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ABSTRACT

There has been much progress in understanding human social learning, including recent studies integrating social information
into the reinforcement learning framework. Yet previous studies often assume identical payoffs between observer and
demonstrator, overlooking the diversity of real-world interactions. We address this gap by introducing a socially correlated
bandit task that accommodates payoff differences among participants, allowing for the study of social learning under more
realistic conditions. Our novel Social Generalization (SG) model, tested through evolutionary simulations and two online
experiments, outperforms existing models by incorporating social information into the generalization process, but treated as
noisier than individual observations. Our findings suggest that human social learning is more flexible than previously believed,
with the SG model indicating a potential resource-rational trade-off where social learning partially replaces individual exploration.
This research highlights the flexibility of humans social learning, allowing us to integrate social information from others with

different preferences, skills, or goals.

Introduction

Imagine you are in a foreign city, trying to decide on a restau-
rant to visit for dinner. You check reviews within a certain
radius. Do you go for the best-rated restaurant no matter what,
trusting the majority judgement? Or do you assume your
taste may differ from everyone else’s in this city, and discount
ratings based on your personal preferences, integrating what
is popular with what you know about your personal tastes
in food? It may seem obvious that you would not generally
assume that everyone you could possibly rely on for their
opinion will share your exact tastes. However, much of the
literature in social learning has focused on this idea of how
we use information from others who are just like us'=.

Research on the use of social information has identified
various social learning strategies (SLS) commonly deployed
by humans’~!'!. These SLS serve to selectively limit imita-
tion to cases in which it would be beneficial to imitate others,
and can be categorized into when-, what-, and who-strategies.
When-strategies determine when social learning should be
used, e.g. when an agent is uncertain'>"14, or when individ-
ual learning is costly'*!>. What-strategies specify what is
preferentially learnt from others, e.g. emotionally evocative
content'®!7 and information relevant for survival'$20, or
about social relationships'®?!. Who-strategies determine who
should be learnt from, e.g. prestigious’>2* or successful’+2°
individuals, or the majority! 31427 Prior research has also
sought to understand how people imitate, that is, what mecha-
nism underlies their use of social information, e.g. stimulus

enhancement®®, decision biasing!, or value shaping?.

However, even when selectively limiting when and how
imitation should be used for social learning, individuals may
need to share the same goals or preferences as whoever they
are imitating for imitation to yield favourable outcomes. In
previous research, it has commonly been the case that demon-
strators had the same payoff function as the participant!=°.
Only few studies have considered social information use in
matters of taste’®=3!, and they have largely focused on the nor-
mative question of how best to craft social recommendations.
Therefore, our understanding of the human ability to learn
from others has been limited to settings in which imitation is
optimal.

In real life, however, people can rarely assume that any
stranger they may choose to imitate will share their exact goals.
For instance, if the goal is to get home after work, following
the first car in view is unlikely to lead to the desired outcome.
Conversely, if an individual notices a usually bustling street
deserted during rush hour, they may correctly choose to dodge
the roadwork that has caused everyone’s paths to change while
still getting to the right house after a quick detour. This differ-
ence in exact goals (e.g. the destination of a trip) despite some
shared preferences (e.g. avoiding traffic or closed roads) is
commonly seen in many choice domains, like food selection,
fashion, career choices, holiday planning, or scheduling, in
which we can commonly learn from others. Thus, there must
be more to social learning than just imitation: some consider-
ation must be made of whether the interests of the imitating



and imitated individuals are aligned.

The question of how humans learn socially from demon-
strators with differing preferences is sometimes answered
with Theory of Mind inference®”=, i.e. the ability to infer
others’ mental states, like their goals or preferences, from
their behaviour. Research in this domain has uncovered much
about people’s ability to infer mental-state information from
others’ behaviours*>~’, and specifically people’s ability to
infer others’ preferences’®3?. After such inference, people
might indeed be able to determine whether they share another
person’s reward function, and thus whether exact imitation is
a promising option. However, even if reward functions are not
perfectly aligned, people may still be able to glean valuable
insights that enhance their individual decision-making. More-
over, people in the modern world often make choices using
social information that is merely an aggregate rating of others’
opinions, with no way of inferring how similar each individual
may be to them. Thus, there is an open question of how we
can use inferred or otherwise-gained value information from
others who do not share our exact preferences, which is what
the current study aims to address.

Goals and scope

To this end, we introduce the socially correlated bandit task,
which lets us investigate learning and exploration dynamics in
social settings where exact imitation is not optimal. The task is
based on the spatially correlated bandit*?, which uses spatially
correlated rewards to allow for individual generalization, and
is typically used to investigate asocial learning. We add social
correlations to this setup, enabling the generalization of not
only individual, but also social information (Fig. 1a-b).

In our socially correlated bandit, participants search individ-
ualized environments, which are correlated with one another.
Thus, the highest rewards are generally in the same region
for all participants, but directly copying another participant’s
best choice will not lead to the maximum payoff for oneself.
This emulates the relationship of social information and di-
verse individual preferences and circumstances in the real
world: while there are some standards that apply to everyone,
not everyone would agree on the same option being optimal.
While the spatially correlated multi-armed bandit has previ-
ously been used to investigate social learning, it was either in
individual settings*' or with both participants in the same en-
vironment*?, not with correlated rewards across participants.

Participants explored these socially correlated environ-
ments in groups of four. In group rounds, they had full
information about other participant’s choices and outcomes
(Fig. 1c), thus sidestepping the actual social inference. We
ran evolutionary simulations with multiple candidate models
to find the normatively best strategy, which was our novel
“Social Generalization* (henceforth “SG*) model. We then fit
these models to the behavioural data collected in two online
experiments. In Exp. 1, which consisted only of group rounds,
we studied whether humans would be able to utilize social in-
formation in this novel setting, and if so, how they integrated

it into their decision-making. We found that participants were
able to use social information to their benefit, with search
behaviour being significantly influenced by other participants
finding high rewards. Their behaviour was most accurately
predicted by SG. We then ran Exp. 2 as a preregistered repli-
cation® interleaving solo rounds and group rounds. This
allowed us to disentangle behavioural signatures stemming
from the correlated task structure from actual social learning.
It also let us delve deeper into differences between individual
and social learning in the task by comparing baseline learn-
ing model’s parameters between conditions. Again, we find
adaptive use of social information, with SG being the best
fit model. Differences in exploration behaviour indicate that
social learning may function as an exploration mechanism
when available®. Taken together, we find that humans can inte-
grate social information with more nuance than what previous
task designs implied, potentially using it to partially replace
individual exploration.

Results

We use the socially correlated bandit (Fig. 1a) for this study.
Each agent explores a multi-armed bandit arranged as a grid
with spatial correlations??, and can observe the other agents
of their group doing the same. We generated sets of four
positively correlated bandits (for details, see Methods), so that
social information can be valuable, but is less so when used
verbatim (Fig. 1b). In the experiments, this was framed as
collecting salt samples in alien oceans as a team of scientists,
with each scientist being interested in a different salt.

In the following, we first introduce four candidate models
that differ in how they integrate social information into the
reinforcement learning process (Fig. 2a, top panel). We then
use these models in evolutionary simulations to find the best
normative strategy. Finally, we report results from two online
experiments. In Exp. 1, we investigated whether and how
humans would be able to use social information in this new
setup to enhance their decision-making. We expand on these
results in Exp. 2 as a preregistered replication, where we
interleave solo and group rounds to investigate how social
learning influences individual exploration patterns.

