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ABSTRACT

Sensation seeking (SS) is the drive to pursue novel and intense experiences, often despite associated risks. Thus, it is
commonly assumed to reflect a heightened valuation of stimulation. Yet, intense experiences are also highly informative,
raising a key question: Does SS reflect a preference for intensity or for information/uncertainty? We address this in two studies.
In Experiment 1, we fit learning-based choice models to a prior dataset and found that an uncertainty-weighted account
explained behaviour better than a purely intensity-weighted account, with higher SS linked to reduced uncertainty aversion.
In a preregistered Experiment 2, we investigated the joint contribution of intensity and uncertainty. We demonstrate that SS
contributions are context-dependent: when stimulation was valued less, higher SS predicted greater uncertainty-tolerance (i.e.,
higher information-seeking). In contrast, when stimulation was highly valued, higher SS shifted toward uncertainty avoidance.
By contrast, impulsivity (IP) showed a distinct profile consistent with uncertainty aversion when stimulation was valued less.
These results reveal SS as a joint, context-dependent function of value and uncertainty processing, rather than a single process.
This framework reconciles how SS can support adaptive exploration in some settings yet promote maladaptive risk in others,
and it provides a mechanistic dissociation from impulsivity with implications for targeted intervention and developmental theory.

Introduction

Sensation seeking (SS) is a personality trait characterised by
a preference for “varied, novel, complex, and intense sensa-
tions and experiences,” often pursued with a disregard for
potential aversive consequences across physical, social, legal,
and financial domains!. This trait peaks during adolescence,
driving a range of exploratory and risky behaviours that are
both a hallmark of this developmental period3 and a signifi-
cant risk factor for maladaptive outcomes with high societal
costs®3. For instance, S8 is a robust predictor of the initiation

6,7 ..

of alcohol and substance use®™ ' and engagement in antisocial

behaviours®?.

However, SS is also linked to long-term adaptive outcomes,
including enhanced psychological well-being!? ! and forms
of “positive risk-taking”, such as social exploration and pursu-
ing challenging goals, which are developmentally normative
and beneficial!>!3. This paradox is mirrored at the neuro-
biological level, where dopamine (DA) systems, crucial for
processing incentive salience and reward learning, are fun-
damentally re-organised during adolescence, leading to in-
dividual differences in SS'°. High sensation seekers exhibit
distinct dopaminergic profiles, including elevated DA in the
caudate nucleus and attenuated DA turnover rates'’, yet the
precise cognitive mechanisms that channel this drive towards

functional or dysfunctional ends remain unclear.

An important difficulty is that SS is often conflated with
impulsivity (IP), as both traits are associated with risk-taking.
However, a wealth of evidence now supports a dual-process
model of adolescent risk-taking, which posits these are distinct
constructs subserved by dissociable neurocognitive systems
with divergent developmental timelines®2-22. S§ is thought
to be driven by the early-maturing, hyper-responsive socioe-
motional system, while IP reflects the relative immaturity of
the top-down cognitive control system. Empirically, the dis-
tinction is clear. SS and IP show only modest correlations and
are differentially associated with real-world behaviours?!:23.
For example, while SS predicts initial experimentation with
novel substances (i.e. alcohol, drugs), IP more strongly pre-
dicts an escalation to substance use disorders and difficulties
with sustained, goal-directed behaviour?*-26.

Thus, a critical gap remains in our understanding of how
these traits differentially shape decision-making under uncer-
tainty. In the lab, IP is often associated with poorer response
inhibition and with steeper delay discounting, reflecting a
stronger preference for smaller, immediate rewards”’’. SS,
by contrast, shows more robust associations with risk-taking
on gambling-like tasks such as the Balloon Analogue Risk
Task3?, with its links to classic inhibitory-control deficits be-
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Figure 1. (A) Task overview. In both experiments, participants completed a reward-learning phase followed by a stimulation
phase. In Exp. 1, participants first learned the reward payoffs of eight bandits until they reached a performance criterion. In the
test phase, four bandits were associated with stimulation and four with no stimulation; each trial paired a stimulation bandit
with a non-stimulation bandit. In Exp. 2, participants completed four rounds of the same two-phase structure (60 trials per
round) with six objects per round defined by crossing reward level with stimulation probability. Rewards were learned with full
feedback, then the same reward contingencies were tested under stimulation, with all object pairs presented repeatedly in
random order. (B) Stimulus sets. Exp. I used eight fractals parameterised by payoff (25/50/75/100) and stimulation assignment
(p =0 or 0.75); Exp. 2 used six Bank of Standardized Stimuli (BOSS)!® ! images parameterised by reward level (low/high)
and stimulation probability (0.15/0.50/0.85). (C) Sampling scheme. In Exp. 1, the limited probability set caused the stimulation

mean (green) and uncertainty (purple) to be correlated. Exp. 2 removed this confound by sampling a wider range of
probabilities, thereby orthogonalising intensity and uncertainty. (D) Computational model schematic: object utility (U)
depends on estimated reward (Rut) and contributions from stimulation mean (Su) weighted by 0, and uncertainty (So)
weighted by @, given observed payoffs and whether stimulation occurred. Object utilities are then passed through a softmax
controlled by temperature 7, which governs the stochasticity of the choice. These quantities are updated using the learning
rules described in the main text. BMT = Bayesian Mean Tracker; BLBB = Bayesian Learner Beta—Binomial.

ing weaker and less consistent, consistent with work suggest-
ing that sensation seeking is partly dissociable from executive
control®!. Despite these distinctions, few studies have directly
compared the cognitive processes underlying their influence
on exploratory choice. While dual-process models offer only
coarse-grained accounts of why adolescence is a period of
peak risk-taking, they provide less insight into the precise cog-
nitive mechanisms that differentiate how sensation seeking
and impulsivity operate during decision-making.

Here, we suggest that SS and IP can be more precisely
understood from the lens of exploratory behaviour. The
exploration-exploitation trade-off offers a powerful computa-
tional framework for understanding these underlying mecha-
nisms>>~> . In any new environment, an agent must balance
exploiting known options for a reliable reward against ex-
ploring uncertain alternatives to gather information that could

lead to better long-term outcomes. Excessive exploitation
leads to inflexibility, while excessive exploration can be costly
and dangerous. For adolescents, navigating this trade-off is a
core developmental task, as they must build a rich model of
the world to guide future decisions*®>’. The high-risk, high-
exploration signature of adolescence suggests this framework
is vital for mechanistically understanding traits like SS and
1P38’39.

This trait-exploration connection is supported by key find-
ings in developmental science. Adolescents are not globally
risk-averse; rather, they show a specific tolerance for ambigu-
ity. Compared to adults, they are more likely to make risky
choices when outcome probabilities are unknown, yet are sim-
ilarly risk-averse when probabilities are explicit*™*!. This
suggests that adolescent risk-taking is not a simple failure of
control, but may reflect a potent, information-seeking drive
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to reduce epistemic uncertainty about the environment. This
positions adolescence as a “developmental window” for ex-
ploration, where risky choices serve the adaptive function of
learning*?43. Correspondingly, a parallel increase in trait SS
during adolescence may reflect this epistemic drive®.

Thus, whether or not SS represents an epistemic drive has
been clouded by a fundamental confound: the experiences that
feel most intense also tend to be the most informative. Subjec-
tive intensity tracks surprise and contrast, while information
gain tracks prediction error and entropy reduction. Yet, both
peak when outcomes are uncertain, extreme, or high-contrast,
such that intensity and information co-occur. For example,
moving to an entirely foreign country is intense and yields
significant information gains about norms, language, and net-
works, whereas moving to a nearby town is of lower intensity
and typically less informative.

