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There has been much progress in understanding human social learning, including recent
studies integrating social information into the reinforcement learning framework. Yet
previous studies often assume identical payoffs between observer and demonstrator,
overlooking the diversity of social information in real-world interactions. We address
this gap by introducing a socially correlated bandit task that accommodates payoff
differences among participants, allowing for the study of social learning under more
realistic conditions. Our Social Generalization (SG) model, tested through evolutionary
simulations and two online experiments, outperforms existing models by incorporating
social information into the generalization process, but treating it as noisier than
individual observations. Our findings suggest that human social learning is more
flexible than previously believed, with the SG model indicating a potential resource-
rational trade-off where social learning partially replaces individual exploration. This
research highlights the flexibility of humans’ social learning, allowing us to integrate
social information from others with different preferences, skills, or goals.

social learning | generalization | exploration | computational modeling | evolutionary simulations

Imagine you are in a foreign city, trying to decide on a restaurant to visit for dinner.
You check reviews within a certain radius. Do you go for the best-rated restaurant no
matter what, trusting the majority judgment? Or do you assume your taste may differ
from everyone else’s in this city, and discount ratings based on your personal preferences,
integrating what is popular with what you know about your own tastes? It may seem
obvious that you would not generally assume that everyone you could possibly rely on
for their opinion will share your exact tastes. However, much of the literature in social
learning has focused on this idea of how we use information from others who are just
like us (1–6).

Research on the use of social information has identified various social learning strategies
(SLS) commonly deployed by humans (7–11). These SLS serve to selectively limit
imitation to cases in which it would be beneficial to imitate others, and can be categorized
into when-, what-, and who-strategies. When-strategies determine when social learning
should be used, e.g., when an agent is uncertain (12–14), or when individual learning
is costly (14, 15). What-strategies specify what is preferentially learnt from others, e.g.
emotionally evocative content (16, 17), and information relevant for survival (18–20), or
about social relationships (18, 21). Who-strategies determine who should be learnt from,
e.g. prestigious (22, 23) or successful (24–26) individuals, or the majority (1, 13, 14, 27).
Prior research has also sought to understand how people imitate, that is, what mechanism
underlies their use of social information, e.g. stimulus enhancement (28), decision biasing
(1, 3), or value shaping (2).

However, even when selectively limiting when and how imitation should be used for
social learning, individuals may need to share the same goals or preferences as whoever
they are imitating for imitation to yield favorable outcomes. In previous research, it
has commonly been the case that demonstrators had the same payoff function as the
participant (1, 2, 4–6, 29). Only few studies have considered social information use in
matters of taste (30–32), and they have largely focused on the normative question of
how best to craft social recommendations. Therefore, our understanding of the human
ability to learn from others has been limited to settings in which imitation is optimal.

In real life, however, people can rarely assume that any stranger they may choose to
imitate will share their exact goals. For instance, if the goal is to get home after work,
following the first car in view is unlikely to lead to the desired outcome. Conversely,
if an individual notices a usually bustling street deserted during rush hour, they may
correctly choose to dodge the roadwork that has caused everyone’s paths to change while
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still getting to the right house after a quick detour. This difference
in exact goals (e.g. the destination of a trip) despite some shared
preferences (e.g. avoiding traffic or closed roads) is commonly
seen in many choice domains, like food selection, fashion,
career choices, holiday planning, or scheduling, in which we can
commonly learn from others. Thus, there must be more to social
learning than just imitation: Some consideration must be made
of whether the interests of the imitating and imitated individuals
are aligned.

The question of how humans learn socially from demonstrators
with differing preferences is sometimes answered with Theory of
Mind inference (33–35), i.e. the ability to infer others’ mental
states, like their goals or preferences, from their behavior. Re-
search in this domain has uncovered much about people’s ability
to infer mental-state information from others’ behaviors (36–38),
and specifically people’s ability to infer others’ preferences
(39, 40). After such inference, people might indeed be able to
determine whether they share another person’s reward function,
and thus whether exact imitation is a promising option. However,
even if reward functions are not perfectly aligned, people may still
be able to glean valuable insights that enhance their individual
decision-making. Moreover, people in the modern world often
make choices using social information that is merely an aggregate
rating of others’ opinions, with no way of inferring how similar
each individual may be to them. Thus, there is an open question
of how we can use inferred or otherwise-gained value information
from others who do not share our exact preferences, which is what
the current study aims to address.

Goals and Scope. To this end, we introduce the socially correlated
bandit task, which lets us investigate learning and exploration dy-
namics in social settings where exact imitation is not optimal. The
task is based on the spatially correlated bandit (41), which uses
spatially correlated rewards to allow for individual generalization,
and is typically used to investigate asocial learning. We add social
correlations to this setup, enabling the generalization of not only
individual, but also social information (Fig. 1 A and B).

In our socially correlated bandit, participants search individ-
ualized environments, which are correlated with one another.
Thus, the highest rewards are generally in the same region
for all participants, but directly copying another participant’s
best choice will not lead to the maximum payoff for oneself.
This emulates the relationship of social information and diverse
individual preferences and circumstances in the real world: While
there are some standards that apply to everyone, not everyone
would agree on the same option being optimal. While the
spatially correlated multiarmed bandit has previously been used
to investigate social learning, it was either in individual settings
(42) or with both participants in the same environment (43), not
with correlated rewards across participants.

Participants explored these socially correlated environments
in groups of four. In group rounds, they had full information
about other participant’s choices and outcomes (Fig. 1C ), thus
sidestepping the actual social inference. We ran evolutionary sim-
ulations with multiple candidate models to find the normatively
best strategy, which was our “Social Generalization“ (henceforth
“SG“) model. We then fit these models to the behavioral data
collected in three online experiments. In Exp. 1, which consisted
only of group rounds, we studied whether humans would be
able to utilize social information in this setting, and if so,
how they integrated it into their decision-making. We found
that participants were able to use social information to their
benefit, with search behavior being significantly influenced by

other participants finding high rewards. Their behavior was
most accurately predicted by SG. In Exp. 1R, we lowered the
social correlations to a minimum, but kept all other aspects
the same to ensure that these results are not artifacts induced
by the instructions biasing experimental subjects to use social
information inflexibly. We found that participants do not
blindly use social information, being best fit by Asocial Learner
(AS). Finally, we ran Exp. 2 as a preregistered replication (44)
interleaving solo rounds and group rounds (Fig. 1D). This
allowed us to disentangle behavioral signatures stemming from
the correlated task structure from actual social learning. It also let
us delve deeper into differences between individual and social
learning in the task by comparing baseline learning model’s
parameters between conditions. Again, we find adaptive use of
social information, with SG being the best-fit model. Differences
in exploration behavior indicate that social learning may function
as an exploration mechanism when available (9). Taken together,
we find that humans can integrate social information with more
nuance than what previous task designs implied, potentially using
it to partially replace individual exploration.

Results

We use the socially correlated bandit (Fig. 1A) for this study. Each
agent explores a multiarmed bandit arranged as a grid with spatial
correlations (41), and can observe the other agents of their group
doing the same. We generated sets of four positively correlated
bandits (for details, see Materials and Methods), so that social
information can be valuable, but is less so when used verbatim
(Fig. 1B). In the experiments, this was framed as collecting salt
samples in alien oceans as a team of scientists, with each scientist
being interested in a different salt.

In the following, we first introduce four candidate models
that differ in how they integrate social information into the
reinforcement learning process (Fig. 2 A, Top panel). We then
use these models in evolutionary simulations to find the best
normative strategy. Finally, we report results from three online
experiments. In Exp. 1, we investigated whether and how humans
would be able to use social information in this new setup to
enhance their decision-making, with social correlations set to
r = 0.6 ± 0.05. We repeated this experiment with social
correlations of r = 0.1± 0.05 in Exp. 1R. Finally, we expand
on these results in Exp. 2 as a preregistered replication, where
we interleave solo and group rounds to investigate how social
learning influences individual exploration patterns.