Models

We first introduce an asocial baseline model (Asocial Learner;
AS), followed by our candidate social models. We consider
three social models, all of which build on the asocial baseline
model. Each social model integrates social information into a
different stage of the individual decision-making process: the
policy (Decision Biasing; DB), value function (Value Shaping;
VS), or reward generalization (Social Generalization; SG). All
models are illustrated in Fig. 2a.

Asocial Learner (AS). We use a Gaussian Process Up-
per Confidence Bound (GP-UCB) model*’ as a commonly
used*!-4%4 asocial baseline for the spatially correlated ban-
dit problem. Gaussian Process regression is used to model
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Figure 1. Experiment overview. a) Screenshot of the socially correlated bandit task. Participants completed the task either
individually (solo rounds, gray border) or in groups of four (group rounds, blue border). In the group condition, they had access
to choice and outcome information of other group members. Participants were instructed they would collect salt samples on
alien oceans with other scientists to explain the spatial and social correlation structure. For details, see Methods. b) Reward
structure of the socially correlated bandit. Individual payoffs are generated from a common parent grid and are positively
correlated. This leads to high and low payoffs being in the same general area across participants, while global optima are still
distinct, limiting the effectiveness of exact imitation. ¢) Experimental design. Exp. 1 only included group rounds, while Exp. 2

had alternating group and solo rounds, in counterbalanced order.

expectations about the reward r associated with each action
by generalizing from reward observations. For some novel
option X, (i.e. a tile on the grid), and given past observations
9, = {X,,y:} of choices xi,...x; and rewards yi,...y;, the
posterior reward distribution is a multivariate Gaussian:

p(r(x| ) ~ N (m(x:|Zy), (x| Z1)) (D

The posterior is thus defined by its mean m(x.|%;) and
variance v(X.|%):

m(x.| %) = K*TJ (Kii+02D) 7y,
V(X*|.@t) = K*,* - Kzt(Kt7t + Ggl)_lK*J’ (2)

Here, K is the covariance matrix between different subsets of
observations (* for new inputs and ¢ for prior observations),
0'3 is the observation noise, and I is the identity matrix.

The assumed covariance depends on the kernel function k,
which determines how the model generalizes. We use a Radial

2
_ =X

Basis Function (RBF) kernel kgpr (x,x') = exp ( 5 )

The length-scale A determines the decay rate of the covariance
between two points as a function of distance, with higher
values of A assuming stronger spatial correlations. Thus,
A controls the range of generalization, with higher values
leading to broader generalization, as a single data point affects
more of the surrounding data. This follows the same principle
as the generating function, presenting a reasonable solution
to the individual generalization process. The GP also models
the environment’s observation noise 0'82, which allows for the
model to not overfit noise.

After inferring reward, upper confidence bound (UCB) sam-
pling is used to balance exploration and exploitation tenden-
cies. This combines posterior mean and variance resulting in
a UCB value.

UCB(x) =m(x|Z;) + B/ v(x|%) ©)
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Figure 2. Models and evolutionary simulations. a) Model overview. Top panel: Illustration of the individual
decision-making circuit and the stages at which social information is integrated. Bottom panels: An illustrative 1D example of
how models incorporate social information within the steps of the reinforcement learning circuit, where the x-axis is the
discrete choice space. Reward: Only SG integrates social information into the GP posterior, whereas the other models (only AS
shown for ease of reading) generalize only individual information. Value: VS integrates social information into the value
function proportional to its deviation from expected value. Policy: DB integrates social information into the policy based on
choice frequency. Crosses mark the most likely choice for each model. b) Simulation priors. Prior distribution densities used
for model (including evolutionary) simulations. Red line shows the mean. ¢) Evolutionary simulation method. Agents were
randomly selected to compete in one round of the task. The highest scoring agent was selected for the next generation, with a
chance of parameter or type mutations. d) Results of the evolutionary simulations. Labels show the starting point of the various
initial populations. Lines show evolutionary trajectory of model proportions, with crosses at the end point after 500 generations
(all at bottom right vertex). For ease of reading, the inset plot shows only the development of SG over generations.

The uncertainty-directed exploration parameter  trades off
the value of an option against the uncertainty of that estimate:
as it approaches 0, an agent will preferentially exploit the
best known option, whereas higher § values induce more
exploratory behaviour, by optimistically inflating the value of
more uncertain options.

We then use a softmax to convert the value function into
the policy:

7(x) o< exp(UCB(x) /7) 4)

The temperature parameter T controls how deterministically
the model follows the value function: the higher it is, the more
random the choices become. An agent’s next action is chosen
based on this policy.

Decision Biasing (DB) is the simplest social learning model,
incorporating social information into the policy in a frequency-
based manner!. This means that the choice probability for a
given option is increased proportionally to how many agents

have chosen that option. The policy becomes:

= (1 - '}/)nind + YTsoc, ©)
with the social policy 7, tracking the other agents’ choices
in the previous trial such that s, (x) o< ny ,—1. Here, n is
the number of times an option was chosen. Individual and
social policies are then combined, with the weight of social
learning dependent on the mixing parameter 7.

Value Shaping (VS) incorporates social information into
the value function. In previous studies, this was done by treat-
ing a social choice as a “pseudo-reward”?. It can be seen
as an implementation of either stimulus enhancement or lo-
cal enhancement?8, in this case increasing the likelihood of
choosing the same option one has seen chosen by the demon-
strator by increasing its value. Previous implementations of
this model had no reward information, as the action outcomes
were not shown in their tasks. As outcomes are shown in our
task, we augment the model to be value-sensitive by using a
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simple prediction error approach:
V(X) = Vx,ind + a(vx,xoc - Vx,ind) 6)

with V, ;4 being the individual UCB-value, and V; s, the so-
cial value of a given option x. Thus, an observed action’s value
will be increased when it is better than individual expectation
and decreased when it is worse. Social bonus parameter
governs the strength of this social influence. While including
value information in VS improved it over a value-agnostic ver-
sion (Fig. S2a), the same was not true for DB (Fig. S2b). Thus,
we elected to keep using the simpler, equally good model for
DB, but modified VS for better performance.

Social Generalization (SG) is a novel model that incorpo-
rates social information at the stage of the Gaussian Process
regression. This means that, unlike in the other models, so-
cial information is generalized to surrounding options as well,
which corresponds to a non-specific form of local enhance-
ment?®. However, social information is assumed to be noisier,
and thus less reliable, than individual information. The for-
merly scalar noise term 682 (Eq. 2) becomes a vector, with its
value depending on whether an observation was individual
(8s0c(x) = 0) or social (Ssoc(x) = 1).

oy = Oany + B0 (X) - 07 (7)

Esoc?

In addition to the term for the environment’s observation noise
Ggm o social noise Ggm is added to any social observations.
This social noise (henceforth referred to as &,.) determines
the reliance on social information. Higher social noise causes
posterior means to deviate less from the prior mean and pos-
terior variances to remain higher in social compared to in-
dividual observations. As social noise term &, approaches
0, social information is relied on more and more, with the
extreme case of &, = 0 treating social information as equally
reliable as individual information.

Evolutionary simulations
We first used evolutionary simulations (see Methods) to deter-
mine which model achieves the best normative performance
in this setting. Since social learning strategies have frequency
dependent fitness*>, how well they perform depends on the
frequency of other strategies in the population. Thus, evolu-
tionary simulations (starting from different initial populations)
are well-suited to evaluate frequency-based fitness without
having to exhaustively evaluate every possible population
composition. We considered initial populations with all pos-
sible combinations of models, with equal proportions of all
included models. Simulated agents were parameterized by
drawing from their model’s respective prior distribution for
parameters (Fig. 2b; for details see SI). Following the prin-
ciple of tournament selection, we then sampled groups from
the populations with replacement, selected the highest scoring
agent per group for the next generation with some chance of
parameter and type mutation (Fig. 2c).