To move beyond traditional, intensity-centric accounts of
sensation seeking, we therefore need to separate the influence
of intensity and information. Traditional conceptualisations of
SS have largely emphasised heightened sensitivity to stimulus
intensity and reward magnitude®>-**. However, high-variance
options are both intensely stimulating and maximally uncer-
tain, thus making it difficult to disentangle a preference for
intensity from a preference for information®. Recent compu-
tational work has also begun to challenge the intensity-centric
view. Agent-based simulations demonstrate that a peak in
adolescent risk-taking can emerge simply from a drive to
learn efficiently in a changing world, without invoking any
special motivational changes or a “sensation-seeking” param-
eter’®, This suggests that an information-seeking drive may
be sufficient to explain SS-related behaviours. However, be-
havioural tasks that can rigorously and orthogonally disen-
tangle intensity-driven preferences from uncertainty-driven
exploration are critically lacking.

In this present study, we address this gap through a two-part
approach. In Experiment 1, we demonstrate that previous §S-
related behaviours can be better explained by an uncertainty
account rather than an intensity account. In Experiment 2,
we extended this work with a new, preregistered, web-based
experiment to demonstrate that greater uncertainty tolerance
in S8 is context-dependent, and that SS and IP show distinct
relationships with uncertainty. Together, these results propose
a novel mechanistic framework for SS that separates it from
superficially related risky behaviours, which have important
implications for developmental theory, personality psychol-

ogy, and psychiatry.

Results

We report our results in two parts. Exp. 1 reanalyses prior
data'® to adjudicate whether intensity or uncertainty better
accounts for SS-related behaviour. Exp. 2 extends our find-
ings and uses a preregistered*’, orthogonalised design to test
their joint and unique roles and to compare SS with IP using
behavioural and model-based analyses.

Exp. 1: Uncertainty Not Intensity Accounts For SS

We reanalysed the Norbury et al. (2015)'¢ dataset to investi-
gate whether SS is more closely related to responses to stim-
ulation intensity (expected probability, Su) or to stimulation
uncertainty (variance around that probability, So). Unlike the
original analysis, which assumed full and stable knowledge
of reward and stimulation outcomes for each choice, we fit
hierarchical generative Bayesian learning models (Bayesian
Learner Beta Binomial, BLBB; see Methods for details) that
updated beliefs about stimulation probability over trials.

Critically, because the original task design made intensity
and uncertainty highly correlated (Fig. 2C), we were unable to
estimate their interaction effects in a single model. We there-
fore compared a stimulation intensity learner (R — @) versus
a stimulation uncertainty learner (R — @), each assigning a
bonus on either learned intensity (Su) or uncertainty (So) val-
ues. We compare these Bayesian learning models alongside
the original full-knowledge model (Norbury 2015).

Bayesian model comparisons (Fig. 2A) favoured the R — @
(LOOIC: 6712) over R — 8 (LOOIC: 7673) and original
(LOOIC: 7476) alternatives, indicating that allowing uncer-
tainty to guide choice better captured behaviour in this de-
sign (see Methods for details on model specifications and fit-
ting). We found a similar association between SS and learned
stimulation probability (r = 0.3, p = .01; Fig. 2B), which
replicated the original correlation reported in Norbury 2015
using a model with full knowledge of stimulation probabilities
(Fig. 2C). However, in our winning model, we found a link
between the uncertainty weight, @, and SS scores (r = 0.27,
p = .03; Fig. 2D). Although the strength of this correlation
was similar to that found in the other two models for stimu-
lation intensity, the uncertainty-weighted learner provided a
better prediction fit based on relative LOO-IC. Furthermore,
@ estimates were negative on average, indicating that most
participants treated uncertainty as something to be avoided —
consistent with the fact that uncertainty was not informative
about reward in this task. However, the positive association
between @ and SS suggests that individuals with higher SS
showed less uncertainty avoidance. In other words, while
most participants discounted uncertain options, those high in
sensation seeking were more willing to sample them, reflect-
ing a greater tolerance for uncertainty even when it offered no
strategic benefit.

To further corroborate this result, we constructed a series
of logistic mixed-effects models to assess the impact of Sy
and So on the probability of choosing an option in a given
trial. We investigated how the probability of each choice was
influenced by the reward payoff (Ru) and either estimated
stimulation probability or stimulation uncertainty, including
interactions with SS scores. To account for individual vari-
ations, we included participant-specific random intercepts.
Ranking models by AIC, the best model was again R — o,
which used stimulation uncertainty and interaction with SS
scores (AIC: 6394.9; Fig. 2E), compared to the second-best-
fitting model, R — 6 (AIC: 7718.2).
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Figure 2. Experiment 1: re-analysis and model comparison. We re-analysed Norbury et al. (2015)'° to test whether sensation
seeking (SS) is better captured by an intensity account (weight on learned stimulation mean, 8) or an information account
(weight on learned stimulation uncertainty, @). A Beta—Bernoulli Bayesian learner provided trial-wise estimates of stimulation
probability and uncertainty; choices were fit with single-process utilities—intensity (R — 0) and uncertainty (R — @)—and
compared with the original Norbury model. (A) Out-of-sample predictive fit (LOO, relative to best) favoured R — @. (B)
Replicating the original intensity effect with our learner: SS correlated with 8 (p = 0.30, p = .014), though this was not the
best-fitting model. (C) Replication using the Norbury (2015) model with hierarchical Bayesian fitting (p = 0.31, p = .010).
(D) From the best-fitting model, SS also correlated with the uncertainty weight @ (p = 0.27, p = .029); because @ was
negative on average, higher SS implies greater tolerance for uncertainty. (E) Mixed-effects regression comparison (AIC):
models including stimulation uncertainty provided the best fit. We visualise the interaction of either stimulation mean (Su) or
uncertainty (So) with SS at £25D. (F) Su x SS interaction under the R — 6 model. (G) Sy x SS interaction under the Norbury
(2015) model. (H) So x SS interaction under the R — @ model. Note. Stimulation mean and uncertainty were collinear in this
design, so models were evaluated separately; a joint model is tested in Experiment 2, where these factors were orthogonalised.

We replicated the positive interaction between stimulation
intensity and S8 in our learning model R-6 (ﬁS,u 55 = 0.34,
p < .001; Fig. 2F), which was similar to that observed in
the Norbury mode (ﬁsfdemfry xss = 0.26, p < .001; Fig. 2F). In
both cases, high-8S individuals were more likely to select
options associated with stimulation, whereas low-S8 individu-
als tended to avoid them. In our winning model, R-, there
was a strong negative relationship between the probability
of selecting some choice A (over alternative B) and the dif-
ference in uncertainty (fss = —13.6, p < .001), indicating
that participants tended to avoid bandits with greater stimu-
lation uncertainty. However, this trend was less pronounced
among individuals with high SS tendencies (Bsgxss = 1.84,
p < .001), who exhibited flatter choice—uncertainty curves
(Fig. 2H).

In summary, our reanalysis of Norbury (2015) points to
a different interpretation of SS than the one originally pro-

posed. Whereas the original analyses framed SS primarily
as a general attraction to intense stimulation, our modelling
suggests that SS is better characterised by a reduced avoid-
ance of uncertainty— high SS individuals are more willing to
sample uncertain options, rather than simply being drawn to
stimulation per se. However, there are still limitations to this
dataset, because intensity and uncertainty were intrinsically
collinear. Thus, we designed Experiment 2 to orthogonalise
these two factors, allowing us to disentangle their unique and
interactive effects on SS.

