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Abstract

Humans are remarkably effective social learners, with several
recent studies formalizing this capacity using computational
models. However, previous research has often been limited to
tasks where observer and demonstrator share the same reward
function. In contrast, humans can learn from others who have
different preferences, skills, or goals. To study social learn-
ing under individual differences, we introduce the socially cor-
related bandit, where participants have personalized rewards,
which are correlated with but not identical to those of others.
Social information can still be useful, but not when used ver-
batim. We present a model of Social Generalization that inte-
grates individual and social information into the generalization
process, but assumes social information to be noisier and thus
less informative. This model out-competes previous models,
with it being the dominant strategy in evolutionary simulations.
Our findings expand on previous models of social learning,
showing humans can integrate social information more flexi-
bly than previously assumed.
Keywords: social learning; computational modelling; collec-
tive intelligence; generalization; Gaussian process

Introduction
Social learning is an extremely adaptive ability, to which we
humans owe much of our evolutionary success (Heyes, 2018;
Henrich, 2015; Laland, 2017). After all, being able to learn
from the experiences of others not only saves time and effort,
but may even help avoid disappointing or even harmful out-
comes (Laland, 2004). A simple example would be to rely on
average restaurant ratings when looking for a place to eat in
a new city, instead of randomly selecting an option you have
no information about.

However, social information cannot always be used verba-
tim. The subjective value of an option depends on many fac-
tors, such as one’s individual circumstances, goals, skills, and
preferences (Wu, Vélez, & Cushman, 2022; FeldmanHall &
Nassar, 2021). In the restaurant example, while higher quality
restaurants will likely have higher ratings, other reviewers can
have very different subjective preferences, such as a different
degree of spice tolerance. Thus, it would be a mistake to use
social information in the same fashion as one’s own experi-
ence. In fact, it seems far more common that social observa-
tions would need to be taken with a grain of salt, compared to
cases where social information can be simply used verbatim,
based on an objective and universal reward function.

Yet much of the previous literature has focused on set-
tings where both demonstrator and observer share the exact
same task environment and outcomes (Charpentier, Iigaya, &

O’Doherty, 2020; Toyokawa, Whalen, & Laland, 2019; Na-
jar, Bonnet, Bahrami, & Palminteri, 2020; Naito, Katahira, &
Kameda, 2022). This work has uncovered evidence that peo-
ple flexibly integrate social information with individual learn-
ing through exact imitation (Toyokawa et al., 2019) or by en-
hancing the subjective value of the choices made by a demon-
strator (Najar et al., 2020). However, we cannot be sure that
the same mechanisms equally apply in settings where out-
comes may differ on an individual basis, such as when read-
ing restaurant or product reviews, or in other matters of taste.

While there is some work on how to integrate social in-
formation in matters of taste (Analytis, Barkoczi, & Herzog,
2018; Müller-Trede, Choshen-Hillel, Barneron, & Yaniv,
2018; Yaniv, Choshen-Hillel, & Milyavsky, 2011), this line
of research is largely theoretical and has not proposed any
computational models of how humans behave in such situa-
tions. Thus, how we use social information effectively despite
our differences remains an unanswered question.

Goals and Scope
To investigate social learning in contexts with unique but cor-
related rewards across individuals, we introduce the socially
correlated bandit. In this paradigm, the highest rewards are
generally located in the same region for all participants, but
directly copying another participant’s choices will not usually
lead to the maximum payoff. This mimics real-world settings
where social information is colored by individual differences
in preferences and circumstances: while some standards ap-
ply to everyone, the option someone else values most highly
will not necessarily be the most rewarding to you.

Participants explored these socially correlated environ-
ments in groups of four, with full information about other
participants’ choices and reward outcomes. We used evolu-
tionary simulations across multiple social learning models to
find the normatively best strategy, which was our novel Social
Generalization (SG) model. We then fit these models to the
behavioural data collected in the experiment and found that
participants’ behaviour was also most accurately predicted
by SG. This shows that humans are able to integrate social
information with more nuance than assumed by models from
previous literature.