Models. We first introduce an asocial baseline model (AS),
followed by our candidate social models. We consider three social
models, all of which build on the asocial baseline model. Each
social model integrates social information into a different stage
of the individual decision-making process: the policy (Decision
Biasing; DB), value function (Value Shaping; VS), or reward
generalization (SG). All models are illustrated in Fig. 2A.
AS. We use a Gaussian Process Upper Confidence Bound (GP-
UCB) model (41) as a commonly used (42, 43, 45, 46) asocial
baseline for the spatially correlated bandit problem. Gaussian
Process regression is used to model expectations about the
reward r associated with each action by generalizing from reward
observations. For some novel option x∗ (i.e. a tile on the grid),
and given past observations Dt = {Xt , yt} of choices x1, . . . xt
and rewards y1, . . . yt , the posterior reward distribution is a
multivariate Gaussian:

p(r(x∗|Dt) ∼ N (m(x∗|Dt), v(x∗|Dt)) [1]
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Correlation structure
rparent.child  0.6; 
rchild.child  0.6

Bandit 1

Bandit 2

Bandit 4

Bandit 3

Parent

B Reward structure

Scientist 3

Scientist 4

Scientist 2

A Socially correlated bandit task 
Gather as much salt as 
possible within 14 clicks

Salt concentration is 
correlated spatially...

.... as well as socially

C Experimental design 
Exp. 1Round types

Solo round

Exp. 2

Group round
t t

Low High

Reward

Fig. 1. Experiment overview. (A) Screenshot of the socially correlated bandit task. Participants completed the task either individually (solo rounds, gray border)
or in groups of four (group rounds, blue border). In the group condition, they had access to choice and outcome information of other group members.
Participants were instructed they would collect salt samples on alien oceans with other scientists to explain the spatial and social correlation structure. For
details, see Materials and Methods. (B) Reward structure of the socially correlated bandit. Individual payoffs are generated from a common parent grid and
are positively correlated. This leads to high and low payoffs being in the same general area across participants, while global optima are still distinct, limiting
the effectiveness of exact imitation. (C) Experimental design. Exp. 1 only included group rounds, while Exp. 2 had alternating group and solo rounds, in
counterbalanced order.

The posterior is thus defined by its mean m(x∗|Dt) and
variance v(x∗|Dt):

m(x∗|Dt) = K>∗,t(Kt,t + �2
� I)
−1yt

v(x∗|Dt) = K∗,∗ − K>∗,t(Kt,t + �2
� I)
−1K∗,t , [2]

Here, K is the covariance matrix between different subsets of
observations (∗ for new inputs and t for prior observations), �2

�
is the observation noise, and I is the identity matrix.

The assumed covariance depends on the kernel function k,
which determines how the model generalizes. We use a Radial
Basis Function (RBF) kernel kRBF(x, x′) = exp

(
−
‖x−x′‖2

2�2

)
.

The length-scale � determines the decay rate of the covariance
between two points as a function of distance, with higher
values of � assuming stronger spatial correlations. Thus, �
controls the range of generalization, with higher values leading
to broader generalization, as a single data point affects more
of the surrounding data. This follows the same principle as
the generating function, presenting a reasonable solution to
the individual generalization process. The GP also models the
environment’s observation noise �2

� , which allows for the model
to not overfit noise.

After inferring reward, upper confidence bound (UCB)
sampling is used to balance exploration and exploitation
tendencies. This combines posterior mean and variance resulting
in a UCB value.

UCB(x) = m(x|Dt) + �
√

v(x|Dt) [3]

The uncertainty-directed exploration parameter � trades off the
value of an option against the uncertainty of that estimate: As
it approaches 0, an agent will preferentially exploit the best-
known option, whereas higher � values induce more exploratory
behavior, by optimistically inflating the value of more uncertain
options.

We then use a softmax to convert the value function into the
policy:

�(x) ∝ exp(UCB(x)/�) [4]

The temperature parameter � controls how deterministically the
model follows the value function: The higher it is, the more
random the choices become. An agent’s next action is chosen
based on this policy.
Decision Biasing. Is the simplest social learning model, incorpo-
rating social information into the policy in a frequency-based
manner (1, 3). This means that the choice probability for a
given option is increased proportionally to how many agents
have chosen that option. The policy becomes

� = (1− )�ind + �soc, [5]

with the social policy �soc tracking the other agents’ choices in
the previous trial such that �soc(x) ∝ nxsoc,t−1. Here, n is the
number of times an option was chosen. Individual and social
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Fig. 2. Models and evolutionary simulations. (A) Model overview. Top panel: Illustration of the individual decision-making circuit and the stages at which
social information is integrated. Bottom panels: An illustrative 1D example of how models incorporate social information within the steps of the reinforcement
learning circuit, where the x-axis is the discrete choice space. Reward: Only SG integrates social information into the GP posterior, whereas the other models
(only AS shown for ease of reading) generalize only individual information. Value: VS integrates social information into the value function proportional to its
deviation from expected value. Policy: DB integrates social information into the policy based on choice frequency. Crosses mark the most likely choice for each
model. (B) Simulation priors. Prior distribution densities used for model (including evolutionary) simulations. The red line shows the mean. (C) Evolutionary
simulation method. Agents were randomly selected to compete in one round of the task. The highest scoring agent was selected for the next generation, with
a chance of parameter or type mutations. (D) Results of the evolutionary simulations. Labels show the starting point of the various initial populations. Lines
show evolutionary trajectory of model proportions, with crosses at the end point after 500 generations (all at Bottom Right vertex). For ease of reading, the Inset
plot shows only the development of SG over generations.

policies are then combined, with the weight of social learning
dependent on the mixing parameter  .
Value Shaping. Incorporates social information into the value
function. In previous studies, this was done by treating a social
choice as a “pseudo-reward” (2). It can be seen as an imple-
mentation of either stimulus enhancement or local enhancement
(28), in this case increasing the likelihood of choosing the same
option one has seen chosen by the demonstrator by increasing
its value. Previous implementations of this model had no reward
information, as the action outcomes were not shown in their
tasks. As outcomes are shown in our task, we augment the model
to be value-sensitive by using a simple prediction error approach:

V (x) = Vx,ind + �(Vx,soc − Vx,ind) [6]

with Vx,ind being the individual UCB-value, and Vx,soc the social
value of a given option x. Thus, an observed action’s value will
be increased when it is better than individual expectation and
decreased when it is worse. Social bonus parameter � governs
the strength of this social influence. While including value
information in VS improved it over a value-agnostic version (SI
Appendix, Fig. S2A), the same was not true for DB (SI Appendix,
Fig. S2B). Thus, we elected to keep using the simpler, equally
good model for DB, but modified VS for better performance.
Social Generalization. Is a model that incorporates social infor-
mation at the stage of the Gaussian Process regression. This
means that, unlike in the other models, social information is
generalized to surrounding options as well, which corresponds to
a nonspecific form of local enhancement (28) in a spatial context.

However, social information is assumed to be noisier, and thus
less reliable, than individual information. The formerly scalar
noise term �2

� (Eq. 2) becomes a vector, with its value depending
on whether an observation was individual (�soc(x) = 0) or social
(�soc(x) = 1).

�2
�|x = �2

�ind
+ �soc(x) · �2

�soc
, [7]

In addition to the term for the environment’s observation noise
�2
�ind

, social noise �2
�soc

is added to any social observations. This
social noise (henceforth referred to as �soc) determines the reliance
on social information. Higher social noise causes posterior means
to deviate less from the prior mean and posterior variances to
remain higher in social compared to individual observations. As
social noise term �soc approaches 0, social information is relied
on more and more, with the extreme case of �soc = 0 treating
social information as equally reliable as individual information.

Evolutionary Simulations. We first used evolutionary simula-
tions (Materials and Methods) to determine which model achieves
the best normative performance in this setting. Since social
learning strategies have frequency-dependent fitness (47), how well
they perform depends on the frequency of other strategies in
the population. Thus, evolutionary simulations are well suited to
evaluate frequency-based fitness without having to exhaustively
evaluate every possible population composition (Fig. 2 B–D).
We first created different initial populations with all possible
combinations of models in equal proportion, where each agent
was parameterized by drawing from their model’s respective prior
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distribution for parameters (Fig. 2B; for details, see SI Appendix).
We then used tournament selection (Fig. 2C ) to iteratively
sample groups of four agents (with replacement) to perform the
task. The best-performing agents in each group were selected to
seed the next generation, with some chance of parameter and
type mutation.