We first evaluate model performance in a setup to replicate
results from previous literature?, having two agents in the

same environment (» = 1) with one of them making optimal
choices as an expert. We replicate VS being the best model
compared to AS and DB in previous literature (Fig. S4a). In
identical environments, VS and SG make the same predic-
tions, and the evolutionary simulations are tied between the
two models with no clear winner (average p(SG) = .48 and
p(VS) =50 in the final generation; Fig. S4b-d).

Figure 2d shows the results of evolutionary simulations
of the competing social learning models in our current task
environment: all possible initial populations, even ones that
did not originally contain SG agents, evolve to be 100% Social
Generalization agents (see Fig. S3a for starting populations
including AS). This clearly suggests that SG is the normatively
best model in our task.

As the parameters evolve throughout the simulations, we
can also glean insight into what combinations of parameters
were normatively optimal. Investigating the evolved param-
eters for SG (Fig. S3b), we find that A nearly reaches the
true underlying value of the environments, 2 (A = 1.96). The
random exploration parameter 7 is fairly low at roughly 0.006,
showing mostly deterministic choices based on the value func-
tion. The social noise parameter &, shows considerable
variation, but evolves to 3.2 on average. As this is higher than
0, we can see that indiscriminate social information use (like
imitation) is not optimal in our task. The directed exploration
parameter 3 evolves to lower values than what has previously
been found in humans*® with an average of .19. This may
indicate that directed exploration can be replaced by social
information use in social learning settings.

Experiment 1. People flexibly use diverse social
information

Having determined SG to be the normatively best strategy
for the socially correlated bandit, we now move on to online
experiments using the task to see how human participants
actually use social information. Exp. 1 consisted exclusively
of group rounds, meaning that participants always had access
to the choices and outcomes of the members of their group.

Behavioral results

Firstly, participants improved across trials (Fig. 3a), with
the average performance being significantly higher than
the chance level of 0.5 (¢(127) = 59.8, p < .001, d = 5.3,
BF > 100). There was a small but negligible learning effect
over rounds (Fig. Sla). Average social search distance (the
Euclidean distance between an option chosen at trial t and
one chosen by another participant at t-1) decreased over time,
indicating increased clustering of participant choices as the
task progressed (Fig. 3b). The social search distance was
also significantly lower than what would be predicted by ran-
dom choice (an average of 5.75; 1(127) = —29.4, p < .001,
d =2.6, BF > 100).

This social clustering may have stemmed from a tendency
to approach other participants who have earned a high re-
ward in the previous trial. A regression of search distance
over previous reward by information source (individual or
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Figure 3. Experiment 1 results. a) Learning curves. The average reward across participants is shown in black, with group
averages as coloured lines. The red dashed line shows chance-level performance. b) Social search distance (average Euclidian
distance from other participants) over trials. The black line is the population average, while group averages as shown as
coloured lines. ¢) Search distance as a function of previous reward, split by information source. Lines are the posterior
prediction of a Bayesian hierarchical regression, while points are data averaged across 20 bins. d) Value-dependent social
search distance. A search distance of 0 is imitation, while a search distance of 1 means the participant explored an adjacent tile
to a social observation. e) Model comparison, showing the protected exceedance probability (pxp), which describes the
probability of a model best fitting the population, accounting for chance. Red dashed line shows chance level. f) Social
Generalization (SG) parameters (limited to participants best fit by SG). g) B (directed exploration) over &,.. Higher values of
&0c mean lower reliance on social information. Only participants best fit by SG are shown. h) Mean reward over &, (social
noise). Higher values of &g, mean lower reliance on social information. Only participants best fit by SG are shown.

social) shows that participants’ individual search distance (the
Euclidian distance from their previous choice) significantly de-
creased as previous individual reward increased (-6.95; High-
est Density Interval [-7.24, -6.67]; Fig. 3c, black line). This is
rational given the spatial correlations in the environment, and
is consistent with predictions of all candidate models. How-
ever, they did not only show this tendency for individual, but
also for social information: when another participant earned a
high reward in the previous trial, they searched closer to this
participant’s position (-4.22 [-4.61, -3.88]; Fig. 3c blue line).
It is worth noting that this effect of social reward on search
distance is significantly lower than the effect of individual
information (2.73 [2.63, 2.79]), reflecting the lower reliability
of social information compared to individual information.

This value-sensitive social information use is in line with
predictions made by VS and SG, which integrate social in-
formation based on their value. On the other hand, it does
not match predictions made by AS or DB: AS predicts no re-
liance on social information at all, with social search distances
at roughly chance level (5.75), while DB would predict low
social search distance regardless of previous social reward.

Further teasing apart the model predictions about social
search distance, we consider the distinction of imitation
(search distance = 0) vs. “innovation” (building on some-
one else’s choice, search distance = 1; Fig. 3d). VS predicts
value-sensitive imitation, that is, an increase of imitation rate
as previous social reward increases, which we find in a lin-
ear model of social search distance frequency (0.04, 95%-
CIL: [0.03,0.05], p < .001). However, this effect was even
stronger for innovation (0.08, 95%-CI: [0.06,0.10], p < .001),
which only SG, the only model generalizing social informa-
tion, could explain.

Modeling results

Turning to modelling, we find that Social Generalization did
indeed fit human behaviour best, with hierarchical Bayesian
model selection*® showing it had the highest posterior proba-
bility of being the best model (protected exceedance probabil-
ity: pxpsc ~ .98; Fig. 3e). In participants best described
by SG (Fig. 3f), the generalization parameter was signif-
icantly lower than the ground truth of A =2 (A = 1.11;
t(56) = —13.0, p < .001, d = 1.7, BF > 100). This means
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that participants did not generalize their observations as
broadly as would be optimal given the environment. The
directed exploration parameter was significantly lower than
values found for individually learning GP-UCB agents in the
same task structure*” (B =~ 0.33; (56) = —9.4, p < .001,
d = 1.3, BF > 100). The random exploration parameter
T ~ 0.03. Social noise was significantly higher than the
value of 3.29 found to be optimal in evolutionary simulations
(&50c & 12.55; 1(56) = 12.8, p < .001, d = 1.7, BF > 100),
meaning participants relied less on social information than
optimal.

We find a relationship between B and &,.: the more a
participant relied on social information (lower &), the less
they relied on directed exploration (lower 3; r; = .29, p =
.001, BF = 28; Fig. 3g). This might explain why -values
were lower than in previous, individual learning, settings‘m.
Additionally, participants best described by SG performed
better when they showed higher reliance on social information
(rr = —.43, p < .001, BF > 100; Fig. 3h), where the negative
correlation reflects the fact that higher values of &, mean
lower reliance on social information.

In summary, Exp. 1 shows that participants could use so-
cial information to guide their decision-making even when
it was not directly applicable to their own situation. Their
behaviour followed the predictions of the SG model, imply-
ing that they used social information similarly to individual
information, but treated it as more noisy, and thus less reliable.
This method of integrating social information is optimal in
our task environment (Fig. 2d), and lead to better results for
participants the more they relied on social information. It
is important to note that the linear relationship between so-
cial noise and reward only exists because participants relied
on social information less than optimal. Indiscriminately us-
ing social information (&, = 0) is not beneficial in our task
(Fig. S2¢), so the expected relationship when the whole range
of &, is covered would be U-shaped with lower rewards for
both higher and lower reliance on social information than
optimal. In addition, we find low uncertainty directed ex-
ploration (lower f3) correlates with greater reliance on social
learning (lower &,.). This pattern suggests social learning
may partially replace uncertainty-directed exploration, which
we expand on in Exp. 2.