In the following, we first introduce the task in more de-
tail, as well as a set of candidate reinforcement learning mod-
els integrating social information at different stages of the
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we first generated a parent grid with spatially correlated rewards. The parent environment was then used to generate four children bandits,
which were correlated with one another.

decision-making process. We then explain the evolutionary
simulations we used to determine which populations of mod-
els evolve from a variety of starting populations. Lastly, we
analyze and fit models to behavioral data from groups of hu-
man participants.

Methods
The socially correlated bandit is an extension of past work
using a spatially correlated bandit (Wu, Schulz, Speeken-
brink, Nelson, & Meder, 2018), where tiles on a grid rep-
resent the different arms of the bandit. Each tile generates
noisy rewards, but reward expectations are distributed with a
smoothly varying spatial structure (i.e., nearby tiles tend to
have similar rewards). Participants are asked to maximize re-
wards under a limited search horizon, meaning they cannot
sample all possibilities to find the optimum. However, the
spatial correlations allow participants to infer the expected
value of unobserved arms by generalizing from a limited set
of past observations.

Here, we add social correlations, with groups of four par-
ticipants simultaneously performing the task on personalized
but related reward environments (Fig. 1). This allows partici-
pants to make asocial generalizations based on private obser-
vations (using spatial correlations), and also integrate social
information about the value of options they have not explored
themselves (using social correlations).

Participants and design
We recruited N=188 participants from Prolific in groups of
four. They were assigned to their groups based on access
time. After eliminating all groups with drop-out, the final
sample size was N=128 (mean age: 38.5 ± 12.7 SD; 44
females). The study was approved by the Ethics Commit-
tee of the University of Konstanz (‘Collective learning and
decision-making study’), and participants provided informed
consent prior to participation. On average, participants spent

20.8 ± 0.5 minutes on the task and earned £ 7.19 ± 0.04.

Materials and procedure
The experiment was performed as a yoked online experiment
in groups of four, where choices and reward outcomes were
shown to the other participants in the group. After giving
informed consent, participants were instructed that they were
embarking on a scientific mission to collect salt samples from
alien oceans on other planets. Each group member would be
collecting a different salt, but the process generating salts was
similar between all salts, explaining the social correlations.
Their goal was to acquire as much salt as possible.

Participants were shown several fully revealed reward envi-
ronments with the same specifications as in the experiments,
and were required to pass a comprehension check to con-
tinue. Then, they entered a waiting room, which lasted up
to 3 minutes from the first person entering. Participants were
compensated for this additional waiting time (up to £0.2 per
minute). If 3 participants hadn’t joined a room after 3 min-
utes, the room was closed, and they were redirected to the
post-experiment questionnaire directly. If a group of 4 had
formed, the experiment started. Participants were presented
with their own as well as the other participants’ bandits with
one tile revealed (Fig. 1a).

To generate the reward distributions for the socially cor-
related bandits, we first sampled parent distributions from
a Gaussian Process (GP) prior to induce spatial correlations
f ∼ GP

(
0,k (x,x′)

)
with the variance fixed to σ2

ε = 0.0001.
A radial basis function (RBF) kernel with length constant
λ = 2 was used as the kernel function (see Eq. 2). Then,
we generated candidate environments using the parent distri-
bution as the mean function of the GP priors and the same
RBF kernel for the covariance. After filtering candidates to
be correlated with the parent environment by at least r = 0.6,
we further selected environment sets that were correlated with
each other at r = 0.6±0.05 (Fig. 1b).



Participants then had a search horizon of 14 trials within
each round to gain as much reward as possible, which de-
fined their bonus payment. After every choice, they would
wait for all other group member’s choices. Then, the out-
comes of all other participants from the previous trial would
be revealed simultaneously. To prevent one participant from
holding up an entire group, a random choice would be gener-
ated if they took longer than 10 seconds. These cases (0.78%
of choices) were excluded from analysis. This was repeated
over 8 rounds. Whenever a round finished, participants were
given feedback on what percentage of maximum possible
payoff they achieved, and how this translated into their bonus
payment. After the 8th round, they moved on to the post-
experiment questionnaire.