To ensure that our model implementations are in line with
and extend results from the published literature, we first evaluate
model performance replicating a setting where two agents are
in the same environment (r = 1), with one making optimal
choices as an expert (2). Our results replicate VS being the best
model compared only against AS and DB (SI Appendix, Fig. S4A).
However, when we include SG, the results support a tie between
SG and VS with no clear winner (average p(SG) = 0.48 and
p(VS) = 0.50 in the final generation; SI Appendix, Fig. S4 B–D),
due to the two models making the same predictions in identical
reward environments with no spatial correlations.

Fig. 2D shows the results of evolutionary simulations of
the competing social learning models in our current task
environment (r ≈ 0.6). Here, due to individual differences in
reward, all initial populations (even those that did not originally
contain SG agents) evolve to be 100% SG agents (see SI Appendix,
Fig. S3A for starting populations including AS). This clearly
suggests that SG is the normatively best model in our task.

As the parameters evolve throughout the simulations, we can
also glean insight into what combinations of parameters were
normatively optimal. Investigating the evolved parameters for SG
(SI Appendix, Fig. S3B), we find that � nearly reaches the true
underlying value of the environments, 2 (� = 1.96). The random
exploration parameter � is fairly low at roughly 0.006, showing
mostly deterministic choices based on the value function. The
social noise parameter �soc shows considerable variation, but
evolves to 3.2 on average. As this is higher than 0, we can see
that indiscriminate social information use (like imitation) is not
optimal in our task. The directed exploration parameter � evolves
to lower values than what has previously been found in humans
(41) with an average of 0.19. This may indicate that directed
exploration can be replaced by social information use in social
learning settings.

Experiment 1. People Flexibly Use Diverse Social Information.
Having determined SG to be the normatively best strategy for the
socially correlated bandit, we now move on to online experiments
using the task to see how human participants actually use social
information with social correlations at r = 0.6. Exp. 1 consisted
exclusively of group rounds, meaning that participants always had
access to the choices and outcomes of the members of their group.
Behavioral results. First, participants improved across trials (Fig.
3A), with the average performance being significantly higher than
the chance level of 0.5 [t(127) = 59.8, P < 0.001, d = 5.3,
BF > 100]. There was a small but negligible learning effect over
rounds (SI Appendix, Fig. S1A). Average social search distance
(the Euclidean distance between an option chosen at trial t and
one chosen by another participant at t-1) decreased over time,
indicating increased clustering of participant choices as the task
progressed (Fig. 3B). In lieu of an asocial estimate, we find that
social search distance was also significantly lower than what would
be predicted by random choice [an average of 5.75; t(127) =
−29.4, P < 0.001, d = 2.6, BF > 100], which provides further
evidence for clustering.

This social clustering may have stemmed from a tendency to
approach other participants who have earned a high reward in
the previous trial. A regression of search distance over previous
reward by information source (individual or social) shows that

participants’ individual search distance (the Euclidian distance
from their previous choice) significantly decreased as previous
individual reward increased (−6.95; Highest Density Interval
[−7.24, −6.67]; Fig. 3C, black line). This is rational given the
spatial correlations in the environment and is consistent with
predictions of all candidate models. However, they did not only
show this tendency for individual, but also for social information:
When another participant earned a high reward in the previous
trial, they searched closer to this participant’s position (−4.22
[−4.61, −3.88]; Fig. 3C blue line). It is worth noting that this
effect of social reward on search distance is significantly lower
than the effect of individual information (2.73 [2.63, 2.79]),
reflecting the lower reliability of social information compared to
individual information.

This value-sensitive social information use is in line with pre-
dictions made by VS and SG, which integrate social information
based on their value. On the other hand, it does not match
predictions made by AS or DB: AS predicts no reliance on social
information at all, with social search distances at roughly chance
level (5.75), while DB would predict lower social search distance
regardless of previous social reward (SI Appendix, Fig. S14C ).

Further teasing apart the model predictions about social search
distance, we consider the distinction of imitation (search distance
= 0) vs. “innovation” (building on someone else’s choice, search
distance = 1; Fig. 3D). VS predicts value-sensitive imitation, that
is, an increase of imitation rate as previous social reward increases,
which we find in a linear model of social search distance frequency
(0.04, 95%-CI: [0.03, 0.05], P < 0.001). However, this effect
was even stronger for innovation (0.08, 95%-CI: [0.06, 0.10],
P < 0.001), which only SG, the only model generalizing social
information, could explain (SI Appendix, Fig. S14D).
Computational modeling results. Turning to modeling, we find
that SG did indeed fit human behavior best, with hierarchical
Bayesian model selection (48) showing it had the highest poste-
rior probability of being the best model (protected exceedance
probability: pxpSG ≈ 0.98; Fig. 3E). In participants best
described by SG (Fig. 3F ), the generalization parameter was
significantly lower than the ground truth of � = 2 [� ≈ 1.11;
t(56) = −13.0, P < 0.001, d = 1.7, BF > 100]. This
means that participants did not generalize their observations
as broadly as would be optimal given the environment. The
directed exploration parameter was significantly lower than values
found for individually learning GP-UCB agents in the same task
structure (41) [� ≈ 0.33; t(56) = −9.4, P < 0.001, d = 1.3,
BF > 100]. The random exploration parameter � ≈ 0.03.
Social noise was significantly higher than the value of 3.29
found to be optimal in evolutionary simulations [�soc ≈ 12.55;
t(56) = 12.8, P < 0.001, d = 1.7, BF > 100], meaning
participants relied less on social information than optimal.

We also find a relationship between � and �soc: The more a
participant relied on social information (lower �soc), the less they
relied on directed exploration (lower �; r� = 0.29, P = 0.001,
BF = 28; Fig. 3G). This might explain why �-values were lower
than in previous, individual learning, settings (41). Additionally,
participants best described by SG performed better when they
showed higher reliance on social information (r� = −0.34, P <
0.001, BF > 100; Fig. 3H ), where the negative correlation
reflects the fact that higher values of �soc mean lower reliance on
social information.

In summary, Exp. 1 shows that participants could use social
information to guide their decision-making even when it was
not directly applicable to their own situation. Their behavior
followed the predictions of the SG model, implying that they
used social information similarly to individual information, but
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Fig. 3. Experiment 1 results. (A) Learning curves. The average reward across participants is shown in black, with group averages as colored lines. The red
dashed line shows chance-level performance. (B) Social search distance (average Euclidian distance from other participants at t − 1) over trials. The black line is
the population average, while group averages are shown as colored lines. (C) Search distance as a function of previous reward, split by information source. Lines
are the posterior prediction of a Bayesian hierarchical regression, while points are data averaged across 20 bins. (D) Value-dependent social search distance.
A search distance of 0 is imitation, while a search distance of 1 means the participant explored an adjacent tile to a social observation. (E) Model comparison,
showing the protected exceedance probability (pxp), which describes the probability of a model best fitting the population, accounting for chance. The red
dashed line shows chance level. (F ) Social Generalization (SG) parameters (limited to participants best fit by SG). (G) � (directed exploration) over �soc. Higher
values of �soc mean lower reliance on social information. Only participants best fit by SG are shown. (H) Mean reward over �soc (social noise). Higher values of
�soc mean lower reliance on social information. Only participants best fit by SG are shown.

treated it as more noisy, and thus less reliable. This method of
integrating social information is optimal in our task environment
(Fig. 2D) and led to better results for participants the more
they relied on social information. It is important to note that
the linear relationship between social noise and reward only
exists because participants relied on social information less than
optimal. Indiscriminately using social information (�soc = 0) is
not beneficial in our task (SI Appendix, Fig. S2C ), so the expected
relationship when the whole range of �soc is covered would be U-
shaped with lower rewards for both higher and lower reliance on
social information than optimal. In a replication of Exp. 1 with
identical task structure and instructions, but social correlations
set at r = 0.1, we found AS to be the dominant model
(pxpAS = 0.999), and even higher social noise in the subset
of participants best fit by SG [�soc ≈ 14.29; t(141) = 2.8,
P = 0.005, d = 0.6, BF = 7.1; SI Appendix, Fig. S6].

In addition, we find low uncertainty directed exploration
(lower �) correlates with greater reliance on social learning (lower
�soc). This pattern suggests social learning may partially replace
uncertainty-directed exploration, which we expand on in Exp. 2.

