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Abstract

Sensation-seeking (SS) is characterised by a proclivity for in-
tense experiences and disregard for potential aversive conse-
quences. While SS is implicated as a vulnerability factor in
various mental disorders, the underlying mechanisms remain
elusive. Recent approaches propose an alternative perspective,
suggesting that SS may be linked to highly explorative, and
therefore risky, behaviours driven by a preference for informa-
tive environments. To probe this hypothesis, we reanalysed
a dataset where participants chose to self-administer or avoid
mild electric stimulation (MES) in an economic decision-
making task. Contrary to previous interpretations associating
higher sensation-seeking with the positive economic value of
experiencing MES, Bayesian models of learning reveal an al-
ternative account: sensation-seekers are more attuned to infor-
mation about stimuli-shock contingencies. Specifically, high
sensation-seeking individuals are less avoidant of informa-
tion about the possibility of a shock, supporting the idea that
sensation-seeking is linked to a preference for informative en-
vironments.

Keywords: Sensation-seeking; Reinforcement Learning;
Information-seeking; Exploration/Exploitation; Computa-
tional Psychiatry

Introduction

Sensation-seeking (SS) is characterised by a preference for
“varied, novel, complex, and intense sensations and expe-
riences” often with a disregard for potential aversive con-
sequences across physical, social, legal, and financial do-
mains (Zuckerman, 1974). Notably, SS stands as a distinc-
tive trait marked by highly explorative and risky behaviours
during adolescence (Shulman, Harden, Chein, & Steinberg,
2015; Steinberg et al., 2008; Whiteside, Lynam, Miller, &
Reynolds, 2005), and is a significant risk factor for engaging
in a spectrum of activities associated with high societal costs
and maladaptive outcomes (Chase & Ghane, 2023; Perito-
giannis, 2015) such as alcohol/substance abuse (Evans-Polce,
Schuler, Schulenberg, & Patrick, 2018; Hittner & Swickert,
2006), and antisocial behaviours (Hammerton et al., 2018;
Mann et al., 2017). Intriguingly, recent evidence also sug-
gests a link between SS and better psychological well-being
(Ravert & Donnellan, 2021; Yoneda, Ames, & Leadbeater,
2019), with some studies linking SS to “positive risk-taking”,
indicating a developmentally normative and adaptive function
(Duell & Steinberg, 2020, 2021; Hansen & Breivik, 2001;
Fischer & Smith, 2004). SS has also been shown to have neu-
robiological correlates, with dopamine (DA) associated with
individual differences in SS levels (Norbury, Kurth-Nelson,

Winston, Roiser, & Husain, 2015), with high sensation seek-
ers exhibiting elevated extracellular DA and receptors in the
caudate nucleus, accompanied by attenuated DA turnover
rates (Chang et al., 2022). Still, the precise conditions for
dysfunction remain unclear.

Despite predicting a wide range of risky behaviours, the

precise mechanisms that set SS apart as a distinctive trait re-
main enigmatic. Bridging this gap is a central goal in compu-
tational psychiatry, where a comprehensive computational ex-
planation of SS holds the potential to unravel the mechanisms
involved. An explicit computational account can provide in-
sights into how these mechanisms deviate from optimality,
offering better objective markers for diagnosis, prevention,
and future treatment (Huys, Maia, & Frank, 2016; Hauser,
Skvortsova, De Choudhury, & Koutsouleris, 2022; Stephan
& Mathys, 2014).
Recent Perspectives. The association between risky be-
haviours and high exploration suggests that the exploration-
exploitation trade-off (Addicott, Pearson, Sweitzer, Barack,
& Platt, 2017) may be vital to understanding the underly-
ing mechanisms of SS. Exploitation maximises short-term
rewards by choosing familiar options, while exploration in-
volves trying uncertain but potentially higher-payoff alterna-
tives. Excessive exploitation limits information gathering,
fostering inflexibility, while too much exploration leads to
risky decision-making and reduced long-term payoffs. Strik-
ing a balance between these strategies is vital for long-term
reward optimisation (Mehlhorn et al., 2015).