Computational models
We first describe a Gaussian Process-Upper Confidence
Bound (GP-UCB) agent as a baseline Asocial Learning
model for the spatially correlated bandit task (Wu et al.,
2018), which provides a rational solution in the absence of
social information. We then introduce a number of candidate
social learning models that build on the GP-UCB agent, each
incorporating social information with different mechanisms.
These social learning models integrate social information in
increasingly complex ways, and Decision Biasing and Value
Shaping were chosen based on previously existing literature,
with Value Shaping having been found to best fit human be-
haviour (Najar et al., 2020).

Asocial Learning (AS). The baseline Asocial Learning
model uses GP regression (Rasmussen & Williams, 2006)
to make predictions about the expected reward and subjec-
tive uncertainty about all options on the grid. We then use
an Upper Confidence Bound (UCB) sampling strategy and a
softmax choice rule to convert the GP predictions into choice
probabilities.

Conditioned on observations Dt = {Xt ,yt} of choices Xt
(i.e. chosen arms of the bandit) and rewards yt , the GP
provides posterior predictions about the reward for any tar-
get input x∗ in the form of a Gaussian: p( f (x∗)|Dt) ∼
N (m(x∗),v(x∗)). Thus, the posterior predictions can be sum-
marized in terms of their mean and variance, which are de-
fined as:

m(x∗) = k⊤
∗,t(K+σ

2
εI)−1yt

v(x∗) = k(x∗,x∗)−k⊤
∗,t(K+σ

2
εI)−1k∗,t . (1)

k∗,t = k(Xt ,x∗) is the covariance between observed and target
inputs, and K = k(Xt ,Xt) is the covariance between each pair
of observed inputs. I is the identity matrix and σ2

ε is the ob-
servation variance, corresponding to assumed i.i.d. Gaussian
noise on each reward observation. For the covariance func-
tion, we use a Radial Basis Function (RBF) kernel kRBF(x,x′)
to describe the spatial correlation of rewards:

kRBF(x,x′) = exp

(
−∥x−x′∥2

2λ2

)
. (2)

action

reward value

policy

GP

DB

VS

SG

social 
info

Model

SG

AS
DB
VS

Info Source
Individual
Social

True
Distribution
True
Distribution

a

b

c

d

0 10 20 30

1

0

1

R
e
w

a
rd

0 10 20 30

1

0

1

Va
lu

e

0 10 20 30
Choice

0.0

0.2

Po
lic

y

Most likely
choice

Figure 2: Models. a) Model overview. Individual reinforcement
learning circuit (AS) and the stages at which different social mod-
els integrate social information (colored lines). Socially observable
variables are grey, while unobservable variables are white. b-d) An
illustrative 1D example of how models incorporate social informa-
tion within the steps of the reinforcement learning circuit, where
the x-axis is the discrete choice space. b) GP reward predictions
(Eq. 1). Only SG integrates social information into the GP posterior,
whereas the other models (only AS shown for ease of reading) gener-
alize only private information. c) UCB values (Eq. 3). VS integrates
social information into the value function proportional to its devia-
tion from expected value. d) Softmax choice probabilities (Eq. 4).
DB integrates social information into the policy based on choice fre-
quency. Crosses mark the most likely choice for each model.

The length-scale parameter λ describes the decaying rate of
covariance between two points as a function of distance, with
higher λ capturing stronger spatial correlations. Thus, higher
λ corresponds to broader generalization.

We then compute a value function V balancing exploiting
high expected rewards with exploring uncertain options using
UCB sampling:

V (x) = m(x)+β
√

v(x) (3)

The uncertainty bonus β trades off the value of an option
against the uncertainty of that estimate: high β values favor
exploration, while low values favor exploitation.

Finally, we use a softmax to convert the value function into



an individual learning policy:

πind(x) ∝ exp(V (x)/τ) (4)

The temperature parameter τ controls how deterministically
the model follows the value function: the higher τ, the more
random the choices become.

Decision Biasing (DB). We now present the simplest social
learning model, incorporating social information into the pol-
icy as frequency-dependent copying (Toyokawa et al., 2019).
We first define a pure social policy tracking observed choices
in the previous trial, and selecting actions proportional to their
frequency: πsoc(x) ∝ nxsoc,t−1. Individual and social policies
are then combined with the mixing parameter γ defining the
relative contribution of the social policy:

πDB = (1− γ)πind + γπsoc (5)

This results in an increased probability of choosing options
previously chosen by other participants, regardless of out-
come (Fig. 2d).

