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ABSTRACT

The clarity of our memories guides how we act on past experiences and approach new ones. While extensive research
has examined how memory limitations affect recall, far less is known about how these limitations influence decisions in new
situations, which depend on generalizing from incomplete or distorted memories. We introduce a computational model of
“forgetful generalization”, integrating similarity-based generalization with variable-precision memory modulated by recency
and asymmetric surprise. In a preregistered spatially correlated bandit experiment, we manipulated (within-subject) whether
past observations remained visible (low load) or disappeared (high load). Greater memory load increased “forgetfulness”,
as captured by parameters indexing recency- and surprise-dependent decay of memory precision. These parameters also
predicted individual working memory capacity and explained differences in performance and search patterns. By formalizing
how generalization operates under limited memory, our model links episodic reinforcement learning to theories of adaptive

memory compression and resource rationality.

Introduction

Imagine showing a visiting friend around your hometown.
Some places you can picture in sharp detail, such as the cafe
you visited just last weekend. Other memories, such as the
park you once loved as a child, have been eroded by time,
only allowing partial access to details about what made it
special. Then there’s the abandoned amusement park you
once stumbled upon as a teenager — an unexpected find that
still stands out vividly in your memory. Thus, our memories
and how clearly we retain them, play an important role in
shaping which experiences we revisit, which we avoid, and
how we explore new possibilities.

Decades of research have studied how memory limita-
tions shape the accuracy of our recall of past experiences' ™.
Broad evidence shows how human memory prioritizes cer-
tain experiences>®, especially more recent’ !> and surprising
events'? 4. However, we know far less about how memory
limitations influence future decisions, particularly when gen-
eralizing from incomplete or fuzzy memories to guide choices
in new situations.

One extension of reinforcement learning (RL) called
episodic RL!>1© has been central to modeling how past ex-
periences guide future decisions through episodic memory
and value generalization'’"'? (Fig. 1a). A prominent exam-
ple of episodic RL uses the formalism of Bayesian function
learning, called Gaussian Process (GP) regressionzo, to ex-
plain how people infer the value of novel options based on
similarities to past experiences'’. The framework has been
successful in accounting for human generalization across spa-

tial>!-?2, abstract, and graph-structured domains*. Episodic
RL, however, assumes that past experiences are stored with
perfect precision, overlooking how cognitive limitations re-
duce representational ﬁdelity25 (e.g., over time), and in turn,
constrain generalization”. Therefore, it cannot account for
how memory distortions influence generalization, thus alter-
ing decision-making and exploration.

Another extension to RL provides a mechanistic account
of how working memory (WM) limitations influence learn-
ing?6-2% (Fig. 1b). These RLWM models combine fast, accu-
rate WM encoding with slower RL updates. When WM ca-
pacity is sufficient to meet task demands, reward associations
can be learned in a single trial; under higher load, learning
proceeds more gradually via RL (also see REF*”). Crucially,
RLWM models provide a theoretical link between episodic
and working memory, offering a mechanistic account of how
both the encoding and recall of episodic information can be
impaired by the lack of attentional resources, resulting in less

precise memories®®3!.

Related work on exploration has examined how a broad
range of cognitive constraints, including both WM load>?
and time pressure’>34, affect the balance between exploiting
known rewards and exploring uncertain options. Across stud-
ies, these constraints selectively reduce uncertainty-directed
exploration, while leaving random exploration relatively un-
affected3>:39, Together, these lines of research show how
memory and cognitive constraints degrade the precision of
value representations and limit the strategic use of uncertainty
for exploration. Yet, much like RLWM models, they share the
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Figure 1. Theoretical frameworks. a) Episodic reinforcement learning (RL) makes predictive generalizations about the
expected value of a novel stimulus x, by computing a weighted sum of similarity scores (e.g., using kernel similarity; Eq. 3)
between X, and episodic memories of previously encountered stimuli, which are assumed to be stored with perfect precision. b)
RL with limited working memory (RLWM) accounts for how cognitive load (e.g., high learning rate under minimal load) and
temporally decay influences value learning, which is learned independently for all stimuli (i.e., no generalization). ¢) In our
framework, value is generalized from the past episodes (as in panel a), but episodes are stored with variable-precision, causing

both temporal- and surprise-dependent decay (as in panel b).

same key simplifying assumption: each option is independent,
such that knowledge about one provides no information about
others. This overlooks the hidden structure of real-world envi-
ronment321’37, which allow for generalization from familiar
to novel situations.

