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Abstract
Humans use a variety of cognitive capacities and strate-
gies to learn from others, ranging from faithfully imitating
other people’s behavior to inferring the mental states that
produced the behavior. Prior work has suggested people
flexibly arbitrate between imitating others’ choices (Imi-
tation; I) and inferring the value of their chosen option
(Value Inference; VI). However, it remains an open ques-
tion how people balance these strategies against draw-
ing ever richer social inferences about the structure of
the environment (Model-Based Inference; MBI). Using a
task designed to dissociate the three strategies, we find
evidence for the adaptive use of imitation, as well as pre-
liminary evidence for MBI-level performance. Our results
provide a methodological framework to understand how
humans learn from others, with future work using compu-
tational modeling of choices expected to provide impor-
tant insights into the arbitration of social learning mech-
anisms.
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Introduction
Humans learn from others in a variety of ways, including
faithfully imitating actions (Tennie, Call, & Tomasello, 2009),
inferring what others value (Collette, Pauli, Bossaerts, &
O’Doherty, 2017), and detecting how their beliefs about the
world may differ from our own (Berke & Jara-Ettinger, 2022).
With this range of strategies at our disposal, an important
question is how we decide which to employ in which situation.

Past work suggests that when we learn from others, we take
the most reliable strategy (Charpentier, Iigaya, & O’Doherty,
2020). In a three-armed bandit task, participants flexibly alter-
nated between simply copying the demonstrator’s action (Imi-
tation; I) or inferring which token was most valuable (here, we
call this strategy Value Inference; VI).
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Figure 1: Social learning mechanisms and Experiment. a) Three
levels of social inference: imitation (I) copies the policy, value infer-
ence (VI) infers the value function, and model-based inference (MBI)
infers the demonstrator’s reward function and beliefs about the en-
vironment (e.g., whether a reversal has occured) from behavior. b)
The social transitive inference task (STIT). Participants observe an
omniscient demonstrator’s choice, then make their own. c) At some
points during the task, the reward hierarchy is reversed. In those in-
stances, all three models can predict different choices.

Collectively, these strategies trade off the cost of perform-
ing the computation against the flexibility of its outputs (Wu,
Vélez, & Cushman, 2022, Fig. 1a). VI may be more demand-
ing than copying the demonstrator, but it allows greater flexi-
bility to generalize (e.g., when choices available to the demon-
strator are different from those available to you).

However, beyond inferring what others find valuable, hu-
mans are also capable of inferring other people’s beliefs
about the structure of the world (Baker, Jara-Ettinger, Saxe,
& Tenenbaum, 2017). This capacity has variously been called
Theory of Mind, or mentalizing. By analogy to asocial learning
mechanisms, we refer to it as Model-Based Inference (MBI).
Developmental work suggests that VI and MBI may arise at
distinct points in development (Gergely & Csibra, 2003). For
example, toddlers understand that people can have personal
preferences (Repacholi & Gopnik, 1997) years before they un-
derstand that other people can have different beliefs (Scott &



Baillargeon, 2017). Yet, it remains unknown whether humans
also arbitrate between MBI and other social learning mecha-
nisms. Here, we tackle this question using a transitive infer-
ence task designed to dissociate the three strategies.

Experiment: Social transitive inference task
We designed the Social Transitive Inference Task (STIT;
Fig. 1b) where participants could learn an underlying value
hierarchy from an omniscient demonstrator’s choices. Some-
times, this value hierarchy was reversed, which could be in-
ferred from the demonstrator’s behavior. Thus, in trials af-
ter the reversal, each strategy can make distinct predictions
(Fig. 1c), allowing us to distinguish between strategies.

Participants and design. We recruited 71 participants
(Mage = 39.7; SD = 12.0; 34 female, 2 other) on Prolific in
a within-subject design, where we manipulated the set size
s ∈ [6,9,12] of cards in each game to alter the cognitive costs
of more complex strategies. On average, participants spent
31.8 ± 16.6 minutes and earned £6.0 ± £0.70.

Materials and procedure. Participants were instructed to
earn as many points as possible by selecting the best out of
three randomly drawn cards (Fig. 1b). Each choice was pre-
ceded by a selection made by an omniscient demonstrator.
The demonstrator’s chosen card was always available to the
participant to allow for exact imitation, although the other two
alternatives could differ, making imitation suboptimal in some
cases. Additionally, participants were told the value ranking of
cards would be reversed once during each round, and to pay
close attention to the demonstrator’s choices to identify when
this occurred.