Value Shaping (VS). A relatively more complex strategy
is to incorporate social information into the value function
(Najar et al., 2020; Galef, 2013). Whereas previous studies
assigned a generic bonus to socially observed choices since
their outcomes were not shown to participants, we augment
this approach to be value-sensitive using a simple prediction
error update:

V (x) =Vx,ind +α(Vx,soc −Vx,ind) (6)

Social observations that correspond to higher than expected
payoffs (Vx,soc > Vx,ind) boost value estimates, while lower
than expected payoffs (Vx,soc < Vx,ind) decrease them. The
rate of this social boost/decrease is a function of the learning
rate α. Figure 2c shows how the value function deviates from
the asocial one in the direction of the social observation. We
also considered a value-sensitive DB model, but elected to
keep using the simpler, value-insensitive version, since value
information did not improve performance.

Social Generalization (SG). We now provide a novel
model which incorporates social information into the general-
ization process. Unlike the other models, it generalizes social
information to surrounding options as well, but assumes it to
be noisier, and thus less reliable, than individual information.

We model this by assigning a different value for the noise
variance parameter based on whether an observation was in-
dividually or socially acquired:

σ
2
ε = εind +δsoc ∗ εsoc, (7)

εind is the baseline level of noise, with indicator function
δsoc = 1 for social observations, and 0 otherwise. Social noise
parameter εsoc is treated as a free parameter, where larger es-
timates correspond to less reliance on social information, rel-
ative to individual observations. This causes smaller updates
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Figure 3: Evolutionary simulations. a) Initial populations (labels)
and evolutionary trajectories (lines), terminating at the evolutionary
stable strategy (ESS) after 500 generations (crosses). Initial popula-
tions always consisted of an equal ratio of included strategies (e.g.
”DB.VS” corresponds to 50% Decision Biasing and 50% Values
Shaping). b) An overview of the proportion of SG agents in each
generation, with the black line showing the overall mean across dif-
ferent initial populations.

to the mean and smaller reductions in uncertainty of the GP
posterior for social observations compared to individual ob-
servations (Fig. 2b). When εsoc = 0, social information is
treated with the same weight as individual information.

Results
We first look at how the models perform in evolutionary
simulations to find the normatively best model. The perfor-
mance of social learners depends on the population they are
in (Rogers, 1988), so it is necessary to evaluate the models’
frequency-based fitness. Evolutionary simulations allow us
to do this by covering all starting populations, instead of hav-
ing to exhaustively evaluate every possible population com-
position. Then, we show behavioural results from the experi-
ment and contrast with results from agent-based simulations.
Finally, we present model fitting results to determine which
model best fit human data.

Evolutionary Simulations
We used tournament selection in our evolutionary simulations
(Tump, Wu, Bouhlel, & Goldstone, 2019): randomly sampled
groups of four agents competed in one round of the socially
correlated bandit task. The highest performing agent was se-
lected to seed the next generation. Before the agents contin-
ued the process in the next generation, however, there was a
set chance of mutations occurring. These could affect param-
eter values (p = .02 of adding Gaussian noise with σ2 = 0.2),
or change the agent’s model completely (p = .002), which al-
lowed models to invade populations that they were not origi-
nally a part of. GP-UCB parameters were sampled from prior
distributions based on previous literature (λ and β from a log-
normal distribution with mean≈ 0.54 and sd≈ 0.3, τ from a
lognormal distribution with mean≈ 0.09 and sd ≈ 0.05; Wu et
al., 2018). We selected plausible priors for the social param-
eters (α and γ uniformly between 0 and 1, and εsoc from an
exponential distribution with mean 2). Evolutionary trajec-
tories starting from each initial populations of models were
replicated 10 times.