Here, we introduce a new model of forgetful generalization
(Fig. 1c), which integrates the mechanisms of value gener-
alization'” with principles of RLWM?® under the statistical
framework of heteroskedastic GP regression””3%39  As in
the previous work using GPs as a Bayesian framework for
value generalization (and episodic RL more broadly) value
is inferred on the basis of similarity to past episodes. How-
ever, in our model, past episode are encoded with variable
precision, capturing loss of fidelity due to memory limita-
tions. This allows us to explore mechanistic hypotheses about
how the encoding of events are prioritized (e.g., through re-
cency and surprise), and how memory distortions influence
decision-making and exploration.

To link memory prioritization to individual differences in
WM, we assessed each participant’s WM capacity using the
symmetry span task*""#> (Fig. 2a). We then evaluated the
forgetful generalization model (and lesioned variants) in pre-
dicting human behavior in a variant of the spatially correlated
bandit task®! (Fig. 2b). The task presents participants with
121 different options on a 11 x 11 grid with hidden spatial
structure, such that nearby options have similar rewards. This
large and structured decision space contains far more possi-
ble options than can be sampled within the available search
horizon (25 trials), making generalization and efficient ex-
ploration crucial for good performance. To understand how
memory limitations influence these capacities, we additionally
manipulate memory load (within-subject). In the Low Load

condition (LL), reward observations remain visible, whereas
in the High Load (HL) condition, they disappeared after 400
ms requiring participants to rely on memory to generalize
about the expected value of novel options.

Results

We collected data from N = 197 participants to test how work-
ing memory (WM) capacity and cognitive load influence gen-
eralization and exploration in a spatially correlated bandit task
(Fig. 2; see Methods). We first report behavioral effects before
turning to a new computational model of forgetful generaliza-
tion, which provide a richer, mechanistic account. The study
design, exclusion criteria, hypotheses, and analysis plan were

preregistered prior to data collection*’.

Behavioral results

Before introducing the computational model, we examined
how memory load (low load, LL; high load, HL) and indi-
vidual WM capacity (symmetry span task) influenced both
performance and search patterns on the bandit task. WM
scores were computed using partial-credit scoring, which
takes the mean proportion of correct responses across all se-
quences**. Welch’s ¢-test indicated that our sample (M = 0.69,
SD = 0.21) did not significantly differ from a normative sam-
ple*? (ty20.1 = 1.44, p = .150).

Bandit performance

We preregistered the prediction that the high load (HL) condi-
tion would impair performance relative to the low load (LL)
condition. A paired ¢-test on mean normalized rewards did not
support this prediction (¢;9¢6 = 1.35, p = .179; see Methods for
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Figure 2. a) Symmetry span task used to assess memory
capacity. Participants alternated between memorizing target
locations presented as red squares and judging whether
black-and-white patterns were symmetric along the vertical
centerline. After completing the sequence, participants
sequentially reproduced the target locations on an empty grid.
b) Spatially correlated bandit task with variable cognitive
load. Each 121-armed bandit was represented as an 11 x 11
grid with a hidden spatial structure, where nearby arms had
similar values. In the “Low load” (LL) condition, payouts
remained visible until the end of the block. In the “High load”
(HL) condition, payout information disappeared after 400 ms,
requiring participants to rely on memory. ¢), The full
procedure consisted of the symmetry span memory task
followed by the bandit task, where memory load was
manipulated within-subject and appeared in randomized
order.

details on reward normalization). However, exploratory analy-
ses revealed that memory load affected how participants accu-
mulated rewards over time (Fig. 3a). For this analysis, we fit a
linear mixed-effects regression on the difference in mean nor-
malized reward between conditions (LL - HL) as a function of
trial number: diff ~ trial + (trial|id). A pos-
itive intercept (b = 0.018, t19¢ = 2.32, p = .022) indicated
participants reliably obtained higher rewards on their first free
choice (i.e., the second trial) in LL compared to HL, while a
negative trial slope (b = —0.022, 1(196) = —2.08, p = .038)
suggested this advantage diminished over the course of the

block (Fig. 3a, inset).

We next explored whether WM scores predicted perfor-
mance. A preregistered correlation between WM score and
the LL-HL performance difference was not significant (7195 =
.035, p = .625), providing no empirical support for the hy-
pothesis that WM capacity moderated the effect of memory
load on overall performance. However, an exploratory mixed-
effects model of mean performance as a function of condition
(effects-coded) and WM score (mean centered), reward
~ cond * WMScore + (cond]|id),revealed a signifi-
cant relationship between WM score and overall performance
(b =.024, t195 = 3.69, p < .001; Fig. 3b; see Fig. S1 for
all model coefficients). Thus, participants with a higher WM
score performed better on the bandit task overall, regardless
of load conditions.