Experiment 2. Social Learning Partially Replaces Directed Ex-
ploration. To understand the effects of social information on
decision-making better, we conducted a preregistered replication
of Exp. 1 with the addition of solo rounds (i.e. rounds where
participants were still in correlated environments, but were not
shown other participants’ choices and outcomes) to provide an
asocial baseline for each participant. This allows us to control
for the generic effects of the correlated reward structure, and
directly probe if directed exploration was actually lower in social

learning settings than in individual. This was a preregistered
experiment (44), and any analyses that were not included in the
preregistration are specified as exploratory.
Behavioral results. Participants improved throughout trials, with
higher performance on average in group rounds compared to solo
rounds [t(131) = 6.0, P < 0.001, d = 0.5, BF > 100; Fig.
4A]. Again, there was a minimal learning effect over rounds, but
no effect of condition order or their interaction on performance
(SI Appendix, Fig. S1B).

In following analyses, we compare social measures (like
previous social reward, or social search distance) for both solo
and group rounds despite no social information being provided
in solo rounds. This serves as a baseline for effects that could be
interpreted as social (e.g. lower search distances for high previous
social rewards), which might also be explained by participants
independently exploring correlated environments. Social search
distance decreased over trials in both conditions (Fig. 4B).
However, it was significantly lower in group than in solo rounds
[t(131) = −14.8, P < 0.001, d = 1.7, BF > 100], indicating
that the clustering was not solely due to the social correlations
between environments, but was influenced by social information.

Again, we investigate the effect of previous reward on search
distance, splitting by information source (individual vs. social)
and round type (solo vs. group). We replicate the results from
Exp. 1 in group rounds: Search distance was modulated by
both individual (−7.75 [−8.00, −7.49]; Fig. 4C, black line)
and social previous rewards (−5.44 [−5.75, −5.12]; Fig. 4C,
dark blue line), with participants searching closer for higher
values, and searching at greater distances for larger values. Again,
social rewards influenced search distance to a lesser extent than
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Fig. 4. Exp. 2 results. (A) Learning curves by task type. Averages for solo (gray solid) and group (blue dashed) rounds shown in thick lines with shaded 95%
CIs, while group averages are shown as thin lines. The red dashed line shows chance-level performance. Inset plot is a histogram of mean score in group—solo
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information. Only participants best fit by SG shown.

individual rewards (2.31 [2.18, 2.44]). In solo rounds, we find the
same effect for individual information (−7.97 [−8.22, −7.72];
Fig. 4C, gray line) with only a slight difference from group
rounds (0.22 [0.02, 0.41]). This indicates that participants relied
on previous individual reward slightly more in solo than in
group rounds. Although previous social reward still significantly
influenced social search distance in solo rounds, based on the
correlated environmental structure only (−4.29 [−4.59,−4.00];
Fig. 4C, light blue line), it did so to a significantly lower degree
than in group rounds (−1.15 [−1.33,−0.96]). This shows that,
while the effect of social information on search distance can be
partially explained by the socially correlated structure of the task,
there is a significant component that can only be attributed to
the use of social information in how participants modulated their
search. Again, this result is in line with the predictions of VS and
SG, but not AS and DB, which predict either no or indiscriminate
social information use, respectively.

Focusing on a finer delineation of social search distance in
an exploratory analysis (Fig. 4D), we find a value-based increase
in imitation frequency (0.023, 95% CI: [0.011, 0.035], P <
0.001) and even higher increase in innovation (0.062, 95%-
CI: [0.046, 0.078], P < 0.001) across round types. However,
this increase in frequency was also significantly higher in group
rounds compared to solo rounds (0.036, 95% CI: [0.019, 0.053],
P < 0.001), and higher still for innovation in group rounds
(0.038, 95% CI: [0.016, 0.061], P = 0.001). Thus, we replicate
the value-sensitive increase in both imitation and innovation,
which is only predicted by SG. The significant interaction of the
effect with round type once again shows that, while the effects

found in Exp. 1 can be partially explained by the correlation
structure of the environments alone, they remain significant when
controlling for this factor.
Computational modeling results. We again performed hierarchi-
cal Bayesian model comparisons, but separately for solo and
group rounds. Here, we find that AS is the best fitting model for
solo rounds, showing that our social models did not just exploit
the correlated structure to improve fit (Fig. 4E ; pxpAS ≈ 1). In
group rounds, we again find that SG is the best fitting model
(Fig. 4F ; pxpSG ≈ 0.94).

In line with our finding of comparatively lower values of
directed exploration parameter � in Exp. 1 than in previous
individual learning literature, we find that � is indeed significantly
lower in group than in solo rounds within participants (Wilcoxon
signed-rank test; Z = −2.7, P = 0.004, r = −0.23, BF = 63;
Fig. 4G). In an exploratory analysis, we replicate the significant
relationship between �soc and � from Exp. 1 (r� = 0.34,
P < 0.001, BF > 100; Fig. 4H ), again suggesting a partial
replacement of directed exploration with social learning when
social information is available.

Regarding the relationship of social noise parameter �soc and
average reward in group rounds in participants best fit by SG, we
find a weakly significant correlation (r� = −0.21, P = 0.025,
BF = 2.1, Fig. 4I ). This might be explained by a ceiling effect
of social learning that was not as strong in Exp. 1, when they had
fewer rounds to familiarize themselves with the task.

In summary, Exp. 2 replicates the findings of experiment 1
in that participants use social information even when it is not
directly applicable to their own situation, being best described
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by the SG model. This means that social information is used
similarly to individual information, but treated as more noisy.
The addition of an asocial baseline condition lets us compare
individual and social strategies, where we confirm that the
findings in Exp. 1 were actually indicative of social information
use and not just a consequence of purely individual information
use in a correlated environment. We replicate the finding that
�-values in group rounds are lower than in previous literature. In
comparison to solo rounds, we find that �-values are significantly
lower, and significantly correlated with social noise, indicating
that the use of social information replaces uncertainty-directed
exploration to a degree. Use of social information was beneficial,
shown both by the negative correlation of social noise and mean
reward, and the general higher scores in group compared to solo
rounds.

Discussion

We introduce the socially correlated bandit as a task to study
social learning with similar, but nonidentical reward structures.
Here, we find that the best normative and descriptive model,
SG, integrates social information into the generalization process,
but in a noisy fashion. This expands our understanding of social
learning mechanisms beyond settings where each individual has
the exact same reward function (1, 2, 4, 43).

The socially correlated bandit has a spatially correlated reward
structure within participant, which is also positively correlated
across participants. We use this design to operationalize how
humans may have similar but not perfectly identical preferences
in matters of taste. The spatial correlations allow for social
information to be integrated at a stage of the decision-making
process unique to tasks in which reward information can be
generalized. Thus, we introduce the SG model, which generalizes
social information similarly to individual information, but treats
it as more noisy (Eq. 7). We also show that the previously
dominant VS model (2) can be seen as an edge case of SG when
participants are in identical environments, there is no potential
to generalize social information, and it is sensible to rely on social
information as much as individual observations (SI Appendix,
Fig. S4).

In Exp. 1, we found that SG was the best descriptive model
of human behavior in this task, capturing behavioral patterns
not predicted by other models (Fig. 3 B–D) and providing
the best predictions of trial-by-trial choices (Fig. 3E). We also
found a relationship between the social noise parameter �soc and
performance, suggesting participants were more successful the
more they relied on social information (Fig. 3H ). Additionally,
we found that participants who relied more on social information
displayed less uncertainty-directed exploration (Fig. 3G). This
suggests a potential replacement of exploration with social
learning, further corroborated by lower values of the directed
exploration parameter � than found in previous works using an
individual version of the task (41, 45), which motivated further
investigation in Exp. 2.