Exp. 2: Context Dependent Uncertainty Tolerance

Experiment 2 (Fig. 1B) was a new, preregistered experiment*’
in which we removed the collinearity between stimulation in-
tensity (mean) and uncertainty (variance) that had constrained
interpretation in Experiment 1 (Fig. 1C). This allowed us
to ask, at the behavioural level, whether sensation seeking
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Figure 3. Experiment 2 Behavioural Results (A)
Pearson’s correlation between SSS-V and BIS-21 scores
(r=0.17,p < 0.001); the solid line is the fitted regression
with 95% CI. (B) Learning/performance curves for high- vs
low-trait groups (median split); shaded ribbons denote + SD
across participants. The trial sequence was grouped into bins
of 15 trials, corresponding to one full presentation cycle of all
object combinations. (C) Correlation of trait and
performance, indexed as the mean reward earned across
rounds. For SS, we see a negative correlation with
performance (r = —0.12, p = 0.005). For IP, we found no
significant association (r = —0.05, p = 0.25) (D) Correlation
of trait and average choice entropy (Shannon entropy of the
stimulus-choice distribution) across rounds, with higher
values indicating broader sampling. For SS, we observed a
positive association with choice entropy

(r =0.13,p = 0.004). On the other hand, we observed no
relationship with IP (r = 0.05,p = 0.29).

(SS) and impulsivity (IP) show distinct signatures before turn-
ing to model-based analyses. We collected behavioural and
questionnaire data from n = 619 Prolific participants. Based
on our two preregistered exclusion criteria, we removed 84
participants who failed at least one of the two instructional
manipulation checks (IMCs) and an additional 8 participants
who performed below chance (i.e., below 50% of the maxi-
mum score). Thus our final sample was n = 527 participants
(264 female; M. = 39.8 £13.0 years).

SS Show Greater Choice Variability

SS and IP were modestly positively correlated in our sam-
ple (r =0.17,p < 0.001; Fig. 3A), but they showed clearly
different relationships with behaviour. We first examined
task performance and learning dynamics as the mean reward

within 15-trial bins, chosen because each bin contains all
pairwise stimulus combinations. Using a regression of perfor-
mance on trial bin and SS, we found a clear effect of learning
(Bpin = —0.75, p < 0.001) and lower overall reward in high-
vs. low-S8 participants (855 = —0.11, p = 0.005; Fig. 3C).
Learning curves (Fig. 3B) indicated that this disadvantage was
already present in early bins and widened, particularly from
the start of phase 2. However, we did not find a significant
interaction between SS x bin (Bssxpin = —0.04, p = 0.19),
consistent with a relatively stable performance gap rather than
diverging learning curves. IP groups did not differ reliably in
performance in these analyses. Follow-up correlations with
overall performance (Fig. 3C) showed a negative relationship
with 88 (r = —0.12, p < 0.01) but again no relationship with
IP (r = —0.05, p = 0.25).

Next, we tested whether SS was associated with broader,
high entropy sampling (Fig. 3D).*>%%*7, We computed the
Shannon entropy over choices, which positively correlated
with 8§ scores (Pearson's r = 0.13, p = 0.004). Thus, high-
SS participants displayed more diffuse, exploratory choice
behaviour. In contrast, IP scores did not significantly correlate
with choice entropy (r = 0.05, p = 0.29), suggesting that this
exploratory profile was specific to SS.

We next asked whether the SS-specific behavioural signa-
tures could be explained by reduced task engagement, bore-
dom, or fatigue. Round-wise performance improved across
the session (consistent with practice effects), but high-SS
participants performed worse overall, and neither SS nor IP
altered the trajectory of this improvement (Fig. S2). This
pattern suggests that accumulating fatigue or disengagement
is not the primary driver of $S-related performance costs.

To rule out a speed—accuracy account, we examined log
reaction times (RTs) within trial bins (Fig. S3). RTs decreased
over time, indicating increasing efficiency, but SS was un-
related to both overall response speed and the rate of RT
change. IP also showed no reliable association with mean
RTs; although there was a small interaction with trial bin,
this modulation of RT dynamics was not accompanied by any
differences in accuracy or reward. Thus, neither trait effect
can be explained by a systematic speed—accuracy trade-off.

Finally, we examined omission rates as an index of atten-
tion lapses (Fig. S4). High-SS, but not high-IP, participants
missed more trials, and higher omission rates were associated
with poorer performance. Crucially, SS remained a negative
predictor of performance even after statistically controlling for
omission rate, indicating that reduced engagement contributes
to, but does not fully account for, the SS-related performance
deficit.

Taken together, high-SS is characterised by more variable,
exploratory choice behaviour (higher entropy) and a modest
but reliable performance cost that cannot be attributed solely
to fatigue, global disengagement, or speed—accuracy trade-
offs, even though high-SS individuals show slightly elevated
omission rates. In contrast, IP does not show the same profile.
These behavioural results thus provide a focused, trait-specific
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foundation for the subsequent model-based analyses.

Distinct Trait Signatures in Choice Behaviour

We then asked what computational features underpinned the
higher choice variability observed in high-SS participants.
Using our learning models of reward (Bayesian Mean Tracker;
BMT) and stimulation (Bayesian Learner Beta—Binomial;
BLBB), we derived trial-by-trial predictors of reward mean
(Ru) and reward uncertainty (Ro) (Fig. 4A, left), as well
as stimulation mean (Su) and stimulation uncertainty (So)
(Fig. 4A, right).

We first compared two formulations of stickiness using AIC
scores: a model with motor perseveration (previous response
side) (AIC = 141135.4), which outperformed the stimulus per-
severation (previous chosen bandit) model (AIC = 141098),
which we had preregistered (Table S1). Therefore, subse-
quent analyses used the better motor perseveration model,
which revealed a significant effect of motor perseveration
(ﬁsrfcky =0.015, p = 0.03).

We then entered these trial-level predictors into a mixed-
effects logistic regression (Fig. 4B—H). Reward uncertainty
Ro was not included as a predictor, as it was experimentally
controlled by providing full feedback of reward payoffs on
every trial. Choices were modelled as a function of the dif-
ference (denoted A) in expected reward (ARu), stimulation
mean (ASy), stimulation uncertainty (AS ), and a motor stick-
iness term, with participant-specific random intercepts and
random slopes for ARu. As preregistered, participant choices
reliably tracked value and avoided uncertainty: larger ARu
increased the odds of choosing right (Bg, = 3.38,p < 0.001),
whereas larger ASo decreased it (Bsg = —2.32,p < 0.001).
The stimulation mean was trending towards significance
(Bsu = 0.06, p = 0.058) in the expected direction (Fig. 4H).

We then tested whether SS and IP traits modulate these com-
putational signals by interacting with ARy and ASc, while
also including the motor stickiness term (with all two- and
three-way terms). Mirroring behavioural patterns, SS reduced
reward sensitivity (Bssxry = —0.3, p = 0.003; Fig. 4B), but
not for IP (Brpxry = —0.05, p = 0.60; Fig. 4C). Both traits
also modulated motor perseveration in the same direction
(Bssxsticky = —0.02,p = 0.02; Bypysiicy = —0-12, p = 0.01),
suggesting that higher SS and higher IP each dampen value-
free side-repetition once reward value and stimulation uncer-
tainty are accounted for (Fig. 4D, E).