Research in this domain has found evidence for two dis-
tinct and dissociable forms of exploration: random and di-
rected exploration (Gershman, 2018; Wu, Schulz, Pleskac,
& Speekenbrink, 2022; Zajkowski, Kossut, & Wilson, 2017;
Wilson, Geana, White, Ludvig, & Cohen, 2014). Random
exploration involves a stochastic selection of sub-optimal
options, often modelled with softmax functions and tem-
perature parameters (Daw, O’Doherty, Dayan, Seymour, &
Dolan, 2006). In contrast, directed exploration is strategic,
informed by the subjective uncertainty of an option, often
using Bayesian learning models (Speekenbrink & Konstan-
tinidis, 2015; Wu, Schulz, Speekenbrink, Nelson, & Meder,
2018). Thus, while risky, uncertainty-guided exploration
serves an information-seeking goal, with highly uncertain op-
tions likely to result in valuable information transfer from the
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Figure 1: (A) Overview of task. Participants were pre-

sented with a series of two alternative forced-choice deci-
sions. There were a total of 8 different bandits, each assigned
points 25, 50, 75, or 100. These point-stimuli associations
were learnt during a prior acquisition phase. For the test
phase, half of the bandits were then associated with a mild
probabilistic electric shock (CS+) and were always paired in
each trial with a bandit with no shock (CS-). (B) Overview
of computational models. Each model consisted of a learn-
ing rule (Bayesian vs Rescorla-Wagner vs No-Learning) and
a choice policy (based on mean or uncertainty).

environment to the individual (Cogliati Dezza, Schulz, & Wu,
2022; Giron et al., 2023).

The explore-exploit dilemma has been a helpful frame-
work in demonstrating that risk-seeking traits such as im-
pulsivity are linked to heightened “value-free” random explo-
ration (Dubois & Hauser, 2022). However, which form of ex-
ploration sensation-seekers engage in remains an open ques-
tion. A recent review by Chase and Ghane (2023) suggests
that SS may be associated with a preference for highly infor-
mative environments, suggesting uncertainty-directed explo-
ration towards learning environments. Although sensation-
seekers have been shown to seek more information in experi-
mental tasks (Henderson, Hennessy, Barrett, Martin, & Fish-
bein, 2006), rigorous and mechanical testing of this hypothe-
sis using computational modelling is currently lacking.

Goals and Scope. Here, we reanalyse data from Norbury
et al. (2015) to demonstrate an alternative account of their re-
sults. In their investigation, participants engaged in a sim-
ple economic decision-making task with probabilistic self-
administered electric shocks. Both economic value and shock
contingencies were learned through trial and error. Utilising
computational modelling, the researchers observed that indi-

viduals with high SS scores were more likely to assign a pos-
itive value to Mild Electric Stimulation (MES).

However, their approach has certain limitations that war-
rant further investigation. Firstly, their computational model
overlooked the learning dynamics related to MES contingen-
cies, deviating from the task design where participants needed
to learn shock associations through trial and error. Secondly,
a plausible alternative explanation exists: the choice to ad-
minister MES might be due to uncertainty exploration for
learning shock contingencies. Therefore, we aim to extend
these previous findings by exploring the role of information-
seeking. We ask whether the decision to self-administer MES
is rooted in an economic valuation or due to an uncertainty-
driven learning motive. Moreover, if the latter holds, does
uncertainty-driven exploration also emerge as a more robust
predictor of sensation seeking, and how is this influenced un-
der a dopamine antagonist?

Methods

We reanalyse a dataset previously collected by Norbury et
al. (2015) to test the hypothesis that sensation-seeking is re-
lated to information-seeking via uncertainty-guided explo-
ration. Here, we briefly overview the task design and par-
ticipant demographics.