In Exp. 2, we conducted a preregistered replication (44) of
Exp. 1, which also added solo rounds to the task to assess how
exploration behavior changed within participants when social
information is unavailable. The within-subject manipulation of
solo vs. group rounds allowed us to ensure that none of the
findings of Exp. 1 were solely the consequence of individual
learning in correlated environments, and let us compare pat-
terns and outcomes of individual and social learning. In this
experiment, participants performed better in group than solo

rounds, showing that they used available social information
to their benefit (Fig. 4A). Again, we replicate the behavioral
patterns corroborating SG as the best descriptive model even
while accounting for the individual learning baseline (Fig. 4 B–
D), while model comparison shows that SG wins in group but
not solo rounds (Fig. 4 E–F ). Consistent with our preregistered
predictions, we found that � was significantly lower in group
than in solo round, with � again being significantly correlated
with social noise �soc (Fig. 4H ), further lending credibility to
social learning replacing directed individual exploration.

Across our experiments, we expand the scope for theories of
the integration of social information to cases where uncritical
imitation is not optimal, and find that humans can go beyond
imitation when the situation calls for it (10). Participants did
so by updating not only the social observations themselves,
but also generalizing them when it was appropriate for their
individual situation. Thus, the key difference between models is
in how they use social information, with our results hinting at
more sophisticated strategy used by humans than considered in
previous studies.

In sum, the findings of our study add to a rich literature
showing that social learning is adaptive in stable environments
(1, 43, 49–54), even with interindividual differences in reward.
We show that this adaptive use of social information went hand
in hand with a reduction of uncertainty-directed exploration,
implying that social learning functioned as an exploration tool.

Social Learning and Resource Rationality. While we find adap-
tive use of social information for our task setting, at the same time,
we still find that participants underutilized social information
compared to what would be optimal. Such underutilization of
social information has also been found in other experimental
settings (5, 24, 50, 55, 56). Participants’ natural skill at social
learning may have been limited by the artificial experimental
setting. A part of this may be that some social learning
strategies, like copying the expert, were unavailable due to lack
of information, potentially reducing participants’ inclination to
rely on social information overall.

However, besides social learning potentially being impeded by
the artificial experimental setting, the discrepancy between adap-
tive social learning and underutilization of social information
may also be explained by resource rationality. While it may be
theoretically optimal to discount social information to a specific,
low degree, this may also be significantly more complex than
to rely on individual information more strongly, only referring
back to presumably noisy social information when individual
learning does not provide any promising options. In this regard,
underutilizing social information may also be seen as resource-
rational (57). Falling back on social information only when it is
absolutely necessary also ties back to the social learning strategies
(8, 10): Social Generalization agents generally copy (i.e. are
strongly influenced by others’ choices) when uncertain (i.e. their
individual information does not outweigh social observations).

The same resource-rationality-based reasoning may be applied
to our finding regarding directed exploration being partially
replaced by social learning when possible. Directed exploration
has been shown to be reduced by cognitive load (58, 59),
indicating that individual exploration may be costly. Hence, our
finding that social learning may have served as an exploration tool
in our task hints at social learning as a method to let us offload
these costs of directed exploration. It is also in line with prior
research that suggests or shows exploration differences between
asocial and social settings (1, 27, 42, 43, 51, 60, 61). It also
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provides empirical support for the outcome of the social learning
strategies tournament, wherein winning models tended to almost
exclusively use social learning for exploration (9).

In our task, we show that this lower exploration is optimal
for social learning using evolutionary simulations. However,
simulations based on our participants’ parameter estimates show
that lower exploration would also lead to higher performance in
asocial learning (SI Appendix, Fig. S12 A and B). This implies that
social learning not only takes the function of uncertainty-directed
exploration, but also helps participants avoid overexploration.
This might be due to the need for exploration being diminished
by the ability to gain more environmental information from
others. It could also be a dynamic process wherein observing one
teammate move from exploring to exploiting inspires participants
to do the same, lowering overall exploration rates compared
to individual settings. Such adjustments of strategy between
individual and group settings, especially for individuals with low
confidence, have been found before (49). However, the exact
mechanism of this lowered exploration in a round-based task
remains a subject for further research. In an exploratory analysis,
we find a similar effect of social learning on generalization
parameter � being higher, and thus closer to the ground truth, in
group rounds (SI Appendix, Fig. S12 C and D), which is in line
with previous research (43).

Limitations and Future Directions. Here, we used a task with
spatially and socially correlated rewards, which allowed us to
most easily communicate the individual and social learning
structure to participants. However, this limits the scope of our
current experiments to a spatial domain, whereas real-world
social information may be conveyed on the basis of nonspatial
features. While an investigation of SG in the nonspatial domain
is beyond the scope of this work, our AS model, which forms
the basis for all our social models, has been investigated in more
abstract domains. In those works, it was successfully applied
to nonspatial domains (e.g., abstract Gabor patch features;
62) and graph-structured environments (63). Thus, we would
expect to find similar patterns for SG, which is computationally
identical save for the added integration of social information.
Testing this hypothesis, as well as investigating how exactly it
would be parameterized, and whether this would be different to
generalization in spatial domains, remains a fruitful avenue for
future research.

Previous research often investigates the effects of demonstrator
skill, contrasting one skilled and one unskilled demonstrator
(2, 64). Following this reasoning, one might consider that
the integration mechanism used depends on the skill level of
teammates. However, value-sensitive models VS and SG benefit
from any information about the structure of the environment,
regardless of whether it is positive or negative. Therefore, we
did not investigate effects of participant skill directly. However,
participants appeared more sensitive to choices of their peers that
lead to high rewards (Figs. 3 and 4C ), mirroring the human
tendency to “copy“ (here rather “learn from“) the successful
(24, 25). Nevertheless, it remains an open question how sensitive
participants can be to others’ perceived skill in this task, and in
what way this would influence their decision-making.

With the focus of this study being on the mechanisms of
integrating social information as an individual, we left group
dynamics of exploration throughout the experiment largely un-
explored. While we find social clustering on a group level (Figs. 3B
and 4B), we can explain this using individual-level mechanisms.
In our task design, participants are incentivized to maximize

individual gain, which limits the benefit of active coordination.
Based on participant’s reported strategies, it is unlikely that
they coordinated their behavior to maximize information gain as
well. However, it may be interesting to investigate coordination
strategies in similar task settings, for example by changing the
incentive (65) from maximizing individual reward to maximizing
knowledge of the environment.

Our main experiments limited the environmental correlation
to r = 0.6. This is due to the fact that it was both harder to
generate many environments with higher correlations, and the
results would be less insightful, likely converging on imitation
as they approach 1. However, our task using only one specific
correlation of environments leads to a number of new questions:
For which range of correlations humans are still sensitive to
the optimal strategy? When (if ever) do they stop integrating
social information altogether? Are humans able to make use of
negatively correlated environments as well as positively correlated
ones? While a large-scale battery of experiments across a range
of social correlations is beyond the scope of this paper, we
use evolutionary simulations to show that SG has the best
normative performance for correlations as low as r = 0.2± 0.05
(SI Appendix, Fig. S5). Indeed, when the task environments had
lower social correlations of r = 0.1± 0.05 (Exp. 1R), AS became
dominant model (pxpAS = 0.999), implying that humans are
sensitive to the relevance of social information (SI Appendix,
Fig. S6). However, the threshold at which they stop relying on
social information, whether they would over- or underweight
social information before then, and how this could be influenced
by the framing of the task, remains a question for further
research.

Additionally, in real life, we would expect to find some people
with more similar tastes to us and others with more different
tastes. How such varying correlations between participants would
affect how social information is used remains an open question.
Given prior research showing that humans are quite capable of
adjusting their social learning based on the skill of the observed
individual (2, 25, 26), it seems reasonable to assume they could
adjust to higher or lower levels of correlation as well. It would be
interesting to see whether this would lead to only learning from
the most closely correlated individual, or from all sources but
with higher assumed noise for lower correlations.

Given the novel task setting of social learning in positively
correlated environments, we chose to investigate the naturalistic
interactions of groups of four real participants. We would not
have been able to make an informed choice of model for a
more controlled setting where humans are placed in groups of
artificial agents a priori. Thus, having humans do the task in
groups ensured that we were not affecting their behavior through
unnatural model choices. In the future, more granular insights
into the exact usage of social information could be gained by
placing participants in groups with Social Generalization agents,
which can used to more precisely manipulate the usefulness of
social information and control group dynamics.