Experiment 2. Social learning partially replaces di-
rected exploration

To understand the effects of social information on decision-
making better, we conducted a preregistered replication of
Exp. 1 with the addition of solo rounds (i.e. rounds where
participants were still in correlated environments, but were not
shown other participants’ choices and outcomes) to provide an
asocial baseline for each participant. This allows us to control
for the generic effects of the correlated reward structure, and
directly probe if directed exploration was actually lower in
social learning settings than in individual. This was a pre-
registered experiment*3. Any analyses that were not included

in the preregistration are specified as exploratory.

Behavioral results

Participants improved throughout trials, with higher perfor-
mance on average in group rounds compared to solo rounds
(#(131) = 6.0, p < .001, d = 0.5, BF > 100; Fig. 4a). Again,
there was a minimal learning effect over rounds, but no ef-
fect of condition order or their interaction on performance
(Fig. S1b).

In following analyses, we will compare social measures
(like previous social reward, or social search distance) for both
solo and group rounds despite no social information being
provided in solo rounds. This serves to add a baseline for
effects that could be interpreted as social (e.g. lower search
distances for high previous social rewards) that might also be
explained by participants independently exploring correlated
environments. Social search distance decreased over trials
in both conditions (Fig. 4b). However, it was significantly
lower in group than in solo rounds (¢(131) = —14.8, p < .001,
d = 1.7, BF > 100), indicating that the clustering was not
solely due to the social correlations between environments,
but was influenced by social information.

Again, we investigate the effect of previous reward on
search distance, splitting by information source (individual
vs. social) and round type (solo vs. group). We replicate
the results from Exp. 1 in group rounds: search distance was
modulated by both individual (-7.75 [-8.00, -7.49]; Fig. 4c,
black line) and social previous rewards (-5.44 [-5.75, -5.12];
Fig. 4c, dark blue line), with participants searching closer for
higher values, and searching at greater distances for larger
values. Again, social rewards influenced search distance to a
lesser extent than individual rewards (2.31 [2.18, 2.44]). In
solo rounds, we find the same effect for individual information
(-7.97 [-8.22, -7.72]; Fig. 4c, gray line) with only a slight dif-
ference from group rounds (0.22 [0.02, 0.41]). This indicates
that participants relied on previous individual reward slightly
more in solo than in group rounds. Although previous social
reward still significantly influenced social search distance in
solo rounds, based on the correlated environmental structure
only (-4.29 [-4.59, -4.00]; Fig. 4c, light blue line), it did so
to a significantly lower degree than in group rounds (-1.15
[-1.33, -0.96]). This shows that, while the effect of social in-
formation on search distance can be partially explained by the
socially correlated structure of the task, there is a significant
component that can only be attributed to the use of social in-
formation in how participants modulated their search. Again,
this result is in line with the predictions of VS and SG, but not
Asocial Learning and Decision Biasing, which predict either
no or indiscriminate social information use, respectively.

Focusing on a finer delineation of social search distance in
an exploratory analysis (Fig. 4d), we find a value-based in-
crease in imitation frequency (0.023, 95% CI: [0.011,0.035],
p < .001) and even higher increase in innovation (0.062,
95%-CI: [0.046,0.078], p < .001) across round types. How-
ever, this increase in frequency was also significantly higher
in group rounds compared to solo rounds (0.036, 95%CI:
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search distance by task type. Solo rounds are solid lines, group rounds dashed. e-f) Protected exceedance probabilities (pxps)
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shows chance level. g) B-parameter estimates for participants fit by AS in solo rounds (gray) and participants fit by SG in group
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rounds. Higher values of &, mean lower reliance on social information. Only participants best fit by SG shown.

[0.019,0.053], p < .001), and higher still for innovation in
group rounds (0.038, 95%CI: [0.016,0.061], p = .001).
Thus, we replicate the value-sensitive increase in both im-
itation and innovation, which is only predicted by SG. The
significant interaction of the effect with round type once again
shows that, while the effects found in Exp. 1 can be partially
explained by the correlation structure of the environments
alone, they remain significant when controlling for this factor.

Modeling results
We again performed hierarchical Bayesian model compar-
isons, but separately for solo and group rounds. Here, we find
that AS is the best fitting model for solo rounds, showing that
our social models did not just exploit the correlated structure
to improve fit (Fig. 4e, pxp ~ 1). In group rounds, we again
find that SG is the best fitting model (Fig. 4f; pxp =~ .94).

In line with our finding of comparatively lower values of
directed exploration parameter 3 in Exp. 1 than in previous
individual learning literature, we find that 3 is indeed signifi-

cantly lower in solo than in group rounds within participants
(Wilcoxon signed-rank test; Z = —2.7, p = .004, r = —.23,
BF = 63; Fig. 4g). In an exploratory analysis, we replicate
the significant relationship between &g, and 8 from Exp. 1
(rr = .34, p < .001, BF > 100; Fig. 4h), again suggesting a
partial replacement of directed exploration with social learn-
ing when social information is available.

Regarding the relationship of social noise parameter &,
and average reward in group rounds in participants best fit
by SG, we find a weakly significant correlation (r; = —.21,
p = .025, BF = 2.1, Fig. 4i). This might be explained by
a ceiling effect of social learning that was not as strong in
Exp. 1, when they had fewer rounds to familiarize themselves
with the task.

In summary, Exp. 2 replicates the findings of experiment 1
in that participants use social information even when it is not
directly applicable to their own situation, being best described
by the SG model. This means that social information is used
similarly to individual information, but treated as more noisy.
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The addition of an asocial baseline condition lets us compare
individual and social strategies, where we confirm that the
findings in Exp. 1 were actually indicative of social infor-
mation use and not just a consequence of purely individual
information use in a correlated environment. We replicate
the finding that B-values in group rounds are lower than in
previous literature. In comparison to solo rounds, we find that
B-values are significantly lower, and significantly correlated
with social noise, indicating that the use of social information
replaces uncertainty-directed exploration to a degree. Use of
social information was beneficial, shown both by the negative
correlation of social noise and mean reward, and the general
higher scores in group compared to solo rounds.

Discussion

We introduce the socially correlated bandit as a task to study
social learning with similar, but not identical reward structures.
Here, we find that the best normative and descriptive model,
Social Generalization (SG), integrates social information in a
noisy fashion, thus extending past research on social learning
in settings using the same task environment for the source of
social information and the participant!>%42.

The socially correlated bandit has a spatially correlated
reward structure within participant, which is also positively
correlated across participants. The spatial correlations al-
lows for social information to be integrated at a stage of the
decision-making process unique to tasks in which reward in-
formation can be generalized. Thus, we introduce the SG
model, which generalizes social information similarly to in-
dividual information, but treats it as more noisy (Eq. 7). We
also show that the previously dominant Value Shaping (VS)
model® can be seen as an edge case of SG in cases where
participants are in identical environments and fully relying on
social information as would be sensible when learning from
expert demonstrators ( Fig. S4).

In Exp. 1, we found that SG was the best descriptive model
of human behaviour in this task, which was additionally con-
firmed by behavioural patterns that were only consistent with
this model’s predictions about the integration of social infor-
mation into participants’ search behaviour (Fig. 3b-d). We
also found a relationship between the social noise param-
eter &, and performance, implying that participants were
more successful the more they relied on social information
(Fig. 3h). Additionally, we found that participants who relied
more on social information displayed less uncertainty-directed
exploration (Fig. 3g). This suggests a potential replacement
of exploration with social learning, further corroborated by
lower values of the directed exploration parameter 3 than
found in previous works using an individual version of the
task*®#*, which motivated further investigation in Exp. 2.