In Study 1, 45 healthy subjects (28 females, mean age =
24.3 £ 3.55) were recruited to investigate CS+ choice bias
and self-reported sensation-seeking. Participants completed a
revised version of the Sensation-Seeking Scale (SSS-V) ver-
sion V (Zuckerman, 1994; Gray & Wilson, 2007). The SSS-V
consists of four subscales: thrill and adventure seeking, expe-
rience seeking, disinhibition, and border susceptibility, from
which overall SS was calculated as a sum across all four mea-
sures. Behavioural data from three subjects were excluded,
and sensation-seeking scores were not recorded for six par-
ticipants, resulting in 39 subjects available for reanalysis.

In Study 2, 30 healthy male participants were recruited
(mean age = 22.3 £ 2.74) to investigate the effects of a
dopamine antagonist on CS+ choice. Behavioural data from
2 subjects were excluded in the original paper, leaving 28
subjects available. All subjects completed 3 sessions of the
sensation-seeking task. The first was a baseline and sub-
sequently counterbalanced between placebo and haloperidol
(2.5mg). During the pre-screening procedure, participants
filled out the SSS-V and additionally completed the UPPS
impulsivity questionnaire (Whiteside & Lynam, 2001), fea-
turing subscales for sensation-seeking and three other impul-
sivity facets.

Sensation-Seeking Task. The experiment employed a two-
phase, two-armed bandit task to study the economic value in-
dividuals attribute to receiving an intense sensory stimulus—
specifically, a mild, non-painful electric shock (MES;
Fig. 1A). In the acquisition phase, participants underwent the
process of learning the point values associated with eight ban-
dits. This phase extended for a minimum of 80 trials until
participants met a predefined criterion level of performance.
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Figure 2: (A) Leave-one-out information criteria (LOO-IC) with lower values indicating better fits. The best-fitting model
incorporated Bayesian learning with a variance choice rule (BLvar). (B) We replicated the main findings from Norbury et al.
(2015) using pooled data and a Hierarchical Bayesian Modeling (HBM) procedure, although it was not the best model. (C)
Significant associations were observed between ® parameters estimated from the BLvar model and self-reported sensation-
seeking (p = 0.29, p = .02). (D) AIC of mixed-effects logistic regressions show that the model incorporating differences in
uncertainty estimated from Bayesian Learning (BL) and its interactions with SS scores performed the best. The probability
of choice A in a given test trial was examined as a function of differences in (E) MES identity, (F) estimated shock mean
under Rescorla-Wagner learning, (G) estimated shock mean under BL, (H) estimated shock uncertainty under BL and their
respective interactions with SS levels. Across E to H, each line represents the fixed effect of a mixed-effects regression grouped
by high sensation seekers (bold line) and low sensation seekers (dotted line) based on a mean split, with ribbons indicating 95%

confidence intervals (CI). The red dotted lines indicate the chance level.

Two of these bandits were assigned to each of four possible
point values (25, 50, 75, or 100 points). Presented as pairs in
every trial, the bandits yielded 10 trial types.

Crucially, the CS+ bandit was consistently paired with an-
other CS- bandit, creating three distinct scenarios: when the
CS+ bandit offered a greater monetary payoff than the CS-
(3 trial types) when it provided a lower payoff (3 trial types),
and when they were equal (4 trial types). Subsequently, in
the test phase, half of the bandits became associated with a
0.75 chance of receiving MES to the hand (CS+), while the
others did not (CS-). Participants completed 100 test phase
trials, encompassing 10 trials of each trial type. This design
facilitated the observation of participants’ choice patterns to
discern any bias toward the CS+ bandits.

Before commencing the task, participants provided rat-
ings of their preference for each bandit intended for use in
the paradigm on a computerised visual analogue scale (VAS)
ranging from “like” to “dislike”. This measure was repeated
a second time after the acquisition phase (i.e., after learning
the point values associated with each CS) and a third time
at the end of the experiment (i.e., following the introduction

of MES). The mean difference between the third and second
ratings indicated overall MES-liking.