Crucially, and consistent with Exp. 1 and our preregis-
tration, SS was associated with less uncertainty aversion:
higher SS weakened the negative impact of stimulation un-
certainty on choice (Bssxs6 = 0.12, p = .03; Fig. 4F). In con-
trast, IP showed the opposite pattern, being associated with
greater avoidance of stimulation uncertainty (f;px 56 = —0.13,
p = .02; Fig. 4G).

We also observed a three-way interaction between ASc
and both SS and IP traits (Bssxipxse = 0.14,p = 0.01). To
interpret this three-way interaction, we plotted the conditional
slopes of ASc across the observed SS and IP space (Fig. 4])
Here, we observe how the ASc slope becomes less negative as

S8 increases, but more negative as [P increases. The strongest
levels of uncertainty aversion are thus observed at low SS and
high IP (top-left corner), while for individuals high in both
SS and IP (top-right corner), the effect of AS¢ on choice is
close to zero and not reliably different from zero, indicating
that uncertainty no longer systematically deters choice in this

subgroup.

Trait Dissociation Based on an Interaction of Infor-
mation and Intensity

We then fit a hierarchical, generative Bayesian choice model
that decomposes trial-wise decisions into Ry, Sy, So, and
a motor—stickiness. This yielded subject-level parameters 6
(bonus on Su), @ (bonus on So), p (stickiness bonus), and T
(softmax temperature; choice stochasticity). Model compari-
son indicated that the full specification (reward, stimulation
mean, stimulation uncertainty, and motor stickiness) outper-
formed reduced alternatives (Fig. 5A; see Methods).

Using subject-specific posterior estimates (Fig. 5B), we
computed partial Pearson correlations between traits and
model parameters while controlling for IP, age, 1Q, and gen-
der. Contrary to our preregistered prediction, SS was not sig-
nificantly associated with @ (rg5_,, = —0.08, p = 0.07), but
positively correlated with T (rgg_joe(7) = —0.13,p = 0.003;
Fig. 5C), consistent with higher choice randomness among
high-SS participants. No [P-parameter associations reached
significance (all p > 0.21).

Motivated by the moderation pattern observed (Fig. 4I), we
tested if SS/IP may also depend on a combination of mecha-
nisms. To achieve this, we regressed our model parameters
and their interactions, adjusting for covariates, on our traits
of interest (Fig. 5D). We observed that SS remained posi-
tively associated with choice stochasticity (8 = 0.12, p=.01).
More critically, we observed a negative 8 x @ interaction
(B = —0.19, p = .003). A Johnson-Neyman*®4° (J-N) analy-
sis (Fig. 5E) into the interaction restricted within our observed
moderator range (—3.67 < 8, < 3.46) showed that the con-
ditional slopes of @ on SS was positive when 8, < —1.01
but negative when 8, > —0.36. Thus, uncertainty tolerance
corresponds to higher SS when stimulation value weighting
is low, whereas greater uncertainty aversion relates to higher
SS when the weighting of stimulation value is high. These
patterns support a mixed account in which SS reflects reduced
uncertainty aversion when stimulation is valued less than aver-
age, but increased intolerance to uncertainty when stimulation
is strongly valued. We then applied the same model to IP. Al-
though no main effects of the HB parameters emerged, there
was a positive 8 x @ interaction (f = 0.15, p = .02); J-N
analysis indicated that the conditional slope of @ on IP was
significantly negative when 6, < —0.24.

Together, these results suggest a mechanistic dissociation
between SS and IP, driven by an interplay between stimulation
value and uncertainty weighting. Intuitively, the association
between SS and uncertainty weighting is context-dependent:
when stimulation carries relatively little value (low 8), higher
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Figure 4. Model predictors, trait interactions, and fixed-effect estimates for the choice model. (A) Scaled time courses of

model-derived predictors across a block: reward mean (Ru), reward uncertainty (Ro), stimulation mean (Su), and stimulation
uncertainty (So) for one example participant. (B, C) Predicted P(choice=Right) as a function of ARy at +2SD of Sensation
Seeking (SS) and Impulsivity (IP), respectively; ribbons show 95% Cls and the red dashed line marks P = 0.5. (D, E) Motor
stickiness x SS and motor stickiness x IP effects on choice. (F, G) ASo (stimulation uncertainty) x SS and ASc x IP effects
on choice. Insets in panels (B-G) display the corresponding fixed-effect coefficients (f) with 95% Cls. (H) Forest plot of fixed
effects for the full GLMM (points: f3; bars: 95% CIs). (I) Conditional effect (slope) of ASo on P(choice=Right) as a function

of SS and IP (Johnson—-Neyman-style surface).

S8 is linked to greater tolerance of uncertainty; when stimula-
tion is highly valued (high 8), higher SS instead corresponds
to greater avoidance of stimulation uncertainty. For IP, in con-
trast, higher trait levels are primarily associated with increased
aversion to stimulation uncertainty when stimulation value
weighting is low, without a comparable reversal at higher 6.

Discussion

S8 is often framed as a tendency to pursue intense stimulation,
yet high-intensity options can also be especially informative.
We therefore tested, across two experiments, whether SS re-
flects a preference for stimulation intensity (the estimated

mean probability of receiving stimulation) or for uncertainty
(variance around that probability) and how it can be distin-
guished from IP. In both datasets, participants integrated ex-
pected payoff, intensity, and uncertainty when making de-
cisions. However, SS scores did not consistently increase
the weight placed on intensity or uncertainty across experi-
ments. In other words, higher S8 did not reliably pull people
toward more intense or more uncertain options. Instead, SS-
related differences appeared when intensity and uncertainty
interacted.

In Experiment 1, participants with high SS scores were
less averse to stimulation uncertainty. When the estimated
probability of stimulation was poorly specified, they sampled
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Figure 5. Hierarchical Bayesian Modelling results. (A) Model comparison with reduced versions of our full model, as well as
an alternative version of stickiness, which is based on stimulus identity. We find that our full model specification, which
includes a motor stickiness bonus, best accounts for individual differences in choice behaviour. (B) Distribution of model

posterior estimates. (C) Partial correlation of sensation seeking (SS) with temperature log(7) after controlling for impulsivity
(IP), age, IQ and gender. We observed a positive association (pss_ioe(r) = —0.13, p = 0.003), suggesting that higher SS is
associated with a global increase in choice stochasticity or random exploration. (D) Regression coefficients predicting traits as
interactions between computational parameters controlling for various correlates. We observe that SS is significantly predicted
by increasing temperature, as well as a negative interaction between intensity 8 and information @ accounts (boxed).
Conversely, IP is only predicted by a pesitive interaction between 6 and @. This highlights a mechanistic dissociation between
the two traits. All predictors were z-scored before analysis. (E) Johnson-Neyman fanplots of the 8 x @ interaction. Conditional
slopes of @ against traits within the observed range of moderator 8. Bold solid lines indicate statistically significant
relationships (p < 0.05), while dotted lines did not reach significance. Dots are raw subject points. We observed that IP is
associated with a decrease in @ at below-average values of 8. Conversely, SS is associated with increasing values of @ at below
average values of 6, but decreasing @ at above average values of 6.

those options more often. In our preregistered Exp. 243, SS
was associated with greater choice stochasticity and a negative
0 — o interaction. The relation between SS and uncertainty
depended on how strongly a person weighted intensity. When
stimulation carried low subjective value (smaller 8), higher
SS predicted greater tolerance for uncertainty— more sam-
pling of unpredictable options. When stimulation carried high
subjective value (larger ), higher SS predicted lower tol-
erance for uncertainty—choices shifted toward predictable
options. In short, 8§ is neither purely “intensity-seeking”
nor purely “information-seeking”. It is context-dependent:
when stimulation matters less, SS expresses as uncertainty-
tolerant exploration; when stimulation matters more, SS ex-
presses as exploitation. This pattern aligns with computational

work demonstrating that humans employ a mix of directed
(information-seeking) and random (stochastic) exploration
strategies, and that the balance between them shifts in re-
sponse to goals and context’®!,