Finally, our task structure only maps to real-world scenarios
in which it is not beneficial to learn about others’ preferences.
When an individual is making a choice for themself in a
matter of preference, their own preference has the most weight.
However, when the individual lacks experience, relying on
information from others can be more helpful than having to
explore without any further guidance. However, in the real world,
social information can be used for a multitude of inferences,
many of which may go beyond using its use as an exploration
tool. Knowing how much a friend likes a restaurant may not be
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helpful for individual decision-making once the individual has
tried the restaurant themself. But their friend’s experience may
provide more information about them, or the restaurant, which
can be useful in other ways. Here, we model our task as a matter
of preference, where the most relevant piece of information for
reward is knowing one’s own salt distribution, and leave collective
information gathering about the world as a subject for future
research.

Conclusions. Across two experiments, we found that people used
social information more flexibly than previously accounted for,
successfully integrating information from others with diverse
reward functions, but taking it “with a grain of salt.” Our
model captures this, by integrating social information as inher-
ently noisier, since it is not directly applicable to one’s own
circumstances. Social learning also functioned as an exploration
tool, partially replacing uncertainty-directed exploration, and
potentially helping participants behave more optimally.

Materials and Methods

Experiment Design. Across all experiments, participants explored spatially
correlated multiarmed bandits (41) with social correlations across participants.
The bandits were displayed as grids consisting of 121 tiles. Environments
were structured identically across studies and conditions. Each tile yielded
normally distributed rewards: r(x) ∼ N (f(x), �2

� ) where the expected reward
across all tiles was sampled from a GP prior to induce spatial correlations
f ∼ GP

(
0, k (x, x′)

)
and the variance was fixed to�2

� = 0.0001. To generate
the environments, we sampled a set of 11× 11 parent grids from a Gaussian
process prior with an RBF-kernel with a length scale of � = 2. We then
used these parent environment’s means as the prior means to sample a set
of child environments. To facilitate correlations across environments, the child
environments were filtered to only include those which correlated with the
parent environment by at least r = 0.6. This subset of child environments
was then filtered to only include sets of 4 environments which had correlation
coefficients of r = 0.6 ± 0.05 with each other to use in the task. We generated
40 sets of correlated environments for the experiments this way. At the start
of the experiment, we sampled a number of environment sets corresponding
to the number of rounds without replacement for each group. Exp. 1R, the
replication of Exp. 1 with lower correlations, used the same strategy to sample
environments with correlation coefficients of r = 0.1± 0.05.

For each round of the experiment, each participant was assigned an
environment from such a correlated set of four. Exps. 1 and 1R consisted of
8 rounds, and Exp. 2 consisted of 8 solo and 8 group rounds, totaling 16 rounds.
The search horizon was 14 for all experiments, with one tile being revealed at
random at the start of each round. To prevent participants from getting used to
the same reward structure, including its global maximum, environments were
rescaled to a randomly selected maximum value between 60 and 80 for each
round. This rescaling was consistent across participants. To prevent a single
participant from holding up a group, a random tile would be selected if they
did not make a choice within 10 s. Such random choice trials were excluded
from analysis. After selecting a tile, they would wait for all other participants
to make their selection as well. Once all participants made a choice, the task
would move on to the next trial. In solo rounds, participants would only see
their own bandit. In group rounds, participants were also permanently shown
all other participants’ bandits, including choices and outcomes. This was the
only difference between the two conditions. Choice and outcome information in
group rounds were updated for all participants at once after all group members
had made a choice.

Participants and Design. Participants for all experiments were recruited via
Prolific and assigned to groups of four based on access time to the experiment.
They were paid a base rate for expected experiment duration and could earn a
bonus of maximum the same amount based on performance. All experiments
were approved by the Ethics Committee of the University of Konstanz (“Collective

learning and decision-making study”), and participants provided informed
consent prior to participation.

Exps. 1 and 1R were observational studies with only the group condition.
For Exp. 1, we recruited N= 188 participants. After eliminating all groups with
drop-out, the final sample size was N = 128 (mean age: 38.5 ± 12.7 SD; 44
females). On average, participants spent 20.8± 0.5 min on the task and earned
£ 7.19± 0.04. For Exp. 1R, we recruitedN= 200 participants. After eliminating
all groups with drop-out, the final sample size was N = 156 (mean age: 36.9
± 10.7 SD; 87 females). On average, participants spent 22.4± 0.6 min on the
task and earned £ 7.58± 0.07.

For Exp. 2, which varied solo vs. group conditions within-subject in
interleaved order, we recruited 220 participants. Condition order (solo round
first vs. group round first) was counterbalanced across groups. After eliminating
all groups with drop-out, the final sample size was N = 132 (mean age:
35.8 ± 11.2SD, 46 females). On average, participants spent 31.0 ± 0.6 min
on the task and earned £10.4± 0.08.

Materials and Procedure. In all experiments, participants took part in groups
of four, which they were assigned to based on access time. After giving
informed consent, participants were instructed that they were embarking on
a scientific mission to collect salt samples from alien oceans on other planets,
and that their goal was to collect as many salt samples as possible. They were
informed that they could revisit the same area to get a similar reward, with salt
not depleting from repeated sampling. They were also told that other scientists
on their team would collect different salts, so there would be no competition for
resources, but that the salts were generated by the same process, and locations
with high salt concentrations were thus correlated across the salts. In Exp. 2,
participants were additionally told that they would be sent on both solo and
groupmissions,withnoinformationfromtheir teammatesbeingavailableinsolo
missions. However, participants were never instructed about how to use social
information.

After the instructions, participants in all experiments were shown fully
revealed example environments to ensure they understand the structure and
how social information usage may benefit them. After passing a comprehension
check, participants moved on to a waiting room, which would launch the task
once four people had joined. If there was no group of four after 3 min of a room
being open, all participants in that room were redirected to the postexperiment
questionnaire.

Once in the task, participants would be presented with their bandit grid with
one tile revealed. In the group condition, they would additionally see the bandits
of all other participants in the group with the rewards revealed as well. While
participants’ bandits were still correlated in solo rounds, they could not see other
group members’ bandits or choices in this condition.

Evolutionary Simulations. For any possible combination of models, we
generated an initial population consisting of an equal proportion of all the
models. For the three-way mixes, which lack one agent when all models have
exactly equal numbers, the final agent was randomly selected to be any of the
three models. Initial populations were generated based on a common set of
priors (Fig. 2B; see also SI Appendix). We used tournament selection to select
agents for the next generation: Groups of four agents were randomly drawn
with replacement to compete in one round of the task. The selection probability
of agents thus selected was lowered to prevent the same agents from being
sampled too often. The agent with the highest score in a group was selected to
seed the next generation. This procedure was repeated until the full population
size of N = 100 was reached. Each agent was thus sampled about 4 times.
Before repeating the process for the next generation, mutations were applied to
a part of the population. There was a 2% chance ofparametermutations, in which
a parameter would have Gaussian noise ∼ N (0, 0.2) added. If this caused
the parameter to go out of bounds, it was resampled from prior. There was a
0.2% chance of a typemutation, in which the agent’s model would be randomly
resampled. The new model could be one that was not initially present in the
population. To allow for invasions, we kept the baseline (GP-UCB) parameters
of the mutating agent stable, and only modified the social parameter, which
determines the model. Simulations were run this way for 500 generations.
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Simulations of all initial populations were repeated 10 times to ensure stability
of the results.

Model Comparisons. We fit models based on cross-validated maximum-
likelihood estimation. We iteratively formed the training sets by leaving one
round out, computing parameter estimates on this set, and evaluating model
predictions on the out-of-sample round. Overall goodness of fit was evaluated
based on the sum of the prediction error on each of the out-of-sample predictions.
For Exp. 2, participant data were split into solo and group rounds before fitting.
We used the summed out-of-sample log likelihood as an approximation of the
model evidence to perform hierarchical Bayesian model comparison (48).

Data, Materials, and Software Availability. All data and code are publicly
available at https://github.com/AlexandraWitt/socialGeneralization (66).
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Supporting Information Text12

Learning and ordering effects13

In Exp. 1, there was a small learning effect over rounds (0.004, 95% − CI : [0.001, 0.007], p = 0.0027). The same was true14

for Exp. 2 (0.002, 95% − CI : [0.0003, 0.003], p = 0.012). In Exp. 2, there was no effect of block order (0.005, 95% − CI :15

[−0.02, 0.015], p = 0.63), or the interaction of round and block order (−0.0001, 95% − CI : [−0.002, 0.002], p = 0.94) on16

performance (Fig. S1).17
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Fig. S1. Learning over rounds. a) Learning over rounds in Exp. 1. Red dashed line gives chance level performance. b) Learning over rounds and by block order in Exp. 2.
Red dashed line gives chance level performance.