Computational Models

Computational modelling was used to understand the
decision-making processes related to MES stimuli. These
models encompass a learning component, utilising either
Rescorla-Wagner or Bayesian methods, which define how the
expected probability of shock is updated following observa-
tions and a choice rule formulated as a linear combination of
model features (Fig. 1B). We also briefly describe the origi-
nal model in Norbury et al. (2015) that modelled no learning.
During an initial acquisition phase, subjects acquired knowl-
edge of the point payoffs associated with each bandit, denoted
as V;. This phase consisted of a minimum of 80 trials, with
a performance criterion requiring the selection of the bandit
associated with the higher point value in 80% or more of the
last ten trials. Thus, these payoffs are presumed to be fully
known.

Original Economic Model. The modelling approach de-
scribed by Norbury et al. (2015) involved the representation



of Q-values for each bandit as a combination of their mone-
tary payoff and an additional value, 0 if the bandit is associ-
ated with MES:

Qj=V;+6l, 1)

where I; = 1 if bandit j is associated with MES, and 0 oth-
erwise. Note that this approach does not model the learning
process, but instead assigns a fixed, binary value to each ban-
dit based on the identity /;.

Rescorla-Wagner Learning Model. We use a Rescorla-
Wagner (RW) learning model (Rescorla, 1972) to model
the trial-and-error learning process of shock contingencies.
Specifically, the estimated probability of shock of the chosen
bandit after each trial is updated according to a prediction er-
ror § scaled by the learning rate A. The prediction error &
reflects the discrepancy between the expected probability of
shock at trial 7 and the outcome S ;.

Uji+1=uj;+AS, whered=S5;, —u;, 2

Bayesian Learning Model. To quantify subjective uncer-
tainty, we implemented a Bayesian model that assumes shock
probabilities for each bandit j are represented as beta distri-
butions. This approach is most appropriate for learning prob-
abilities since the distribution is between O and 1, and the
variance estimates uncertainty. Similar models have previ-
ously been used to model value-based learning (de Boer et
al., 2017) and aversive learning tasks (Wise & Dolan, 2020;
Wise, Michely, Dayan, & Dolan, 2019).

Pj((shock) ~ Beta(oj;,Bj:) 3)

Intuitively, the model describes how the evidence for MES
depends on the number of shocks previously delivered. These
counts can be represented for each bandit by the parameter
o.j, which is incremented depending on whether a shock is de-
livered (S, = 1). Similarly, the counts of no shocks (S;; = 0)
are tracked by a complementary parameter [3;. For simplicity,
we assume optimal updating, where o and [3 are updated by a
value of 1 after observing the respective outcome:

Q1 =0, +Sj; 4)

Bjsr1=PBjs+(1=Sj) S

The expected probability of shock u for bandit j at trial # is:

(xj t
=l (©)
#],l ()ijt + BjJ
and the associated uncertainty © is:
B
it = @)
o \/(OW +Bja) (0 +Bjs+1)

Choice Rules. Q-values for each bandit j were calculated
as a linear sum of their underlying monetary payoff V; and
either the estimated mean probability of shock, u;, scaled by
free parameter 0, or the associated uncertainty G, scaled by
free parameter .

For mean shock probabilities, u;, derived from Rescorla-
Wagner and Bayesian learning processes, the overall Q-
values are calculated as follows:

Qj=Vj+8u; (®)

For estimated uncertainty, G;, derived from the Bayesian
learning processes, the overall Q-values are calculated as fol-
lows:

QjZVj+OJGj 9)

Given bandits A and B, the probability of choosing bandit
A at trial ¢ is given by a softmax function controlled by the
temperature parameter T.

eQa/T

- eQA/T—f—eQB/T (10)

P(choice; = A)

Model Fitting and Comparison

We derived four models based on different combinations of
learning rules and choice policies (Fig. 1B): the original
Norbury model (Original), the Rescorla-Wagner with mean
policy (RW), Bayesian with mean Policy (BLmean), and
Bayesian with uncertainty policy (BLvar). All models were
estimated hierarchically using custom-written STAN code.
Specifically, we used Hamiltonian MCMC with a No-U-Turn
sampler to estimate the group-level mean, g, and variance 0(2)
for all model parameters among participants. Weakly infor-
mative N ~ (0, 1) priors were assigned to group-level param-
eters. Chain convergence was assessed using the R statistic,
where 1 < R < 1.01 were acceptable. The model was es-
timated over four chains of 4000 iterations, with a burn-in
period of 1000 samples and a proposal acceptance probabil-
ity set to 0.99. The point payoff for all bandits was scaled
between [0, 1] before fitting.