In Exp. 2, we conducted a preregistered replication*> of
Exp. 1, which also added solo rounds to the task to assess how
exploration behaviour changed within participants when so-
cial information is available. The within-subject manipulation
of solo vs. group rounds allowed us to ensure that none of the

findings of Exp. 1 were solely the consequence of individual
learning in correlated environments, and let us compare pat-
terns and outcomes of individual and social learning. In this
experiment, participants performed better in group than solo
rounds, showing that they used available social information
to their benefit (Fig. 4a). Again, SG was the best descriptive
model of human behaviour (Fig. 4f). We replicate the be-
havioural signatures corroborating SG as the winning model
even while accounting for the individual learning baseline
(Fig. 4b-d). We indeed found that  was significantly lower
in group than in solo round, with 8 again being significantly
correlated with social noise &, (Fig. 4h), further lending
credibility to social learning replacing directed individual ex-
ploration.

Across both experiments, we expand task settings for com-
putational models of social information integration to cases
where imitation is not optimal, and find that humans can do
more than imitate when the situation calls for it'?. Our task
expands the niche case of group settings with identical reward
environments to non-identical, but positively correlated en-
vironments in line with how in real life many situations in
which we learn from others call for some distinction between
the other person’s situation and ourselves. Previous research
can be mapped as a fringe case of our setup, and SG can be
seen as an adaptation of a previously winning” and, based
on its capacity for both memory and value-sensitivity, most
flexible model, Value Shaping, to settings where agents are
not learning from expert demonstrators (Fig. S4).

In sum, the findings of our study add to a rich literature
showing that social learning is adaptive in stable environ-
ments'-#>47-32 even in non-identical environments. We show
that this adaptive use of social information went hand in hand
with a reduction of uncertainty-directed exploration, implying
that social learning functioned as an exploration-tool.

Social learning and resource rationality

While we find adaptive use of social information for our task
setting, at the same time, we still find that participants un-
derutilized social information compared to what would be
optimal, as has been previously found in experimental set-
tings>24+48:33.5% Human’s natural skill at social learning may
be limited by the artificial experimental setting. A part of this
may be that some social learning strategies, like copying the
expert, were impossible due to lack of information, potentially
reducing participants’ inclination to rely on social information
overall.

However, besides social learning potentially being impeded
by the artificial experimental setting, the discrepancy between
adaptive social learning and underutilization of social infor-
mation may also be explained by resource rationality. While
it may be theoretically optimal to discount social information
to a specific, low degree, this may also be significantly more
complex than to rely on individual information more strongly,
only referring back to presumably noisy social information
when individual learning does not provide any promising op-
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tions. In this regard, underutilizing social information may
also be seen as resource-rational in that regard®. Falling
back on social information only when it is absolutely neces-
sary also ties back to the social learning strategies® '%: Social
Generalization agents generally copy (i.e. are strongly influ-
enced by others’ choices) when uncertain (i.e. their individual
information does not outweigh social observations).

The same resource-rationality based reasoning may be ap-
plied to our finding regarding directed exploration being par-
tially replaced by social learning when possible. Directed ex-
ploration has been shown to be reduced by cognitive load>®>7,
indicating that individual exploration may be costly. Hence,
our finding that social learning may have served as an explo-
ration tool in our task hints at social learning as a method to
let us offload these costs of directed exploration. It is also in
line with prior research that suggests or shows exploration dif-
ferences between asocial and social settings!-27-41,42:49,58,59
It also provides empirical support for the outcome of the so-
cial learning strategies tournament, wherein winning models
tended to almost exclusively use social learning for explo-
ration’.

In our task, we show that this lower exploration is optimal
for social learning using evolutionary simulations. However,
simulations based on our participants’ parameter estimates
show that lower exploration would also lead to higher per-
formance in asocial learning (Fig. S10a-b). This implies that
social learning not only takes the function of uncertainty-
directed exploration, but also helps participants avoid overex-
ploration. This might be due to the need for exploration being
diminished by the ability to gain more environmental informa-
tion from others. It could also be a dynamic process wherein
observing one teammate move from exploring to exploiting
inspires participants to do the same, lowering overall explo-
ration rates compared to individual settings. Such adjustments
of strategy between individual and group settings, especially
for individuals with low confidence, have been found before?’.
However, the exact mechanism of this lowered exploration
in a round-based task remains a subject for further research.
In an exploratory analysis, we find a similar effect of social
learning on generalization parameter A being higher, and thus
closer to the ground truth, in group rounds (Fig. S10c-d),
which is in line with previous research*’.

Limitations and future directions

Previous research often investigates the effects of demonstra-
tor skill, contrasting one skilled and one unskilled demonstra-
tor>%Y. Following this reasoning, one might consider that the
integration mechanism used depends on the skill level of team-
mates. However, value-sensitive models VS and SG benefit
from any information about the structure of the environment,
regardless of if it is positive or negative. Therefore, we did
not investigate effects of participant skill directly. However,
participants appeared more sensitive to choices of their peers
that lead to high rewards (Fig. 3 and Fig. 4c), mirroring the
human tendency to “copy‘ (here rather “learn from*) the suc-

cessful?*25, Nevertheless, it remains an open question how
sensitive participants can be to others’ perceived skill in this
task, and in what way this would influence their decision-
making.

With the focus of this study being on the mechanisms of
integrating social information as an individual, we left group
dynamics of exploration throughout the experiment largely
unexplored. While we find social clustering on a group level
(Fig. 3b and Fig. 4b), we can explain this using individual-
level mechanisms. In our task design, participants are incen-
tivized to maximize individual gain, which limits the benefit
of active coordination. Based on participant’s reported strate-
gies, it is unlikely that they coordinated their behaviour to
maximize information gain as well. However, it may be in-
teresting to investigate coordination strategies in similar task
settings, for example by changing the incentive®! to optimal
understanding of the environment rather than maximizing
rewards.

Our experiments limited the environmental correlation to
r = 0.6. This is due to the fact that it was both harder to
generate many environments with higher correlations, and the
results would be less insightful, likely converging on imita-
tion as they approach 1. However, our task using only one
specific correlation of environments leads to a number of new
questions: For which range of correlations humans are still
sensitive to the optimal strategy? When (if ever) do they stop
integrating social information altogether? Are humans able
to make use of negatively correlated environments as well
as positively correlated ones? Additionally, in real life, we
would expect to find some people with more similar tastes
to us and others with more different tastes. How such vary-
ing correlations between participants would affect how social
information is used remains an open question. Given prior
research showing that humans are quite capable of adjusting
their social learning based on the skill of the observed indi-
vidual>?>%6 it seems reasonable to assume they could adjust
to higher or lower levels of correlation as well. It would be
interesting to see if this would lead to only learning from the
most closely correlated individual, or from all sources but
with higher assumed noise for lower correlations.

Given the novel task setting of social learning in positively
correlated environments, we chose to investigate the naturalis-
tic interactions of groups of four real participants. We would
not have been able to make an informed choice of model for a
more controlled setting where humans are placed in groups
of artificial agents a priori. Thus, having humans do the task
in groups ensured that we were not affecting their behaviour
through unnatural model choices. In the future, more granular
insights into the exact usage of social information could be
gained by placing participants in groups with Social General-
ization agents, which can used to more precisely manipulate
the usefulness of social information and control group dynam-
ics.
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Conclusions

Across two experiments, we found that people used social
information more flexibly than previously accounted for, suc-
cessfully integrating information from others with diverse
reward functions, but taking it “with a grain of salt”. Our
model captures this, by integrating social information as in-
herently noisier, since it is not directly applicable to one’s
own circumstances. Social learning also functioned as an
exploration tool, partially replacing uncertainty-directed ex-
ploration, and potentially helping participants behave more
optimally.