This context dependence helps reconcile mixed findings
in the broader literature, with SS linked to both beneficial
outcomes (e.g., novelty seeking that supports learning, explo-
ration, and well-being) and harmful outcomes (e.g., substance
use and risky behaviour)®%9-11.52.33 Qur results offer a prin-
cipled account of this duality: when the environment carries
lower subjective stimulation value, SS may facilitate adaptive
information-gathering; but when stimulation is highly valued,
SS can tip behaviour towards exploitation of intense options,
increasing the risk of maladaptive pursuits.
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Having established the SS profile, we next asked whether
IP shows the same pattern. IP instead showed a dissocia-
ble profile. Contrary to previous reports that IP generally
manifests as noisier, more random choice??, we observed no
robust increases in value-free stochasticity or reliable perfor-
mance decrements as a function of IP in this task. Instead,
participants with high IP scores biased choices away from
uncertainty, especially when stimulation had low subjective
value. One interpretation is that the exploration signature of
IP depends on what is uncertain: prior links between IP and
value-free randomness come from reward-only or affectively
neutral sampling tasks3*3*35 whereas here the uncertainty
concerned the probability and intensity of stimulation itself. In
such contexts, uncertainty-averse policies may dominate. In-
dependent evidence shows that aversive or affect-laden states
suppress directed exploration and promote uncertainty avoid-
ance’®37. We neither manipulated affect nor could test for
IP-affect interactions; thus, whether affect moderates the in-
fluence of impulsivity on uncertainty weighting remains open.
Future work should orthogonally manipulate the outcome do-
main (reward vs. stimulation) and affect to test this mechanism
directly.

Collectively, our findings point to a mechanistic dissocia-
tion between SS and IP. This pattern is consistent with broader
developmental and personality frameworks that distinguish SS
from IP by emphasising distinct neurocognitive systems for
incentive responsiveness (SS) versus control and constraint
(IP)IO‘ 58-60

Limitations and Future Directions

Several limitations should be considered. First, Experiment
1's design confounded stimulation intensity and uncertainty,
so those results—while suggestive—required the orthogonali-
sation we implemented in Experiment 2. Second, although we
used a neutral visual stimulation, subjective valence/arousal
likely varies across individuals and may be an unmodeled
contributor to 8; future studies should manipulate valence and
arousal across different modalities of sensory stimulation to
concretely test whether SS shifts along the 6 — @ surface as

affective engagement changes®!.

Despite these limitations, our framework yields concrete
predictions and translational applications. Experimentally,
increasing the subjective value of stimulation (e.g., making
it more pleasant or goal-relevant) should shift high-SS par-
ticipants toward stronger exploitation, whereas decreasing its
value should encourage exploration. The gambling literature
offers a robust parallel: in slot machines, salient audiovisual
cues increase subjective reward value and predict immersion
scores®2, which can bias choices toward riskier, more exploita-
tive policies® %, Structural features such as “Losses Dis-
guised as Wins" and near-misses mimic wins, elevate arousal,
and increase persistence despite negative expected value®>~",
In our terms, such cues and situations raise 8, pushing high-
SS decision policies toward exploitation of intense options.
This dovetails with our findings and points to practical levers:

reducing cue salience (attenuating sound/light intensity and
neutralising win animations) to lower 8, and increasing usable
information (transparent odds/volatility displays), thereby re-
exposing exploration and dampening exploitative momentum
among high-SS individuals.

By making the context dependence explicit and separating
stimulation value from stimulation uncertainty, our results
offer a mechanistic account of how the same trait can under-
write both beneficial and harmful outcomes, and a roadmap
for tipping the balance toward the former.

Methods

Participants
In Experiment 1, we reanalysed a dataset previously collected
by Norbury et al.'®. Below, we provide a brief overview
of the task design and participant demographics; further de-
tails are available in the original publication. Norbury et
al. (2015)!6 reported two datasets. Dataset 1 recruited 45
healthy adults (28 female; Mz = 24.3 £3.55 years). Fol-
lowing behavioural quality checks, 3 participants were ex-
cluded; sensation-seeking scores were not recorded for 6
participants, leaving n = 39 with complete trait data for re-
analysis. Dataset 2 (pharmacological) recruited 30 healthy
males (Myge = 22.3 +2.74 years); 2 were excluded in the
original report, yielding n = 28. To increase sensitivity for
behavioural analyses, we pooled data from both datasets, leav-
ing 73 subjects for reanalysis. All participants completed the
revised version of the Sensation-Seeking Scale (SS8-V)*&: 71
Experiment 2 was preregistered under https://doi.
org/10.17605/0SF.I0/H4P3T. A total of 619 partic-
ipants were recruited via Prolific. Inclusion criteria were
residency in the United Kingdom or the United States and
an approval rate of minimum 95% on the platform. From
our recruited sample, 84 subjects failed IMC and 5 subjects
performed below chance. After exclusion, our final sample
consisted of 530 subjects. They were paid a base fee of £5,
with an additional bonus of up to £5 calculated based on the
performance of one randomly selected round. All participants
were above 18 years and from the UK/US. The study was
approved by the Ethics Committee of the University of Tiibin-
gen, and all procedures were conducted in accordance with
relevant guidelines and regulations. Informed consent was
obtained from all participants prior to participation.

Study Design

Experiment 1

Participants completed a two-phase, two-armed bandit task de-
signed to measure the value assigned to stimulation. Here, sen-
sory stimulation was a mild, non-aversive electric stimulation
delivered to the hand. The task comprised a reward-learning
phase followed by a test phase with stimulation. During re-
ward learning, participants learned the point values associated
with eight bandits. Two bandits were assigned to each of
four fixed payoffs (25, 50, 75, or 100 points). On every trial,
two bandits were presented side by side, and one choice was
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required; this pairing scheme produced 10 unique pair types
(combinatorial pairs of the four payoffs, with two exemplars
per payoff). The phase continued for a minimum of 80 trials
and progressed until a pre-specified performance criterion was
met, ensuring adequate learning of the reward structure prior
to the introduction of stimulation.

In the subsequent test phase, half of the bandits were des-
ignated stimulation-paired (probability of stimulation = 0.75)
and half non-stimulation (probability = 0). Each test trial
paired one stimulation-paired bandit with one non-stimulation
bandit, yielding three payoff scenarios in equal proportion:
the stimulation-paired bandit offered a higher, lower, or equal
point payoff relative to its partner. Participants completed 100
test trials (10 per trial type), allowing us to estimate prefer-
ences for stimulation-paired options conditional on relative
monetary value. Prior to any task exposure, participants pro-
vided liking ratings for each bandit on a continuous visual
analogue scale. Identical ratings were collected again after
reward learning and after the test phase. The change from
post-learning to post-test indexed overall stimulation liking at
the end of the experiment.

Experiment 2

Participants completed four rounds of a web-based adapta-
tion of the operant sensation task'® 72, Similarly, each round
consists of Phase 1 (reward learning) and Phase 2 (test with
stimulation), totalling 60 trials per round (30 trials per phase).
In this paradigm, participants could self-administer visual
stimulation (a coloured spinning animation; 1.4s) while en-
gaging in a two-armed bandit task. On every trial, participants
had up to 6 seconds to respond; non-responses were recorded
as missed trials. Before proceeding with the main task, partic-
ipants provided informed consent, read on-screen instructions,
and completed four comprehension questions; all questions
had to be answered correctly to proceed.