Figure 3 shows the results of evolutionary simulations of
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Figure 4: Behavioural results. a) Learning curves showing average
reward over trial. Lines show group level averages, with the black
line as the overall mean. b) Search distance over previous reward
for individually and socially acquired information, analyzed hierar-
chically across participants (regression line and confidence interval).
Each dot is population average over 50 equally spaced bins. c) Ag-
gregate social distances over binned previous reward from partici-
pant data (left) and as predicted by the different models (right).

the competing social learning models. All initial populations
— even ones that did not originally contain SG agents —
evolved to be fully made up of SG agents. While the plot
only shows social models, full simulations including AS had
the same result, with the average p(SG) = .998 in the final
generation. This clearly shows that SG is the normatively
best model in our task. Additionally, the evolved εsoc = 3.29
in the final generation suggests that using social information
verbatim (i.e., εsoc = 0) is not optimal.

Behavioural results

Next, we investigate signatures of human behaviour in the on-
line experiment, focusing on aspects that would distinguish
the different candidate models. As shown by the learning
curves (Fig. 4a), participants succeeded at finding higher re-
wards throughout the trials.

To understand if and how humans use social and individ-
ual information differently, we next analyze search patterns
as a function of previously observed reward. This is because
each model make different predictions about how social in-
formation is used based on its value (no social info usage in
AS; value-agnostic, frequency-based copying in DB; value-
sensitive copying in VS; social generalization in SG). A ra-
tional agent will reduce their individual search distance as
previous rewards increase due to the spatially correlated re-
ward structure. When social information is used, one would
expect a similar trend for social information.

Figure 4b shows a Bayesian linear regression of search dis-
tance (Euclidean distance between subsequent choices) as a
function of the previous reward, split by whether the reward
and distance are w.r.t. to social or individual observations.

Social distance is calculated separately for each group mem-
ber and choice.

Indeed, behaviour for individual information followed our
prediction, with search distances decreasing as previous re-
ward increases. The same trend could be seen for social ob-
servations: while less steeply than individual, social search
distance also decreases over increasing previous reward. This
is reflected in the significant negative regression weight of
previous reward (-1.19; Highest Density Interval: [-2.07, -
1.75]). The interaction effect between information source and
previous reward is significant (1.23; [1.18, 1.28]), and implies
participants were more sensitive to previous individual than
previous social reward.

Breaking the social distances down further (Fig. 4c), we
observe an increase of search in neighbouring (distance = 1)
or near (1 < distance < 3) options as previous reward in-
creases, starting at low values but becoming more noticeable
from around 0.5. There is hardly any exact imitation (dis-
tance = 0). Comparing this to the distributions expected based
on our models (simulated data using the same parameter pri-
ors as the evolutionary simulations), it most closely resembles
AS or SG, as DB and VS predict far higher levels of exact
imitation. While the proportions of neighbouring and near
searches most closely match SG, participants did not show
enough exact imitation to fully replicate SG’s overall distri-
bution pattern. As a result, the participant data looks like a
combination of AS (some increases in surrounding and near
searches with hardly any exact imitation) and SG (numerical
proportion of 1 ≤ distance < 3 searches).

Model Results

Finally, we investigate model fits to human behavioural data.
We used leave-one-out cross-validation to fit the models to
participant data. Figure 5a shows the result of hierarchical
Bayesian model selection (Rigoux, Stephan, Friston, & Dau-
nizeau, 2014), where protected exceedance probability (pxp)
describes the probability of a given model being predominant
in the population (corrected for chance). We find that SG was
the best model (pxp(SG) = .63) with R2 = 0.29± 0.09 SD.
AS also seems to be somewhat prevalent with pxp(AS) = .23,
while neither DB nor VS were common.

This seeming mix of SG and AS in the population is re-
inforced by the parameter fits (Fig. 5b), with some εsoc-
values at the upper bound. Since higher assumed noise causes
less deviation from the prior mean, higher εsoc-values show
lower (albeit not zero) reliance on social information. Partic-
ipants’ λ-estimates were significantly lower than the ground
truth (λ = 2) with an average of λ̂ = 1.11 (t(127) = −19.0,
p < .001, d = 1.7, BF > 100). Exploration bonus β had an
average value of 0.29, and softmax temperature τ averaged
0.06. Participants with lower values of εsoc (i.e., more weight
for social information) achieved higher rewards on average
(rτ =−.28, p < .001, BF > 100, Fig. 5c).
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Figure 5: Model results. a) Bayesian model selection showing the
probability of the best model across the population. Dashed line
shows equal probability. b) Parameters estimates for SG. Diamonds
show the mean, and each dot is a single participant. c) Average re-
ward as a function of social noise parameter εsoc, where lower noise
corresponds to higher weight for social information. εsoc estimates
are bounded at 90, after which behavioural patterns become asymp-
totically asocial. Each dot is a participant, and the line and ribbon
show the smoothed conditional mean.