Methods

Experiment design

Across both experiments, participants explored spatially cor-
related multi-armed bandits*® with social correlations across
participants. The bandits were displayed as grids consist-
ing of 121 tiles. Environments were structured identically
across studies and conditions. Each tile yielded normally dis-
tributed rewards: r(x) ~ 4 (f(x),02) where the expected
reward across all tiles was sampled from a Gaussian Process
(GP) prior to induce spatial correlations f ~ % 2 (0,k (x,X'))
and the variance was fixed to 62 = .0001. To generate the
environments, we sampled a set of 11x11 parent grids from
a Gaussian process prior with an RBF-kernel with a length
scale of A = 2. We then used these parent environment’s
means as the prior means to sample a set of child environ-
ments. To facilitate correlations across environments, the
child environments were filtered to only include those which
correlated with the parent environment by at least r = .6. This
subset of child environments was then filtered to only include
sets of 4 environments which had correlation coefficients of
r = .6+ 0.05 with each other to use in the task. We generated
40 sets of correlated environments for the experiments this
way. At the start of the experiment, we sampled a number
of environment sets corresponding to the number of rounds
without replacement for each group.

For each round of the experiment, each participant was
assigned an environment from such a correlated set of four.
Exp. 1 consisted of 8 rounds, and Exp. 2 consisted of 8 solo
and 8 group rounds, totalling 16 rounds. The search horizon
was 14 for both experiments, with one tile being revealed at
random at the start of each round. To prevent participants
from getting used to the same reward structure, including its
global maximum, environments were rescaled to a randomly
selected maximum value between 60 and 80 for each round.
This rescaling was consistent across participants. To prevent
a single participant from holding up a group, a random tile
would be selected if they did not make a choice within 10 sec-
onds. Such random choice trials were excluded from analysis.
After selecting a tile, they would wait for all other participants
to make their selection as well. Once all participants made
a choice, the task would move on to the next trial. In solo
rounds, participants would only see their own bandit. In group
rounds, participants were also permanently shown all other

participants’ bandits, including choices and outcomes. This
was the only difference between the two conditions. Choice
and outcome information in group rounds were updated for
all participants at once after all group members had made a
choice.

Participants and design

Participants for both experiments were recruited via Prolific
and assigned to groups of four based on access time to the
experiment. They were paid a base rate for expected experi-
ment duration, and could earn a bonus of maximum the same
amount based on performance. Both experiments were ap-
proved by the Ethics Committee of the University of Konstanz
(“Collective learning and decision-making study’), and par-
ticipants provided informed consent prior to participation.

Exp. 1 was an observational study with only the group
condition, for which we recruited N=188 participants. After
eliminating all groups with drop-out, the final sample size was
N=128 (mean age: 38.5 & 12.7 SD; 44 females). On average,
participants spent 20.8 + 0.5 minutes on the task and earned
£7.19 +£0.04.

For Exp. 2, which varied solo vs. group conditions within-
subject in interleaved order, we recruited 220 participants.
Condition order (solo round first vs. group round first) was
counterbalanced across groups. After eliminating all groups
with drop-out, the final sample size was N=132 (mean age:
35.84+11.28D, 46 females). On average, participants spent
31.0 £ 0.6 minutes on the task and earned £10.4 4-0.08.

Materials and procedure
In both experiments, participants took part in groups of four,
which they were assigned to based on access time. After
giving informed consent, participants were instructed that
they were embarking on a scientific mission to collect salt
samples from alien oceans on other planets, and that their goal
was to collect as many salt samples as possible. They were
informed that they could revisit the same area to get a similar
reward, with salt not depleting from repeated sampling. They
were also told that other scientists on their team would collect
different salts, so there would be no competition for resources,
but that the salts were generated by the same process, and
locations with high salt concentrations were thus correlated
across the salts. In Exp. 2, participants were additionally told
that they would be sent on both solo and group missions, with
no information from their teammates being available in solo
missions. Participants in both experiments were shown fully
revealed example environments to ensure they understand the
structure and how social information usage may benefit them.
After passing a comprehension check, participants moved on
to a waiting room, which would launch the task once four
people had joined. If there was no group of four after 3
minutes of a room being open, all participants in that room
were redirected to the post experiment questionnaire.

Once in the task, participants would be presented with their
bandit grid with one tile revealed. In the group condition,
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they would additionally see the bandits of all other partici-
pants in the group with the rewards revealed as well. While
participants’ bandits were still correlated in solo rounds, they
could not see other group members’ bandits or choices in this
condition.

Evolutionary simulations

For any possible combination of models, we generated an
initial population consisting of an equal proportion of all the
models. For the three-way mixes, where have exactly equal
numbers, the final agent was randomly selected to be any of
the three models. Initial populations were generated based
on a common set of priors (Fig. 2b, see also SI). We used
tournament selection to select agents for the next generation:
groups of four agents were randomly drawn with replacement
to compete in one round of the task. The selection probability
of agents thus selected was lowered to prevent the same agents
from being sampled too often. The agent with the highest
score in a group was selected to seed the next generation.
This procedure was repeated until the full population size of
N=100 was reached. Each agent was thus sampled about 4
times. Before repeating the process for the next generation,
mutations were applied to a part of the population. There was
a 2% chance of parameter mutations, in which a parameter
would have Gaussian noise ~ .#'(0,0.2) added. If this caused
the parameter to go out of bounds, it was resampled from prior.
There was a 0.2% chance of a type mutation, in which the
agent’s model would be randomly resampled. The new model
could be one that was not initially present in the population.
To allow for invasions, we kept the baseline (GP-UCB) pa-
rameters of the mutating agent stable, and only modified the
social parameter, which determines the model. Simulations
were run this way for 500 generations. Simulations of all
initial populations were repeated 10 times to ensure stability
of the results.

Model comparisons

We fit models based on cross-validated maximum-likelihood
estimation. We iteratively formed the training sets by leaving
one round out, computing parameter estimates on this set,
and evaluating model predictions on the out-of-sample round.
Overall goodness of fit was evaluated based on the sum of
the prediction error on each of the out-of-sample predictions.
For Exp. 2, participant data was split into solo and group
rounds before fitting. We used the summed out-of-sample
log likelihood as an approximation of the model evidence to

perform hierarchical Bayesian model comparison*.
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Learning and ordering effects

In Exp. 1, there was a small learning effect over rounds (0.004,95% — CI : [0.001,0.007], p = 0.0027). The same was true
for Exp. 2 (0.002,95% — CI : [0.0003,0.003], p = 0.012). In Exp. 2, there was no effect of block order (0.005,95% — CI :
[—0.02,0.015], p = 0.63), or the interaction of round and block order (—0.0001,95% — CI : [—0.002,0.002], p = 0.94) on
performance (Fig. S1).
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Figure S1. Learning over rounds. a) Learning over rounds in Exp. 1. Red dashed line gives chance level performance. b)
Learning over rounds and by block order in Exp. 2. Red dashed line gives chance level performance.