Model comparison was conducted using the loo package in
R, leveraging a version of the loo estimate optimised through
Pareto smoothed importance sampling (PSIS) methodology
(Vehtari, Gelman, & Gabry, 2017). The loo approach as-
sesses the out-of-sample predictive accuracy of the model,
essentially evaluating how well the entire dataset, excluding
one data point, predicts the outcome for the excluded point.

Results
Experiment 1

To increase the sensitivity of our analysis, we pooled data
from 45 subjects in Study 1 and 28 subjects from the baseline
session of Study 2 to give 73 subjects overall.



Model-based analysis. We used computational models to
assess if sensation-seekers were guided by the value assigned
to the estimated mean probability of shock or the uncertainty
of shock. To this end, we developed five models, each with
a combination of learning mechanisms and choice policies
(Fig. 1B). Using Bayesian model selection, we found that the
Bayesian learning model with the uncertainty choice policy
(BLvar; Fig. 2A) made the best overall predictions.

While we were able to reproduce the results of the Norbury

et al. (2015) study showing SS scores were related to the ex-
pected probability of shock (p = 0.29, p = .02; Fig. 2B),
we found equally strong correlations for the winning BLVar
model, but for the ® coefficients defining the influence of
shock uncertainty (p = 0.29, p = .02; Fig. 2C). To delve into
SSS-V subscores, ® estimates were significantly correlated
with experience-seeking (p = 0.31, p = .01) and disinhibition
(p =0.25, p = .04), but not with thrill-and-adventure seeking
(p=0.22, p =.07) and boredom susceptibility (p =0.15, p =
.21). Since estimated coefficients were negative (Fig. 2C),
these results do not point towards a firm definition of in-
formation seeking but rather reduced information avoidance.
Specifically, individuals with high self-report SS scores were
less likely to avoid information about MES. Unlike the origi-
nal paper, we could not find correlations between ® and MES-
liking (spearman’s p = 0.06, p = .61). This makes sense, as
MES-liking did not correlate with SS scores in the first place
(spearman’s p = —0.01, p = 0.91). This suggests that other
underlying mechanisms may be at play. Surprisingly, rela-
tive choice RT for MES-associated vs non—-MES-associated
stimuli also did not correlate with ® estimates (spearman’s
p = 0.23, p = 0.05), despite being correlated with SS scores
(Pearson’s r = —0.30, p = .01).
Response curve analysis. We constructed a series of
mixed-effects logistic regression models to assess the im-
pact of subjective mean shock probability and shock uncer-
tainty on the probability of choosing an option in a given
trial (Fig. 2D-H). We explored how the probability of choice
A was influenced by point payoff, and either MES identity
(Original; Fig. 2E), estimated shock probability (RW and
BLmean; Fig. 2F-G) or shock uncertainty (BLvar; Fig. 2H),
including interactions with SS scores. Accounting for indi-
vidual variations, we incorporated a random effects structure,
allowing us to specify the influence of either shock proba-
bility or uncertainty in estimated marginal means. Contrast
analyses were employed to quantify differences in the depen-
dent variable marginalised over variations in point payoff.