At the start of each round, we sampled six object images
from the Bank of Standardized Stimuli (BOSS)!3 1% and as-
signed two orthogonal parameters to each object. First, an
unscaled reward level that is high (N ~ (10,2.5)) vs. low
(N ~ (—10,2.5)) and a stimulation probability (0.15, 0.50,
or 0.85). Assignments were fixed within a round and bal-
anced so that across the six objects, the reward factor and
stimulation-probability factor were independent by design,
enabling separate identification of effects due to stimulation
mean (intensity) and stimulation uncertainty (variance). Phase
1 (reward learning) was explicitly structured to minimise epis-
temic sampling for reward: on each of 30 trials, participants
chose between two of the six objects and then received full
feedback—the realised reward for the chosen and the uncho-
sen object—expediting belief formation about object values.
Phase 2 (test with stimulation here termed "glitch") introduced
stimulation while keeping the learned reward contingencies
unchanged. On each of 30 trials, the visual stimulation was
delivered on the chosen object with its assigned probabil-
ity (0.15, 0.50, or 0.85). Participants were reminded at the
transition that stimulation does not influence rewards, which

remained governed solely by the Phase-1 reward structure.
Within each round, we pre-generated all 15 unique object
pairs (6 choose 2) and presented each pair exactly four times,
yielding 60 trials. The order of pair presentation and left/right
positions was independently randomised for each participant
across trials. This scheme ensured that each object appeared
in a comparable number of pairings, preserved an identical
pairing structure across participants (with only trial order ran-
domised), and controlled for spatial biases.

We applied a random scaling of rewards across rounds
(i.e., different minimum and maximum rewards) to prevent
participants from immediately recognising when they had
chosen the optimal option. For each round, we sampled a
value from a uniform distribution U ~ (1,5), which scaled
the rewards after shifting the rewards by a constant value of
10. We also truncated rewards to ensure they were always
non-negative. In order to convey intuitions about the random
scaling of rewards, payoffs were presented using a different
fictional currency in each round, such that the absolute value
was unknown, but higher payoffs were always better.

payoff = (rawScore + 10) s, s~U(1,5). (1)

Following each round, participants provided subjective rat-
ings of stimulation valence (unpleasant-pleasant) and arousal
(sleepy-wakeful) on Likert scales [0-100]. The task was de-
livered online with standard display instructions (full-screen
mode encouraged); responses were collected via keyboard,
and reaction times were recorded on each trial. Prior to main
analyses, we implemented preregistered quality controls (in-
structional manipulation checks and basic performance crite-
ria) and excluded participants who failed checks or performed
at/below chance (further details in the Participants and Data
Quality section).

Psychiatric Questionnaires

After completing the task, participants completed several ques-
tionnaires assessing psychiatric dimensions and general cogni-
tive ability. These include the Sensation Seeking Scale V>5:7!
(SSS-V), Barratt Impulsiveness Scale” (BIS-11), Depres-
sion Anxiety and Stress Scale 217 (DASS-21), Obsessional
Compulsive Inventory — Revised” (OCI-R), Alcohol Use Dis-
orders Identification Test’® (AUDIT), Drug Abuse Screening
Test”’ (DAST-10), and the International Cognitive Ability
Resource’® (ICAR-16). To ensure data quality, instructional
manipulation checks” (IMCs) were included as attentional
checks. Participants failing any one of these IMCs were ex-
cluded from the analysis.

Statistical Analysis

Analyses were conducted in R (version 4.4.1) using RStu-
dio. Hierarchical generative modelling was carried out with
rstan (version 2.32.6). Mixed-effects regressions were per-
formed using 1me4 (version 1.1-35.5). Regression model
comparisons were conducted with the per formance pack-
age (version 0.15.0). Johnson—-Neyman interaction analyses
were conducted using emmeans (version 1.10.4).
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Data Validation and Exclusion Criteria

Our preregistration specified excluding participants who
achieved less than 50% of the total maximum score. We
adopted a more stringent, theory-driven criterion that targets
learning directly. Because participants were expected to have
fully learned the reward contingencies by the end of Phase
1, we evaluated performance in Phase 1 only and excluded
participants who scored < 50% of the Phase-1 maximum (op-
erationalised as the sum, over trials, of the higher of the two
available outcomes on each trial). This approach provides a
more targeted measure of contingency learning, consistent
with our models’ assumption that reward contingencies are
fully learned and stabilised by the end of Phase 1. Addition-
ally, we excluded participants who failed the instructional
manipulation checks (IMCs) in the questionnaires and those
with missing questionnaire data due to technical issues.

Computational Modeling

We model trialwise choices as the integration of three compo-
nents: (1) expected point payoff, (i) Beliefs about stimulation
(its mean and uncertainty) and (iii) a value-free tendency to
repeat either the previous button pressed (motor stickiness) or
the previous bandit selected (bandit stickiness). Beliefs about
expected payoff and stimulation are updated by learning rules
elaborated below.

Reward Learning (Bayesian Mean Tracker. In Experi-
ment 1, rewards were fixed after a training phase, so object
payoff values Ry1; are treated as known constants (no trialwise
updating). In contrast, the reward payoffs in Experiment 2
were Gaussian but stationary. To capture participants’ evolv-
ing expectations in this environment, we employed a Bayesian
Mean Tracker (BMT)®%32  a type of Kalman filter specifically
designed for stationary reward settings. Briefly, for each ban-
dit j we track a normal posterior:

P(RW;| %) = A (RW;., RO} ) (2)

The posterior mean Ry, and variance Ro;, are updated
iteratively based on observed rewards y,. In our experiment
setup, the posterior is updated for both chosen and unchosen
bandits due to complete feedback.

Ruj; =Rujs—1+Gjy [ye —Rij—1] 3)
RGJ'J - [1 - GJ,I]RGJ',I—I (4)

Here, the Kalman Gain G;; modulates the size of each
update and is calculated as:

Roj,
= a (5)
RG;‘,:—I + ‘:s
The parameter (;82 represents the error variance, controlling
the model’s sensitivity to new information. Lower values of
{? result in larger updates and faster uncertainty reduction.

Thus, the BMT offers a flexible, uncertainty-aware framework
for modelling learning in environments with stationary reward
distributions.

Stimulation Learning. We implemented a Bayesian model
that assumes stimulation probabilities for each object j are
represented as beta distributions. This approach is most ap-
propriate for learning probabilities since the distribution is
between 0 and 1, and the variance estimates uncertainty. Sim-
ilar models have previously been used to model value-based
learning® and aversive learning tasks®* 8,

Pj¢(stim) ~ Beta(ajs, Bj ) (6)

Intuitively, the model describes how the evidence for stim-
ulation depends on the number of stimulations previously
observed. These counts can be represented for each bandit by
the parameter ¢;, which is incremented depending on whether
a stimulation is observed (S, = 1). Similarly, the counts
of no stimulation (§;; = 0) are tracked by a complementary
parameter ;. For simplicity, we assume optimal updating,
where o and 8 are updated by a value of 1 after observing the
respective outcome:

Oyl = O +Sj, (N

)6;":+l = ﬁj,r+(1_s;',:} (8)
The expected probability of stimulation Su for bandit j at trial
tis:
{IJ':I

Spj = ——"—— 9
Bt = o+ B )
and the associated uncertainty So is:
;B
SO". — J T, (10)
o \/(“;',! +Bja) (@ + Bje +1)

Value-free stickiness. We compare two value-free perse-
veration effects, added outside the temperature scaling: motor
(repeat the previous button, p,,) and stimulus (repeat the pre-
vious object identity, py).