Model simulations and variants18

Priors. For initial agent-based and evolutionary simulations, we drew parameters from a set of parameter priors. Priors for the
baseline asocial learner were based on the values found in prior studies(1). Since none of the parameter values can be negative,
but have no upper bound, we used log-normal distributions around the reported average participant estimates. This resulted in
the following parameter priors:

λ, β ∼ LogNormal(0.75, 0.5)
τ ∼ LogNormal(4.5, 0.75) [1]

For the social parameters, no prior empirical results existed, so we used priors that covered as much of the theoretical space
as possible. While we are able to cover the entire possible range for Decision Biasing and Value Shaping, since α, γ ∈ [0, 1], the
Social Generalization noise parameter εsoc cannot be negative, but can grow infinitely large. Therefore, we chose to centre an
exponential distribution around εsoc = 2, which we found to be good, but not optimal, in simulations, resulting in the following
priors:

α, γ ∼ Uniform(0, 1)
εsoc ∼ Exponential(0.5) [2]

Unless otherwise stated, simulations were run using these priors.19

Model variants. For model variants, we simulated groups of two asocial agents as well as one canonical and one modified agent.20

This was done to be able to directly compare the model’s performance given identical information. Asocial agents were used to21

prevent Roger’s paradox(2), i.e. the frequency-dependent fitness of social models, from affecting the results. We ran these22

simulations with task settings (search horizon of 14, 8 rounds) with 1000 different parameter sets.23
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Value-agnostic Value Shaping. As mentioned in the main text, Value Shaping benefitted from including social value information24

(Fig. S2a) compared to the unbiased version common in previous literature, where value is generically boosted for options25

selected by others. We implemented this as V (x) = Vx,ind + α · nxsoc,t−1. Our canonical prediction error implementation of26

VS significantly outperforms this alternative (t(1998) = 8.4, p < .001, d = 0.4, BF > 100) and was thus chosen as the main27

implementation.28

Value-sensitive Decision Biasing. We also tried to adapt Decision Biasing to our task by including value information. This might29

have been a beneficial update, since outcome information was generally not available in previous studies(3, 4), but was in ours.30

We modified the social policy so that it increased proportionally to the frequency of a social choice, weighted by how much31

higher the social reward was than the average experienced individual reward πsoc(x) ∝ nxsoct−1
· (m(xsoct−1 − ¯m(xind). In cases32

where m(xsoct−1 <
¯m(xind), the social information was ignored to prevent negative probabilities in the policy. Despite this33

added information (and the large sample size), there was no significant difference between the two models’ scores (t(1998) = 0.3,34

p = .730, d = 0.02, BF = .05; Fig. S2a). Thus, we chose to use the simpler model.35

Indiscriminate Social Generalization. There is an edge case of Social Generalization for εsoc = 0. It means that social and individual36

information are treated identically. While technically not a separate model, we show that discriminate use of social information37

(εsoc 6= 0 is significantly better than indiscriminate use in our task (t(1998) = 3.4, p < .001, d = 0.2, BF = 18; Fig. S2b).
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Fig. S2. Model variants. a) Value Shaping with (canonical) and without value sensitivity added. b) Decision Biasing with and without (canonical) value sensitivity added. c) SG
with εsoc set to 0 and not (canonical).

38

Detailed evolutionary simulations39

Visualization as a ternary plot as in the main text only allows for comparisons between 3 models at a time. As this paper40

put a focus on social learning, we chose to compare the three candidate social models in this manner. Figure S3a shows the41

evolutionary trajectories for all starting populations, including AS. As reported in the main text, SG takes over and dominates42

all populations.43

When it comes to parameter evolution, we can gain insight into the “optimal“ SG agent based on evolutionary simulations44

as well (Fig. S3b). We only report SG parameters as parameters of other models are unstable due to their low population size.45

The parameter evolutions are discussed in the main text.46

We additionally ran evolutionary simulations in a setting analogous to previous literature(4) with one expert choosing47

the correct option and the (social) learning agent being in an identical environment. This served to show that the spatially48

correlated bandit setup is not inherently different from simpler bandits used in previous literature. As reported in the main49

text, we replicate VS being the dominant model in such settings when comparing only the previously established models50

(Fig. S4a), and find an equilibrium between VS and SG when considering all of our candidate models (Fig. S4b-c). This is51

because when fully socially reliant (α=1 for VS, or εsoc = 0 for SG), as is optimal when learning from an expert in the same52

environment, and in the same environment as said expert, VS and SG make identical choice predictions, only differing at the53

stage at which social information is integrated (Fig. S4d). SG can be viewed as an extension of VS to cases where one has to54

learn from others in non-identical environments, not a completely new model.55

Normative strategy across environmental correlations56

We only test environments with a social correlation of r = .6± 0.05, which is somewhat arbitrary. To further investigate how57

Social Generalization would perform in different social correlation settings, we ran evolutionary simulations as described in the58

main text methods for environments with a range of social correlations (from r = 0± 0.05 to r = .9± 0.05 in .1 increments).59

While Asocial Learning performs better in uncorrelated environments (as was to be expected), Social Generalization appears to60
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λ

β

𝜏

ε

Fig. S3. Evolutionary simulations in correlated environments in detail. a) Evolutionary trajectories across all starting populations. Facet labels show initial population, and
lines show the probability of a given model in the population. Social Generalization dominates across all initial populations. b) Evolved parameters for Social Generalization.
Thick black line is the average.

be able to exploit even correlations in the range of r = .1± 0.05, and taking over as the prevalent model in the final generation61

starting at correlations of r = .2± 0.05. (Fig. S5).62

Human behaviour in environments with r = .163

Following the insight provided by the evolutionary simulations across different social correlations, we followed up with another64

replication of Exp. 1, changing the social correlation to r = .1±, 05 to assess if humans would be sensitive to the lowered65

correlation and how it would affect their behaviour (N=156). We kept instructions identical to the .6-version of the task,66

which also let us assess whether the instruction influenced on use of social information. In environments with low correlations,67

participants were predominantly in line with asocial behaviour (pxp = .999). In the subset of participants which were still best68

fit by SG, the average value of εsoc was 14.29, which was significantly higher than the values observed in environments with69

higher correlations (t(141) = 2.8, p = .005, d = 0.6, BF = 7.1).70

Figure S6 compares pxpSG (a) and social noise (b) across correlations. Humans appear to be able to adapt to varying71

correlations, reducing the propensity of social learning (SG in our case) and their reliance on social information in relation to72

the relevance of such information. This adaptation seems to be unrelated to instructions, which remained identical across73

correlations.74

Reward improvement75

In the analysis of experiment 1, we investigated how participants used both individual and social information to guide their76

exploration. To this end, we analyzed the influence of improvement potential (the difference between previous individual and77

previous social reward in the case of social information, and the difference between maximum possible reward and previous78

individual reward for individual information) on reward improvement (the difference between current and previous individual79

reward). While the data corroborated no effect of negative social information (improvement potential < 0), there seemed to be80

a strong relationship between positive social improvement potential and reward improvement (Fig. S7a). When modelling this81

relationship, we not only found a general relationship between improvement potential and improvement (0.53 [0.47, 0.60]), but82

also both a significant positive effect of social information (0.06 [0.04, 0.07]) and its interaction with improvement potential83

(0.12 [0.09, 0.15]; Fig. S7b). This seemed to indicate that social information was even more effective than individual information84

in guiding participants’ exploration.85
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However, while the relationship remained similar in experiment 2 (Fig. S7c), and the baseline effects replicated (improvement86

potential: 0.53 [0.51, 0.55]; social information: 0.05 [0.04, 0.06]; their interaction: 0.12 [0.09, 0.15]), we found none of their87

interactions with task type were significant (improvement potential*group round: 0.00 [-0.03, 0.03]; social info*group round:88