Model simulations and variants

Priors

For initial agent-based and evolutionary simulations, we drew parameters from a set of parameter priors. Priors for the baseline
asocial learner were based on the values found in prior studies*’. Since none of the parameter values can be negative, but
have no upper bound, we used log-normal distributions around the reported average participant estimates. This resulted in the
following parameter priors:

A, B ~ LogNormal(0.75,0.5)
T ~ LogNormal(4.5,0.75) )

For the social parameters, no prior empirical results existed, so we used priors that covered as much of the theoretical space
as possible. While we are able to cover the entire possible range for Decision Biasing and Value Shaping, since o,y € [0, 1], the
Social Generalization noise parameter &, cannot be negative, but can grow infinitely large. Therefore, we chose to centre an
exponential distribution around &, = 2, which we found to be good, but not optimal, in simulations, resulting in the following
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priors:

o,y ~ Uniform(0, 1)
£0c ~ Exponential (0.5) ©)

Unless otherwise stated, simulations were run using these priors.

Model variants

For model variants, we simulated groups of two asocial agents as well as one canonical and one modified agent. This was
done to be able to directly compare the model’s performance given identical information. Asocial agents were used to prevent
Roger’s paradox®, i.e. the frequency-dependent fitness of social models, from affecting the results. We ran these simulations
with task settings (search horizon of 14, 8 rounds) with 1000 different parameter sets.

Value-agnostic Value Shaping

As mentioned in the main text, Value Shaping benefitted from including social value information (Fig. S2a) compared to
the unbiased version common in previous literature, where value is generically boosted for options selected by others. We
implemented this as V (x) =V, jug + ¢ - ny, ;1. Our canonical prediction error implementation of VS significantly outperforms
this alternative ((1998) = 8.4, p < .001, d = 0.4, BF > 100) and was thus chosen as the main implementation.

Value-sensitive Decision Biasing

We also tried to adapt Decision Biasing to our task by including value information. This might have been a beneficial update,
since outcome information was generally not available in previous studies'-2, but was in ours. We modified the social policy
so that it increased proportionally to the frequency of a social choice, weighted by how much higher the social reward was
than the average experienced individual reward Ty, (x) o< Mg, | (m(Xs0¢, |, — m(Xinq). In cases where m(Xsoc, | < m(Xinq), the
social information was ignored to prevent negative probabilities in the policy. Despite this added information (and the large
sample size), there was no significant difference between the two models’ scores (#(1998) = 0.3, p = .730, d = 0.02, BF = .05;
Fig. S2a). Thus, we chose to use the simpler model.

Indiscriminate Social Generalization

There is an edge case of Social Generalization for &, = 0. It means that social and individual information are treated identically.
While technically not a separate model, we show that discriminate use of social information (&, # 0 is significantly better than
indiscriminate use in our task (#(1998) = 3.4, p < .001, d = 0.2, BF = 18; Fig. S2b).

a VS variants b DB variants C SG variants
0.551 0.600 1
0.56
0.541 0.5751
B ° == — B =
g 0541 g 058 S 0550 =
o : |
[} [} 4 (O]
& e § 052 ke
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0.50 0.50 1 0.500 1
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Value—sensitive Value—sensitive Discriminate social info use

Figure S2. Model variants. a) Value Shaping with (canonical) and without value sensitivity added. b) Decision Biasing with
and without (canonical) value sensitivity added. ¢) SG with &, set to 0 and not (canonical).

Detailed evolutionary simulations

Visualization as a ternary plot as in the main text only allows for comparisons between 3 models at a time. As this paper
put a focus on social learning, we chose to compare the three candidate social models in this manner. Figure S3a shows the
evolutionary trajectories for all starting populations, including AS. As reported in the main text, SG takes over and dominates
all populations.
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Figure S3. Evolutionary simulations in correlated environments in detail. a) Evolutionary trajectories across all starting
populations. Facet labels show initial population, and lines show the probability of a given model in the population. Social
Generalization dominates across all initial populations. b) Evolved parameters for Social Generalization. Thick black line is the
average.

When it comes to parameter evolution, we can gain insight into the "optimal" SG agent based on evolutionary simulations as
well (Fig. S3b). We only report SG parameters as parameters of other models are unstable due to their low population size. The
parameter evolutions are discussed in the main text.

We additionally ran evolutionary simulations in a setting analogous to previous literature> with one expert choosing the
correct option and the (social) learning agent being in an identical environment. This served to show that the spatially correlated
bandit setup is not inherently different from simpler bandits used in previous literature. As reported in the main text, we
replicate VS being the dominant model in such settings when comparing only the previously established models (Fig. S4a), and
find an equilibrium between VS and SG when considering all of our candidate models (Fig. S4b-c). This is because when fully
socially reliant (=1 for VS, or &, = 0 for SG), as is optimal when learning from an expert in the same environment, and in
the same environment as said expert, VS and SG make identical choice predictions, only differing at the stage at which social
information is integrated (Fig. S4d). SG can be viewed as an extension of VS to cases where one has to learn from others in
non-identical environments, not a completely new model.

Reward improvement

In the analysis of experiment 1, we investigated how participants used both individual and social information to guide their
exploration. To this end, we analyzed the influence of improvement potential (the difference between previous individual and
previous social reward in the case of social information, and the difference between maximum possible reward and previous
individual reward for individual information) on reward improvement (the difference between current and previous individual
reward). While the data corroborated no effect of negative social information (improvement potential < 0), there seemed to be
a strong relationship between positive social improvement potential and reward improvement (Fig. S5a). When modelling
this relationship, we not only found a general relationship between improvement potential and improvement (0.53 [0.47,
0.60]), but also both a significant positive effect of social information (0.06 [0.04, 0.07]) and its interaction with improvement
potential (0.12 [0.09, 0.15]; Fig. S5b). This seemed to indicate that social information was even more effective than individual
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a Najar et al. replication, no SG b Najar et al. replication, with SG
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Figure S4. Evolutionary simulations in identical environments with an expert (Najar et al. setting)®. a) Evolutionary
trajectories when only considering AS, DB, and VS. b) Evolutionary trajectories when only considering the social models (no
AS). ¢) Full evolutionary trajectories (all possible initial populations). Facets labels give initial populations, and lines show the
probability of a given model. d) 1-dimensional illustrative example to compare VS and SG. When reward landscapes are
identical, VS and SG agents which fully rely on social information (¢ = 1 or &, = 0) behave identically.
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information in guiding participants’ exploration.

However, while the relationship remained similar in experiment 2 (Fig. S5¢), and the baseline effects replicated (improvement
potential: 0.53 [0.51, 0.55]; social information: 0.05 [0.04, 0.06]; their interaction: 0.12 [0.09, 0.15]), we found none of their
interactions with task type were significant (improvement potential*group round: 0.00 [-0.03, 0.03]; social info*group round:
0.01 [-0.01, 0.02]; improvement potential*social info*group round: -0.01 [-0.05, 0.03]; Fig. S5d). This shows that the effect we

found in experiment 1 was solely based on the task structure, and not any actual benefit of social information usage.
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Figure S5. Reward improvement analysis for Exp. 1 (a-b) and Exp. 2 (c-d). a) Hierarchical Bayesian regression of reward
improvement (current - previous individual reward) and improvement potential (social: previous social reward - previous
individual reward; individual: 1 - previous individual reward) in Exp. 1. b) Regression parameters for the regression shown in a.
¢) Hierarchical Bayesian regression of reward improvement (current - previous individual reward) and improvement potential
(social: previous social reward - previous individual reward; individual: 1 - previous individual reward) in Exp. 2. d)
Regression parameters for the regression shown in c.