Given a,_; € {L,R} as the previous action and o,_; the
previously chosen object (s0 0,1 = 0;—1(a—1)).

(11)

p(a) =Ta=a,1],
pila)=1 (12)

(a [oi(a) = 01-1],

with p;(a) = 0 on the first trial. Intuitively, this assigns a
bonus to either the button side that was chosen or the bandit
that was chosen on the preceding trial.

Decision Rule. Q-values for each bandit j were calculated
as a linear sum of their estimated underlying point payoff Ru;
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and either the estimated mean probability of stimulation, Sgt;,
scaled by free parameter 8, or the associated uncertainty So;,
scaled by free parameter @.

Ruj,+ 0S8y, + wScj,
T

Qi = +Pjs (13)

Given bandits A and B, the utility values are then put
through a softmax:

eQA

e 4 08 (14

P(choice, = A) =

For brevity, the full model(R — 8 @p) is described as above.
We also compared reduced versions of the model via model
ablation. In Experiment 1, we compared single-process mod-
els against each other, i.e., R — @ and R — o, respectively (See
SI for more details on reduced models).

Mixed Effect Regressions

We quantified how reward and stimulation signals shaped
choice using trial-level mixed-effects logistic regression. For
each trial, we constructed difference predictors as right minus
left model estimates (differences are denoted by A): expected
reward (ARU), stimulation mean (ASp), and stimulation un-
certainty (ASo). Trials with no response were excluded. All
continuous predictors and trait scores were z-scored. Our pre-
registered primary model predicted the probability of choosing
the right option with a logit link, including fixed effects of
ARu, ASu, and ASo, and a random intercept and random
AR slope by participant, which allowed value sensitivity to
vary across individuals:

Pr(choice;; = Right) ~ AR;, + ASp;, + ASo;, + Sticky; ,
+ (14 ARp; | Subject;).

We also evaluated the two alternative versions of stickiness
as mentioned above and compared them using AIC/BIC. The
final trait-moderation analyses retained the preregistered value
and stimulation predictors, with motor stickiness (Table S1).

To further test whether traits modulate these computational
signals, we added cross-level interactions with SS and IP,
entered as z-scores. All lower-order terms were included.

Models were fitin 1me4 : : glmer (binomial family, logit
link); convergence and singularity were checked. We report
the B coefficients with 95% ClIs, and compared random-
effects structures and fixed-effect subsets using AIC and
likelihood-ratio tests where appropriate. Model diagnostics in-
cluded overdispersion checks and DHARMa residual simula-
tions. For statistically significant higher-order interactions, we
probed simple slopes (estimated marginal trends) at represen-
tative moderator levels and, where relevant, Johnson-Neyman
regions restricted to the observed range of the moderator.

Generative Model Fitting and Comparison

All models were estimated hierarchically using custom-
written STAN code. Specifically, we used Hamiltonian
MCMC with a No-U-Turn sampler to estimate the group-level
mean, Uy, and variance (:l'0 for all model parameters across par-
ticipants. Weakly informative N ~ (0, 1) priors were assigned
to group-level parameters. Chain convergence was assessed
using the R statistic, where 1 < R < 1.01 was acceptable. The
model was estimated over four chains of 4000 iterations, with
a burn-in period of 1000 samples and a proposal acceptance
probability set to 0.99. The point payoff for all bandits was
scaled to the range [0, 1] before fitting.

Model comparison was conducted using the loo package in
R, leveraging a version of the loo estimate optimised through
Pareto smoothed importance sampling (PSIS) methodology®®
The loo approach assesses the out-of-sample predictive accu-
racy of the model, essentially evaluating how well the entire
dataset, excluding one data point, predicts the outcome for the
excluded point.

Linking Model Parameters to Traits
We related individual differences in the hierarchical model to
questionnaire traits in two steps. First, we quantified partial
correlations between trait scores and subject-level parameters
from the hierarchical Bayesian choice model, 0, @, 7, and
p. For interpretability, we analysed log(7). All variables
were z-scored prior to analysis. Partial correlations were
computed using Pearson’s r, adjusting for age, 1Q, gender,
and the other trait (i.e., SS partials controlled for IP and vice
versa). Distributional assumptions were verified by testing
univariate normality with the Shapiro—Wilk test (all p > 0.05).

Second, to test whether traits reflect a joint contribution
of value and uncertainty mechanisms, we fit subject-level
linear regressions with all lower-order terms and the three-
way interaction between @, 8,andlog(7), while adjusting for
covariates (age, IQ, gender) and the other trait. We did not
include p (motor stickiness) in the interaction space because
our a priori question targeted the synergy between intensity
(0) and uncertainty (@); adding p interactions would inflate
the model without clear theoretical gain and reduce power. As
a robustness check, adding p as an additional covariate did
not substantially change our results.

The models were:

SS ~ w x 0 x log(7) + IP + age + IQ + gender (15)

IP ~ @ x 8 x log(7) + SS + age + IQ + gender (16)

Model diagnostics included residual inspection and
variance-inflation factors (all VIFs < 5). When higher-order
interactions were significant, we probed simple slopes using
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standard linear-model contrasts and Johnson—-Neyman inter-
vals, expressly restricting inference to the observed modera-
tor range and reporting the percentage of participants falling
within each region of significance.
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Distribution of Performance and Entropy
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Figure S1. Distributions and association between performance and choice entropy. (A) Histogram and smoothed density of
Performance. (B) Histogram and smoothed density of Choice Entropy. (C) Scatterplot of Choice Entropy versus Performance
with linear fit (95% CI). Pearson correlation: r = —0.962, p < 0.001.

Effect of Traits on Round Performance
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Figure S2. Round Performance x Trait. (A) Mean total reward by round for median splits on Sensation Seeking (SS); lines
show group means and shaded bands show 95% Cls. (B) Mean total reward by round for median splits on Impulsivity (IP) with
95% Cls. (C) Fixed—effect coefficients (points) and 95% Cls (bars) from the mixed model

roundScore ~ (S5 +IP) x round+ (1 | ID). We observed a negative association with SS (fss = —6.55, p = 0.008) and a
positive linear effect of round (f,,,,q = 7.06, p < 0.001), consistent with practice-related improvement, but no main effect of
IP (Bip = —1.73, p = 0.48). Neither SS x round nor IP x round interactions were significant (Bssxround = —1.71, p = 0.34;
Bipxrouna = —2.94, p = 0.10), providing no evidence that the SS effect reflects accumulating fatigue or disengagement over
time.
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Effect of Traits on Reaction Times

A B C
log(RT) by Median Splits log(RT) by Median Splits Predictors of Reaction Time
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Figure S3. Reaction time by trait and trial bin.(A) Mean log(RT) by trial bin for median splits on Sensation Seeking (SS);
lines show group means, shaded bands show 95% ClIs.(B) Mean log(RT) by trial bin for median splits on Impulsivity (IP) with
95% Cls.(C) Fixed—effect coefficients (points) and 95% Cls (bars) from the mixed model

log(RT) ~ (SS+1IP) x Bin+ (1 | ID). RTs decreased across bins (B, = 0.10, p < 0.001), reflecting increasing efficiency, but
there was no main effect of SS (fss = —0.01, p = 0.65) and no SS x bin interaction (Bssxpin = —0.01, p = 0.31). Thus,
high-SS participants were generally neither lower nor faster, and they did not exhibit an atypical RT learning trajectory. IP
scores showed no main effect on RTs (B;p = —0.02, p = 0.15), although a significant IP x bin interaction (Bipxpin = 0.01,

p = 0.005) indicated a modest modulation of RT dynamics without corresponding performance differences.