Ranking AIC scores, the best model was the BLvar model
using shock uncertainty and interaction with SS scores (AIC:
6394.9; Fig. 2D). Overall, there was a negative relationship
between the probability of selecting choice A and the differ-
ence in uncertainty (EMM = —13.56 +0.44, Z = —31.09,
p < .001), indicating that participants tended to avoid bandits
with greater shock uncertainty. However, this trend was less
pronounced among individuals with high sensation-seeking
tendencies (EMM = 1.844+0.43, Z = 4.26, p < .001), who
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Figure 3: (A) Leave-one-out information criteria (LOO-IC)
comparison. Lower values indicate better fits. The Bayesian
learning rule with the variance choice policy (BLvar) was
again found to be the best-fitting model across conditions.
(B) Fit strength was lower in the haloperidol condition (all
p < .05), but model ranking had no observable changes. (C)
Group differences in model parameters were evaluated using
paired-sample t-tests. Higher @ estimates indicate less uncer-
tainty avoidance. Higher temperature T estimates (log-scale)
indicate greater choice stochasticity. Each connected dot rep-
resents a participant, and Tukey boxplots are overlaid with
the diamond indicating the group mean.

had flatter curves.

Experiment 2

Drug effects on parameter estimates. Data from 28 sub-
jects were analysed to investigate the effect of haloperidol
on uncertainty-guided exploration. Across both drug condi-
tions, the model comparison showed that the Bayesian learn-
ing model with variance choice policy was again the winning
model, albeit marginally (BLvar; Fig. 3A). By comparing the
relative fit strengths between haloperidol against placebo con-
ditions, fits were worse under treatment (all p < .05; Fig .3B).
We compared drug group differences using paired sample t-
tests (Fig. 3B) but did not find differences in drug group dif-
ferences in ® estimates (M = 0.18 +0.18, #(27) = —1.02,
p = .32), suggesting administration of a dopamine antagonist
did not influence levels of information avoidance. However,
we found a significant increase in T estimates under haloperi-
dol (M =0.05+0.02, t(27) = —3.94, p < .001), suggesting
that participants were more stochastic in their choices under
a dopamine antagonist (Fig. 3C), which may have also driven
the poorer model fits.



Discussion

We build upon previous findings by investigating whether the
estimated mean shock probability or shock uncertainty could
better explain the probability of choosing MES. Across both
behavioural and model-based analyses, we consistently found
that MES choice is more strongly influenced by uncertainty
than by the mean. Our results revealed that participants as-
sign a negative value to shock uncertainty. This suggests an
overall tendency for subjects to avoid information related to
shock probabilities for each bandit, with high sensation seek-
ers being less avoidant than low sensation seekers.

A surprising observation in our study was that the learn-
ing models of shock probabilities, specifically the Rescorla-
Wagner (RW) and Bayesian Learning with Mean policy
(BLMean), did not yield a better fit compared to the origi-
nal model (Original). This suggests that no substantial learn-
ing of shock contingencies occurred contrary to the trial-and-
error learning expected of participants. One possible explana-
tion for this discrepancy could be that the task design had an
inherent structure (i.e. in every trial, MES and non-MES ban-
dits were consistently paired). Participants might have devel-
oped an explicit representation of this task structure, facilitat-
ing model-based learning. This explicit representation could
have allowed participants to make more statistically efficient
use of information, contrary to the model-free learning as-
sumed in our current models (Castro-Rodrigues et al., 2022).

Associations with Sensation-Seeking. By correlating SS
scores with @ parameters, we demonstrated that high SS is as-
sociated with less information avoidance (Fig.2 B). While this
does not indicate a firm definition of information-seeking, it
still suggests that high sensation-seekers are more susceptible
to making decisions where information is non-instrumental or
potentially harmful. One reason for the absence of a clear
information-seeking motive may be the sampling from an
overall healthy population. Future studies could consider an
extreme group strategy or sample from demographics that
typically exhibit high levels of SS, such as extreme sports en-
thusiasts or clinical populations.

