figure 6. Individual participant learning curves. Each line represents a single
participant, separated by search horizon (colour), by payoff condition (rows), and environment
(columns). The top section shows performance in terms of average reward, while the bottom section
shows performance in terms of maximum reward.
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Supplementary Figure 7. Screenshots from Experiment 1. Accumulation condition on the left and
Maximization condition on the right. a) Initial instructions given to participants, followed by b)
summarized instructions provided alongside the task.
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Supplementary Figure 8. Screenshots from Experiment 2. Accumulation condition on the left and
Maximization condition on the right. a) Initial instructions given to participants, followed by b)
summarized instructions provided alongside the task.
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Supplementary Figure 9. Screenshots from Experiment 3. Accumulation condition on the left and
Maximization condition on the right. a) Initial instructions given to participants, followed by b)
summarized instructions provided alongside the task.
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