Effect of Traits on Performance with Omission Rate as Covariate
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Figure S4. Omission rates and performance. (A) Relationship between omission rate and traits: Sensation Seeking (SS) and
Impulsivity (IP); points show participant means with 95% Cls and fitted linear trends. (B) Distribution of omission rates across
trials/participants (histogram with smoothed density). (C) Fixed—effect coefficients (points) and 95% Cls (bars) from the mixed
model Performance ~ (88 + IP) x Bin+ Omission + (1 | id), with standardised predictors. Omission rate robustly predicted
poorer performance (Bmissed = —0.21, p < 0.001), but SS crucially remained a significant negative predictor even after
controlling for omissions (Bss = —0.09, p = 0.02). Thus, increased misses contribute to, but do not fully explain, the
SS-related performance cost.
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Correlation Matrix of Questionnaires
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Figure S5. Correlation matrix for questionnaire measures. Upper triangle displays Pearson’s r with significance stars

(**p < .001, **p < .01, *p < .05); diagonal panels show kernel density estimates; lower triangle shows scatterplot with a best
fit line. Abbreviations: SSS = Sensation Seeking Scale; BIS = Barratt Impulsiveness Scale; DASS.D/A/S = Depression,
Anxiety, and Stress subscales of the Depression Anxiety Stress Scales (DASS); OCIR = Obsessive-Compulsive
Inventory-Revised (OCI-R); AUDIT = Alcohol Use Disorders Identification Test; DAST = Drug Abuse Screening Test; 1Q =
intelligence quotient.
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General Linear Mixed Effect Modelling

Motor vs Stimulus Stickiness

We compared two forms of choice perseveration/ stickiness: a preregistered stimulus stickiness bonus based on the identity
of the previous choice (Sticky;, model 2) and a motor stickiness bonus based on the previous response side (Sticky,,, model
3). Motor stickiness provided a better overall fit, so we focus on Sticky,, in subsequent analysis. We also evaluated models
with random intercepts and random slopes for Ru. Attempts to add random slopes for Sy and So produced singular fits. Our
best-fitting specification was Model 5, which we therefore used to test trait interactions in the next subsection.

model AIC BIC RSME Formula

| 1411539 141192.8 0.4369886 choice ~ ARu + ASu + ASc

2 1411354 141184.1 0.4369726 choice ~ AR + ASu + ASG + Sticky,

3 141098.0 1411467 0.4368896 choice ~ ARu + ASu + ASG + Stickyy,

4 139950.1 140008.6 0.4319289 choice ~ ARu + ASu + ASo + Stickyy, + (1|/ID)

5 131801.5 1318794 04172918 choice ~ AR+ ASp + ASG + Sticky,, + (1 + ARu|ID)

Table S1. Model comparison for Experiment 2 predicting rightward choice (choice = 1 for “right”). All models include the
core decision variables AR, ASp, and AS6&; optional history terms are Sticky, (stimulus perseveration) and Sticky,, (motor
perseveration). Random-effects structures are denoted (1 | ID) and (1 + ARy | ID). Fit indices reported are AIC, BIC, and
RMSE (all lower is better). Adding Sticky,, improves fit over Sticky, (Model 3 vs. 2); allowing random intercepts improves fit
(Model 4); the model with random intercepts and a random slope for ARp (Model 5) provides the best overall fit and is used for
subsequent inference.

Interactions with Traits

We tested all candidate two- and three-way interactions between core decision variables and our traits of interest—sensation
seeking (SS) and impulsivity (IP). Significant interactions are reported in the main text; complete model outputs (all coefficients
B weights) are provided in Fig. S6. To assess model specification, we used DHARMa simulation-based residual diagnostics in
R, including checks for dispersion, outliers, and normality (Fig. 7).

A i B DHARMa nonparametric dispersion test via sd of
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Figure S6. DHARMa diagnostics for the Predictors x Trait GLMM (1,000 simulations). (A) Left: QQ plot of scaled residuals
indicates approximate uniformity (KS test, p = 0.20). Right: residuals vs. fitted values with DHARMa quantile curves show no
systematic pattern; dispersion test n.s. (p = 0.66). (B) Nonparametric dispersion check: distribution of simulated residual SDs

with the fitted-model value (red line); p = 0.66. Outlier test n.s. (p = 0.12)
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Trait-interaction model — fixed effects ()
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Figure S7. Fixed-effect coefficients () from the Trait-Interaction GLMM (binomial link). Points show estimates and
horizontal bars show 95% Cls for the main effects of the decision variables (ARu, ASo, Motor stickiness) and their interactions
with traits—Sensation Seeking (SS) and Impulsivity (IP)—including two-way and three-way terms (e.g., ARu x S8, ARu x IP,
AR x S5 x IP). The vertical dashed line marks § = 0; effects whose Cls do not cross zero are considered statistically reliable.
Random effects: intercepts and by-participant slopes for ARu.
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Description of Reduced Models

We outline here the reduced models introduced in the main text. These models differ only in their choice rule. For each bandit j
at time ¢, the Q-value Q;, was defined as a linear combination of the estimated underlying point payoff Ry ;, and, depending on
the model, the stimulation-related terms: the estimated mean probability of stimulation Su;,, weighted by free parameter 6,
and the associated uncertainty S6;,, weighted by free parameter @. All Q-values were scaled by the temperature parameter T:

R-only
Ry,
Qjs = T} (17)
R-0
Ru;,+08u;
Qj; = RHja T 99K (18)
T
R-w
Ru;; + wSo;
Q) = R 2200 (19)
T
R-6w
Ru; osSu; So;
0 = Wi+ 05U, + ®50;, 20)

T
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Recovered value

Figure S8. Scatter plots compare true (x-axis) vs recovered posterior mean (y-axis) parameters for a synthetic dataset

w

Parameter recovery: True vs Recovered
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p = <.001
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(N = 100). Rows are generating models (R—Only, R—0, R—w, R-8w®, R-8wp;, R-0 wp,,); columns are parameters (7, 8, ®,
p). The dashed line shows the identity (y = x); the solid line is a regression line fit with 95% CI. Panel insets report Pearson and

p-values. Blank panels indicate parameters not present in that generating model.
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Distribution of Fitted Parameters Across All Models
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Figure S9. Distributions of fitted parameters across computational models. Columns show parameter estimates for 8, w, p,
and T; rows correspond to model variants. Histograms depict participant-level fits with overlaid kernel density curves (orange).
Note: In models with stimulus stickiness (ps), k denotes the bonus assigned to stimulus identity (stimulus stickiness); in

models with motor stickiness (py), k denotes the action-repetition bonus (motor stickiness).
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Predictors of SS Predictors of IP
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Figure $10. Regression of traits on computational parameters and covariates. Points show fixed—effect coefficients () with
95% Cls; the vertical dashed line marks 8 = 0. (A) Predictors of Sensation Seeking (SS). (B) Predictors of Impulsivity (IP).
Predictors include model parameters @, €, and log 7, the stickiness parameter p (additive main effect), and covariates (IP or SS,
IQ, Age, Gender). Interaction terms were limited to @ x @, @ x log7, 8 x log 7, and @ x 0 x log . Note: We did not include p
in the interaction terms, as this was not theoretically motivated and we sought to avoid unnecessary expansion of the interaction
space.
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