Furthermore, SS is a multidimensional construct, encom-
passing dimensions of thrill and adventure seeking (TAS),
experience seeking (ES), disinhibition (DIS), and boredom
susceptibility (BS). Therefore, it is improbable that trait SS
solely aligns with uncertainty/information preference. This is
evident as m estimates loaded onto some SS subscales such
as ES and DIS, but not TAS and BS. Additionally, we were
unable to replicate associations between ® estimates and rel-
ative reaction times for MES vs non-MES-associated stim-
uli, thereby missing insight into approach-withdrawal mech-
anisms in response to novel and intense stimuli among sen-
sation seekers (Zuckerman, 1990). As such, it is important
to consider other SS mechanisms and their potential inter-
actions. For instance, SS has been repeatedly shown to be
associated with heightened reward sensitivity (Hawes et al.,
2017; Tapia Ledén, Kruse, Stark, & Klucken, 2019; Harden
et al., 2018) and elevated tolerance to losses (Zheng, Tian,

Li, & Liu, 2019) that cannot be solely accounted for by an
information-seeking account. Considering all these compo-
nents would be needed to model the full SS phenotype.

Haloperidol Effects. We failed to find significant changes
in o estimates under Haloperidol (i.e., consistent levels of un-
certainty avoidance), but we found it increased temperature T
(i.e., more stochastic decisions). This may initially appear
counterintuitive in light of the established role played by DA
in the exploration/exploitation trade-off (Kayser, Mitchell,
Weinstein, & Frank, 2015). However, studies have associated
both directed and random exploration with genetic variations
influencing prefrontal and striatal DA levels, with individu-
als presumed to have higher DA tone exhibiting heightened
exploration (Gershman & Tzovaras, 2018). Consequently,
one would expect a DA antagonist like haloperidol to lead to
increased exploitative choices and reduced decision stochas-
ticity. However, previous research utilising DA antagonists
as a pharmacological intervention on exploratory behaviours
has been mixed, with some reporting no effects on levels of
exploration (Chakroun, Mathar, Wiehler, Ganzer, & Peters,
2020; Pine, Shiner, Seymour, & Dolan, 2010) or even re-
versed effects (Cinotti et al., 2019; Lee, Seo, Dal Monte, &
Averbeck, 2015). The observed reversal of effects might be
attributed to the potential of single, low doses of haloperi-
dol (2.5mg) to increase DA release via action on presynaptic
D2 autoreceptors (Eisenegger et al., 2014; Ford, 2014). This
contrasts with the antidopaminergic effects observed under
chronic and high-dose treatment (Frank & O’Reilly, 2006;
Dubois et al., 2021), offering a plausible explanation for the
observed increase in decision stochasticity.

Limitations and Future Directions. However, several lim-
itations should be acknowledged. Specifically, investigat-
ing the joint effect of shock mean and uncertainty on choice
patterns was challenging due to collinearity in the experi-
mental design: CS- had no MES possibility, leading to no
variability in MES delivery, while CS+ had probabilistic
shocks and higher variability. Consequently, a full model
incorporating both mean and uncertainty in the choice pol-
icy was nonidentifiable. Although our reanalysis leans to-
wards supporting the uncertainty account, future experiments
should strive to orthogonalise the effects of uncertainty and
rewards/punishments to elucidate their contributions to SS.

Conclusions. Overall, we find stronger evidence that MES
choice is guided by shock uncertainty rather than shock
value. Additionally, we present initial evidence suggest-
ing that individuals with higher SS traits exhibit less uncer-
tainty avoidance, emphasising a potential link between SS
and information-seeking behaviour. However, our investiga-
tion revealed no discernible alteration in uncertainty avoid-
ance under the dopamine antagonist haloperidol but rather an
increase in choice stochasticity. Taken together, we establish
a link between trait SS, uncertainty, and decision-making pro-
cesses, shedding light on underlying mechanistic processes
that may better inform psychiatric diagnoses and treatments.



Code and Data Availability

The data supporting the findings of this study can be re-
quested from the authors of Norbury et al. (2015). The
data are not publicly available due to ethical guidelines.
All STAN models described in the paper are uploaded to
https://github.com/ErnWg/cogsci_sensationseeking.
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