0.01 [-0.01, 0.02]; improvement potential*social info*group round: -0.01 [-0.05, 0.03]; Fig. S7d). This shows that the effect we89

found in experiment 1 was solely based on the task structure, and not any actual benefit of social information usage.90

Model bounding91

As the baseline asocial learning model is nested in all social models, we determined bounds for the social models to minimize92

model mimicry, and thus improve recovery. This serves to make the modelling more stringent compared to previous work(5).93

The bounds were determined based on the social mechanisms of the respective models. Since DB effectively only changes94

imitation rate (mixing parameter γ effectively trades off between individual learning and imitation, which makes it interpretable95

as an average imitation rate per trial), we chose to determine the bound based on expected average imitation based on96

individual learning in correlated environments. We simulated AS with priors from previous literature, and set the lower bound97

at 95%-quantile of the resulting Poisson distribution based on imitation counts (Fig. S8a). This meant, that agents fit by DB98

were expected to imitate at least as much as the 5% tail-end of the asocial population.99

Since VS affects the value function at a social observation, we determined the lower bound based on the minimum effect of100

a maximum reward social observation on a naive social learner (no individual observations) across a range of β-values. The101

criterion was a minimum of 5% change from the individual value (Fig. S8b).102

For SG, εsoc affects how strong of an effect social information has on the posterior of the GP. Hence, we set the bound at103

the social observation retaining at least 5% of its value given a naive social learner (Fig. S8c).104

Model and parameter recovery105

To assess model recovery, we simulated data using parameters fitted to participants for all models in experiment 1 and the group106

rounds of experiment 2. We then fit the simulated participants following the same procedure as used for actual participants,107

assigned each simulated participant a model based on best fit. We computed conditional probabilities for confusion and108

inversion matrices (Fig. S9). Despite the bounding, there is still some confusion potential between models, especially DB and109

VS, which hardly get fit with social parameters above the lower bound, and AS. There is also some confusion potential between110

AS and SG, but it is roughly balanced between the two, so overall fitting results should not be biased either way. In turn, the111

likelihood of a fit model being the generating one is highest for DB (0.85) and VS (0.9), but still high for AS (0.7) and SG112

(0.79).113

When it comes to parameter recovery, we used the same procedure of simulating and fitting the data as for model recovery,114

but looked at the correlations between the parameters of the generating model and its fit instead of the best fitting model115

(Fig. S10). λ (rτ = .87, p < .001, BF > 100) and τ (rτ = .86, p < .001, BF > 100) correlate near perfectly with the generating116
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to winning models in these works. a) Protected exceedance probability of SG across social correlations. b) Social noise parameters across correlations.

parameters across models. When it comes to β and the social parameters, the issue of lower bound social parameters recurred,117

leading to worse fits for DB and VS. β correlations are still high overall (rτ = .85, p < .001, BF > 100), whereas the social118

parameter correlation is lower (rτ = .27, p < .001, BF > 100). However, given that neither DB nor VS fit participant data well,119

leading to them mimicking AS as much as possible, this lack of correlation is less concerning. Looking at only the correlation120

for εsoc, it is noticeably higher (rτ = .51, p < .001, BF > 100).121

Model performance122

Models were fit using leave-one-round-out cross-validation. Negative log likelihoods were summed across test-rounds, with mean123

values being reported in Tables S1 and S2. Pseudo-R2 was computed as R2 = 1− (nLLmodel/nLLrandom) where nLLrandom is124

treating every choice as equally likely (1/121) for all non-random trials for that participant. Random trials were excluded from125

model fitting.126

As the models were nested, and AS generally provides a good explanation even in social settings, especially once a high127

value option has been found, performance does not differ greatly between models. However, SG is consistently the best fit128

across both experiments with high social correlations.

Model Mean nLL Pseudo-R²
AS 448.1 0.1576
DB 357.2 0.3268
VS 379.5 0.2845
SG 356.9 0.3273

Table S1. Model Performance Metrics for Exp. 1.

129

Model Mean nLL Pseudo-R²
AS 369.4 0.3106
DB 367.2 0.3147
VS 378.8 0.2932
SG 365.5 0.3178

Table S2. Model Performance Metrics for Exp. 2 group rounds.

Exp. 2 parameters130

To focus on the differences between β-values, we do not report all parameter values for the group rounds of Exp. 2 in the main131

text (Fig. S11). Generalization parameter λ ≈ 1.1, which is significantly lower than the ground truth λ = 2 (t(52) = −14.4,132

p < .001, d = 2.0, BF > 100). Directed exploration parameter β ≈ 0.22, and random exploration parameter τ ≈ 0.06. Social133

noise εsoc ≈ 9.5, which is significantly higher than optimal the optimal value found in evolutionary simulations (t(52) = 8.3,134

p < .001, d = 1.1, BF > 100).135
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Exploration optimality136

Following up the comparatively lower β-parameter in experiment 1, we compare participant’s β-parameters between the solo137

and group rounds. As reported in the main text, participants had significantly higher β-values in solo than in group rounds138

(Z = −2.7, p = .004, r = −.23, BF = 63, Fig. S12a). In simulations based on participant parameters while varying the139

parameter of interest, we find that such low values of β are actually optimal in the current task, both in solo and group rounds.140

We see that the group round value of β is closer to optimal than the solo round one, and both are lower and thus closer to141

optimal than the average found in previous literature(1).142

As we also found higher values of λ in Exp. 1, we exploratively repeat these analyses. λ is significantly higher, and thus143

closer to ground truth, in group than in solo rounds. Again, group round λ is closest to the theoretical optimum, followed by144

solo round and previous study values. Taken together, this implies that social information may improve exploration behaviour145

closer to optimality in general.146

Exclusion analyses147

To ensure that correlations were not spurious because of participants at the upper bound of εsoc, we redid the correlation148

analyses for reward and β excluding any participants whose εsoc > 18.9999.149

All relationships remained significant. In Exp. 1, there was a significant negative correlation between εsoc and mean reward150

(rτ = −.31, p = .001, BF = 24), indicating higher reliance on social information leading to higher scores. There was also a151

significant positive correlation between εsoc and β (rτ = .34, p < .001, BF = 61), indicating that participants using relatively152

more social learning used less directed exploration and vice versa. In Exp. 2, we replicate both the relationship of εsoc with153
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Fig. S10. Parameter recovery. Relationship between generating and recovered parameter by model (facet label).

reward (rτ = −.20, p = .034, BF = 1.6), and β (rτ = .35, p < .001, BF > 100).154

Model-predicted behaviour155

For reference, we simulated model behaviour using the priors given in the priors section.156
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Fig. S11. Parameter fits for group rounds of Exp. 2. Only participants best fit by SG shown.
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p = .004

p = .021

Generalization

Fig. S12. More optimal parameters in group rounds. a) Difference in directed exploration parameter β between participants fit by AS in solo rounds and participants fit by
SG in group rounds, reproduced from main text. b) Relationship between directed exploration parameter β and reward in simulations. We ran simulations on the parameter
ranges present in participants while varying β, to see if lower β values are more beneficial for social learners. In both models, lower values of β are associated with higher
reward. Average β in group rounds is closest to optimal, followed by solo round average and average from previous literature. c) Difference in generalization parameter λ

between participants fit by AS in solo rounds and participants fit by SG in group rounds. d) Relationship between generalization parameter λ and reward in simulations. We ran
simulations on the parameter ranges present in participants while varying λ, to see if higher λ values are more beneficial for social learners. In both models, higher values of λ

are associated with higher reward. Average λ in group rounds is closest to optimal, followed by solo round average and average from previous literature.
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Fig. S13. Correlation analyses excluding εsoc at the upper bounds. a) Relationship between εsoc and mean reward in Exp. 1. b) Relationship between εsoc and β in
Exp. 1. c) Relationship between εsoc and mean reward in Exp. 2. d) Relationship between εsoc and β in Exp. 2.
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Fig. S14. Behaviour as predicted by the models. a) Learning curves. Red dashed line indicates chance-level performance. b) Social search distance over trials. c) Search
distance over previous reward. Dashed lines indicate the relationship for individual previous reward and individual search distance; solid lines indicate the relationship for social
previous reward and social search distance. d) Probability of imitation (social search distance = 0; dashed lines) and innovation (social search distance = 1; solid lines) over
previous social reward.
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