Discussion
In this study, we sought to better understand how humans in-
tegrate social information when it is not perfectly applicable
to their own situation. While this is a common scenario in our
everyday experience, it is only sparsely researched. We pre-
sented a novel task, the socially correlated bandit, that opera-
tionalizes individual differences in social learning to achieve
this goal.

Our evolutionary simulations show that Social Generaliza-
tion (SG) is the best normative model in this setting. In a
yoked experiment with groups of four participants, we found
that participants were sensitive to social information in their
search behavior. Our model comparison found that partici-
pants were predominantly best described by SG, although a
non-negligible portion of the population used Asocial Learn-
ing (AS) instead. In contrast, we found far less evidence for
simpler, heuristic models that directly imitated actions (Deci-
sion Biasing; DB) or used social information to modify value
representations without generalization (Value Shaping; VS).

Limitations and future directions
The GP-UCB parameters we estimated differ from
the ones found in previous literature (an average of
λ̂ = 0.5, β̂ = 0.51) for the same ground truth environments
in Wu et al., 2018). This may be a result of social learning,
which was not present in previous studies: participants in our
study appear to have undergeneralized individual information
less, and showed less uncertainty-directed exploration. More

accurate generalization may stem from increased information
about the environment from other participants, while social
learning may have partially replaced directed exploration.
However, the median estimated noise parameter ε̂soc = 26.4
was still far higher than what the evolutionary simulations
evolved towards εsoc = 3.29, showing an underreliance on
social information.

It has been repeatedly shown that humans underutilize so-
cial information in experimental settings, even when it is
to their own detriment (Morin, Jacquet, Vaesen, & Acerbi,
2021). Although not leading to optimal outcomes, it is still
possible to succeed in the task without any social learning.
While evolutionary simulations show that SG is the domi-
nant strategy, it is more computationally complex, integrating
4x more data compared to AS. Formally, the degree of noise
σ2

ε can be related to Tikhonov regularization (Bishop, 1995),
with higher εsoc corresponding to a simpler, more regularized
model. Thus, ignoring or underutilizing social information
may be a resource-rational alternative (Bhui, Lai, & Gersh-
man, 2021).

There is also the possibility that a subset of participants
found the task setup (including the timer on the choices)
too overwhelming to consider multiple sources of informa-
tion. Some participants described only looking at other par-
ticipants’ grids at the very start of the experiment, and sub-
sequently ignored them in favor of their own environment.
While both VS and SG implicitly account for less reliance
on social information as uncertainty is reduced, this may not
have been enough to properly capture social information us-
age if it was limited to the very first trials. Future exper-
iments could consider using shorter search horizons to fur-
ther incentivize the use of social learning. Yet while this
current design yields reliable model and parameter recovery
(all p(gen| f it)≥ .83, p( f it|gen)≥ .80, and rτ ≥ .75), shorter
horizons may push the empirical limits of model estimation.

It is also important to note that this task is only designed to
understand how social information, characterized by its posi-
tive correlation to individual information, would be integrated
into decision-making. We make no claims about how infor-
mation about the value others assign to an option could be
inferred from their actions, but there is a plethora of work on
the subject (Jara-Ettinger, 2019; Gweon, 2021).

Finally, since we studied groups of real participants, we
had no control over the quality of social information available
to participants. Potentially, there were groups with more or
less valuable social cues, which would explain variance in
how much social information was considered in individual
decision-making. This could be circumvented in future work
by having participants interact with artificial agents.

Conclusion
In summary, we find that the majority of humans used the
normatively best model out of the ones we tested, implying
that they are perfectly capable of taking social information
with a grain of salt if the situation calls for it.
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