After the instructions, an interactive tutorial, and a com-
prehension check, participants began the main experiment.
The task was performed over 6 rounds, with two repetitions
of each set size s ∈ 6,9,12, and in randomized order. The
number of trials in a round was defined relative to the set size
(T = s∗5), to ensure enough time to learn the underlying re-
ward hierarchy. Each set size had one early-switch (after 40%
of the trials) and one late switch (60% of the trials) block. Af-
ter each block, participants received feedback on the percent-
age of correct choices and the corresponding bonus, and were
shown the unreversed card hierarchy. Card images were ob-
tained from the BOSS inventory (Brodeur, Guérard, & Bouras,
2014), with an equal number of natural and artificial stimuli in
each block.

Social learning models
To perform Imitation (I), we assume participants simply copy
the demonstrator’s choice (xi = xd) in a slightly noisy fashion.
We implement this as a softmax policy:

πI(xi) ∝ exp(δ(xi = xd)/τ) (1)

where δ(xi = xd) = 1 for the demonstrator’s choice and 0 oth-
erwise, and the temperature τ controls decision noise.

Value Inference (VI) can be described as Inverse Rein-
forcement Learning (IRL; Jara-Ettinger, Gweon, Schulz, &
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Figure 2: Behavioural results. a) Percentage of imitation in trials
where imitation is vs. is not the optimal, split by set size. Partici-
pants imitate less when it is not optimal, but more when set sizes
are higher. b) Learning curves (ribbons indicate 95%-CI) for simu-
lated models and participant data centered around the reversal point
(dashed vertical line). The dashed horizontal line is chance perfor-
mance.

Tenenbaum, 2016) using Bayesian formalism to infer another
individual’s value function V from their actions A:

P(V |A) ∝ P(A|V )P(V ) (2)

We implement VI as a particle filter (Speekenbrink, 2016),
where each of the m particles zt

m = {vt
1, . . . ,v

t
s} represents

a hypothesis about the value V of each card. We initialize
v0

i ∼ N (0,1) as a draw from a normal distribution. After each
observation, particles are re-weighted and resampled propor-
tional to their likelihood P(A|V ), assumed to be a softmax pol-
icy (similar to Eq. 1 using vi instead of δ(xi = xd)) predicting
the demonstrator’s choice. Thus, value estimates consistent
with demonstrator choices are more likely to be resampled
and proliferate. Because the static value function V is prone
to sample impoverishment , we rejuvenate particles by adding
Gaussian noise z̃t

m ∼ N (zt
m,1). We then use Metropolis-

Hastings (Murphy, 2012) to probabilistically accept the rejuve-

nated particles with p(accept) = min
(

1,
p(A|z̃t

m)p(zt
m|z̃t

m)

p(A|zt
m)p(z̃t

m|zt
m)

)
.

The posterior distribution in Eq. 2 is then approximated as the
average over particles, which is used in a softmax policy to
model participant choices πV I(xi) ∝ exp(vi/τ).

We assume Model-based Inference (MBI) decomposes
the demonstrator’s value function into their knowledge about
the reward rankings R and their belief about the environmental
state B (i.e., whether the hierarchy was reversed or not):

P(R,B|A) ∝ P(A|R,B)P(B)P(R) (3)

MBI is also implemented as a particle filter, but with particles
including both R and B ∈ [−1;1]. Reward rankings R are ini-
tialized, resampled, and rejuvenated the same way as value V
(see above). The belief component B is initialized as 1 (no re-
versal) and has an asymmetric transition probability of flipping
from 1 to -1 with P(Bt+1 = −1|Bt = 1) = 1

T-t to indicate an
inferred reversal. As with VI, the posterior distribution in Eq. 3
is approximated as the average across all particles, which is
then used to inform the model choices with a softmax policy
πMBI(xi) ∝ exp(ri ∗B/τ).



Results
Participants chose the best card above chance (33%; t(70) =
18.0, p < .001, Mcorrect = 56.9%, SD = 11%), but at a slightly
worse rate than pure imitation (t(70)=−2.0, p= .048). Over-
all choice accuracy did not differ based on set size (F1,70 =
2.917, p = .092).