Model bounding

As the baseline asocial learning model is nested in all social models, we determined bounds for the social models to minimize
model mimicry, and thus improve recovery. This serves to make the modelling more stringent compared to previous work®?.
The bounds were determined based on the social mechanisms of the respective models. Since DB effectively only changes
imitation rate (mixing parameter Y effectively trades off between individual learning and imitation, which makes it interpretable
as an average imitation rate per trial), we chose to determine the bound based on expected average imitation based on individual
learning in correlated environments. We simulated AS with priors from previous literature, and set the lower bound at
95%-quantile of the resulting Poisson distribution based on imitation counts (Fig. S6a). This meant, that agents fit by DB were
expected to imitate at least as much as the 5% tail-end of the asocial population.
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Figure S6. Model bounding of the social models. Illustrations of the model bounding concepts, criteria, and parameter
cut-offs for Decision Biasing (a), Value Shaping (b), and Social Generalization (c)

Since VS affects the value function at a social observation, we determined the lower bound based on the minimum effect of a
maximum reward social observation on a naive social learner (no individual observations) across a range of -values. The
criterion was a minimum of 5% change from the individual value (Fig. S6b).

For SG, &, affects how strong of an effect social information has on the posterior of the GP. Hence, we set the bound at the
social observation retaining at least 5% of its value given a naive social learner (Fig. S6c¢).

Model and parameter recovery

To assess model recovery, we simulated data using parameters fitted to participants for all models in experiment 1 and the group
rounds of experiment 2. We then fit the simulated participants following the same procedure as used for actual participants,
assigned each simulated participant a model based on best fit. We computed conditional probabilities for confusion and
inversion matrices (Fig. S7). Despite the bounding, there is still some confusion potential between models, especially DB and
VS, which hardly get fit with social parameters above the lower bound, and AS. There is also some confusion potential between
AS and SG, but it is roughly balanced between the two, so overall fitting results should not be biased either way. In turn, the

likelihood of a fit model being the generating one is highest for DB (0.85) and VS (0.9), but still high for AS (0.7) and SG
(0.79).
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Figure S7. Model recovery. a) Confusion matrix giving the conditional probability of a model being the best fit given the
generating model. Values on the diagonal give the probability that the correct model is fit. b) Inversion matrix giving the

conditional probability of a model being the generating model given it is fit. Values on the diagonal give the probability that the
fit model is correct.
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When it comes to parameter recovery, we used the same procedure of simulating and fitting the data as for model recovery,
but looked at the correlations between the parameters of the generating model and its fit instead of the best fitting model
(Fig. S8). A (r; = .87, p < .001, BF > 100) and 7 (r; = .86, p < .001, BF > 100) correlate near perfectly with the generating
parameters across models. When it comes to 8 and the social parameters, the issue of lower bound social parameters recurred,
leading to worse fits for DB and VS. 3 correlations are still high overall (r; = .85, p < .001, BF > 100), whereas the social
parameter correlation is lower (r; = .27, p < .001, BF > 100). However, given that neither DB nor VS fit participant data well,
leading to them mimicking AS as much as possible, this lack of correlation is less concerning. Looking at only the correlation
for &, it is noticeably higher (r; = .51, p < .001, BF > 100).
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Figure S8. Parameter recovery. Relationship between generating and recovered parameter by model (facet label).

Model performance

Models were fit using leave-one-round-out cross-validation. Negative log likelihoods were summed across test-rounds, with
mean values being reported in Tables S1 and S2. Pseudo-R? was computed as R?> = 1 — (nLL,noqe1 /PLL andom) Where nLLandom
is treating every choice as equally likely (1/121) for all non-random trials for that participant. Random trials were excluded
from model fitting.

As the models were nested, and AS generally provides a good explanation even in social settings, especially once a high
value option has been found, performance does not differ greatly between models. However, SG is consistently the best fit
across both experiments.
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Model | Mean nLL | Pseudo-R2
AS 448.1 0.1576
DB 357.2 0.3268
VS 379.5 0.2845
SG 356.9 0.3273

Table S1. Model Performance Metrics for Exp. 1.

Model | Mean nLL | Pseudo-R?
AS 369.4 0.3106
DB 367.2 0.3147
VS 378.8 0.2932
SG 365.5 0.3178

Table S2. Model Performance Metrics for Exp. 2 group rounds.

Exp. 2 parameters

To focus on the differences between f3-values, we do not report all parameter values for the group rounds of Exp. 2 in the main
text (Fig. S9). Generalization parameter A = 1.1, which is significantly lower than the ground truth A =2 (¢(52) = —14.4,
p <.001, d =2.0, BF > 100). Directed exploration parameter § ~ 0.22, and random exploration parameter 7 ~ 0.06. Social
noise &, A2 9.5, which is significantly higher than optimal the optimal value found in evolutionary simulations (¢(52) = 8.3,
p <.001,d =1.1, BF > 100).

Exploration optimality

Following up the comparatively lower f-parameter in experiment 1, we compare participant’s 3-parameters between the
solo and group rounds. As reported in the main text, participants had significantly higher S-values in solo than in group
rounds (Z = —2.7, p = .004, r = —.23, BF = 63, Fig. S10a). In simulations based on participant parameters while varying
the parameter of interest, we find that such low values of 8 are actually optimal in the current task, both in solo and group
rounds. We see that the group round value of f3 is closer to optimal than the solo round one, and both are lower and thus closer
to optimal than the average found in previous literature*’.

As we also found higher values of A in Exp. 1, we exploratively repeat these analyses. A is significantly higher, and thus
closer to ground truth, in group than in solo rounds. Again, group round A is closest to the theoretical optimum, followed by
solo round and previous study values. Taken together, this implies that social information may improve exploration behaviour
closer to optimality in general.

Exclusion analyses

To ensure that correlations were not spurious because of participants at the upper bound of &,., we redid the correlation
analyses for reward and 8 excluding any participants whose &, > 18.9999.

All relationships remained significant. In Exp. 1, there was a significant negative correlation between &,, and mean reward
(re = —.31, p=.001, BF = 24), indicating higher reliance on social information leading to higher scores. There was also a
significant positive correlation between &g, and 8 (r; = .34, p < .001, BF = 61), indicating that participants using relatively
more social learning used less directed exploration and vice versa. In Exp. 2, we replicate both the relationship of &, with
reward (r; = —.20, p = .034, BF = 1.6), and 8 (r; = .35, p < .001, BF > 100).
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Figure S9. Parameter fits for group rounds of Exp. 2. Only participants best fit by SG shown.
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Figure S10. More optimal parameters in group rounds. a) Difference in directed exploration parameter 3 between
participants fit by AS in solo rounds and participants fit by SG in group rounds, reproduced from main text. b) Relationship
between directed exploration parameter 3 and reward in simulations. We ran simulations on the parameter ranges present in
participants while varying f3, to see if lower § values are more beneficial for social learners. In both models, lower values of
are associated with higher reward. Average 3 in group rounds is closest to optimal, followed by solo round average and average
from previous literature. ¢) Difference in generalization parameter A between participants fit by AS in solo rounds and
participants fit by SG in group rounds. d) Relationship between generalization parameter A and reward in simulations. We ran
simulations on the parameter ranges present in participants while varying A, to see if higher A values are more beneficial for
social learners. In both models, higher values of A are associated with higher reward. Average A in group rounds is closest to
optimal, followed by solo round average and average from previous literature.
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Figure S11. Correlation analyses excluding &, at the upper bounds. a) Relationship between &, and mean reward in
Exp. 1. b) Relationship between &, and 8 in Exp. 1. ¢) Relationship between &, and mean reward in Exp. 2. d) Relationship

between &, and 3 in Exp. 2.
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