We find preliminary evidence for adaptive imitation, with
participants imitating more when it was the optimal strategy
(F1,70 = 127.2, p < .001; Fig. 2a). Although the rate of imita-
tion was not influenced by set size (F1,70 = 0.799, p = .374),
we find an interaction between set size and optimal imita-
tion (F1,70 = 7.813, p = .007), with participants imitating more
when suboptimal in larger set sizes. This may suggest an in-
creased use of simpler strategies for more complex problems,
although VI and MBI also predict imitation when it is optimal.

To find evidence for VI or MBI, we ran 333 simulations
per model with the number of particles set to m = 500 and
softmax temperatures τ sampled from a log-normal prior with
M ≈ 0.004 and SD ≈ 0.005. We remove trials where imitation
is optimal, and plot human and model performance relative
to the reversal point (Fig. 2b), reporting aggregated learning
curves due to a lack of differences across set sizes. After the
reversal point, MBI recovers faster than VI, with participant
performance most resembling MBI (t(70) = −0.9, p = .389)
and reliably better than VI (t(70) = 5.1, p < .001). Note
that model performance can be arbitrarily degraded by reduc-
ing the number of particles, and future work fitting models to
choices can provide stronger evidence for strategy use.

Conclusion
Humans employ a variety of social learning mechanisms. Us-
ing a novel task to tease apart these mechanisms, we find
evidence of the adaptive use of imitation and MBI-level per-
formance after reversals. This could be underpinned by either
an arbitration mechanism, or MBI implemented in a resource-
limited fashion, with model fitting required to disentangle these
hypotheses. Our results add to a growing body of work on the
sophistication of human social learning (Witt, Toyokawa, Lala,
Gaissmaier, & Wu, in press; Charpentier et al., 2020; Vélez &
Gweon, 2021), and lays the foundations for future investiga-
tions into arbitration between social learning mechanisms.
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01IS18039A and funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy–EXC2064/1–390727645. The
authors thank the International Max Planck Research School
for Intelligent Systems (IMPRS-IS) for supporting Alexandra
Witt.

References
Baker, C. L., Jara-Ettinger, J., Saxe, R., & Tenenbaum, J. B.

(2017). Rational quantitative attribution of beliefs, desires

and percepts in human mentalizing. Nature Human Be-
haviour , 1(4), 0064.

Berke, M., & Jara-Ettinger, J. (2022). Integrating experience
into bayesian theory of mind. In Proceedings of the annual
meeting of the cognitive science society (Vol. 44).

Brodeur, M. B., Guérard, K., & Bouras, M. (2014). Bank of
standardized stimuli (boss) phase ii: 930 new normative
photos. PloS one, 9(9), e106953.

Charpentier, C. J., Iigaya, K., & O’Doherty, J. P. (2020). A
neuro-computational account of arbitration between choice
imitation and goal emulation during human observational
learning. Neuron, 106(4), 687–699.

Collette, S., Pauli, W. M., Bossaerts, P., & O’Doherty, J.
(2017). Neural computations underlying inverse reinforce-
ment learning in the human brain. Elife, 6, e29718.

Gergely, G., & Csibra, G. (2003). Teleological reasoning in
infancy: The naıve theory of rational action. Trends in cog-
nitive sciences, 7 (7), 287–292.

Jara-Ettinger, J., Gweon, H., Schulz, L. E., & Tenenbaum, J. B.
(2016). The naı̈ve utility calculus: Computational principles
underlying commonsense psychology. Trends in cognitive
sciences, 20(8), 589–604.

Murphy, K. P. (2012). Machine learning: a probabilistic per-
spective. MIT press.

Repacholi, B. M., & Gopnik, A. (1997). Early reasoning about
desires: evidence from 14-and 18-month-olds. Develop-
mental psychology , 33(1), 12.

Scott, R. M., & Baillargeon, R. (2017). Early false-belief under-
standing. Trends in Cognitive Sciences, 21(4), 237–249.

Speekenbrink, M. (2016). A tutorial on particle filters. Journal
of Mathematical Psychology , 73, 140–152.

Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up
the ratchet: on the evolution of cumulative culture. Philo-
sophical Transactions of the Royal Society B: Biological Sci-
ences, 364(1528), 2405–2415.
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