Search distance

We then explored differences in search distance between
the LL. and HL conditions (Fig. 3c-d), which we defined
as the Manhattan distance between consecutive choices. A
t-test showed participants searched more locally under HL
(t196 = 4.30, p < .001). Stratifying by trial and using a linear
mixed-effects regression, we found that this difference was
stable across the block (b = —0.022, t;96 = —0.19, p = .852;
Fig. 3¢).

To further characterize the differences in search patterns,
we classified participants’ choices into 'repeat’ (dist = 0),
near’ (dist = 1), and ’far’ (dist > 1) bins and examined how
memory load changed the frequency of these choices (Fig. 3d).
Although the number of repeat choices did not differ signifi-
cantly between conditions (b = .344, t19s = 1.78, p = .077),
the frequency of near choices was higher in the HL condition
(b= .935, t196 = 5.62, p < .001), while the frequency of far
choices was higher in the LL condition (b = —1.279, tj9¢ =
—6.59, p < .001). Thus, differences in search distance were
primarily driven by a change in the nature of exploration (less
distant under HL), rather than a change in the balance between
exploration vs. exploitation (similar repeat choices).

Reward sensitivity

We next examined whether memory load influenced reward-
guided search. Previous studies?>3° found higher rewards at
time ¢ lead to shorter search distances at 7 + 1 (reward sensi-
tivity), which can be considered a flexible analog of a simple
win-stay-lose-shift heuristic*>. If memory load disrupts value
representations, reward sensitivity could weaken under HL,
which could be evidenced by a significant interaction between
reward and condition (in the presence of a significant effect
of reward).

Our preregistered mixed-effects Poisson regression, dist
~ reward * cond + (reward * cond|id), con-
firmed a robust reward sensitivity in LL (b = —2.68, z =
—30.89, p =< .001) and shorter overall search distances in
HL (b= —0.124, z = —6.98, p =< .001), but did not detect
a significant reward * condition interaction (b = —0.066, z =
—1.50, p = .134). However, the effect estimate was in the
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Figure 3. Behavioral results. a) Mean normalized reward (£95% CI) across participants and blocks, stratified by trial (x
axis) and condition (colors). The inset shows binned, within-participants mean differences between conditions (with 95% CI),
where the gray line indicates the expected value of differences (with 95% CI) as a function of trial. b) Joint distribution of mean
normalized rewards and individual WM scores. The data points are colored according to 33%-percentiles designating low,
medium, and high WM scoreres. The box plot on top shows the interquartile range and the median of WM scores. The red line
shows the expected value (with 95% CI) of mean normalized reward as a function of WM score. ¢) Search distance (£95% CI)
across participants and blocks, stratified by trial (x axis) and condition (colors). The inset shows binned, within-participants
mean differences between conditions (with 95% CI), where the gray line indicates the expected value of differences (with 95%
CI) as a function of trial. d) Distributions of differences in the relative frequencies of choices of repeat, near, and far choices.
Points above the red dashed line indicate higher frequency in the Low load condition. Black dots and with error bars in the
middle of each distribution indicate the mean and the 95% CI. Labeled brackets connecting pairs of distributions summarize the
corresponding z-tests. e) Search distance averaged across participants and blocks (£95% CI), stratified by binned reward (x
axis) and condition (colors). The inset shows the average difference in search distance for each reward bin (with 95% CI),
along with the predicted differences (£95% CI) between conditions predicted by the preregistered Poisson model described in
Results. f) Joint distribution of WM scores and estimated random effects of participant on Reward s Condition interaction (line
and band represent the expected value £95% CI of random effect conditional on WM score). WM score did not seem to
modulate the effect of condition on reward sensitivity.

expected direction and the average (within-participant) HL-  (reward » cond|id) found no three-way interaction
LL contrast in distance appeared to decrease as a function of (b = —0.188, z = —0.90, p = .366), indicating no moder-
reward (Fig. 3e, inset). Thus, we investigated this further in  ation of the load effect by WM score (Fig. 3f, see Fig. S3 for
an exploratory analysis using a /inear mixed-effects regres-  all model coefficients and tests). Thus, the effect of memory
sion (as used previously?>3?), which did in fact indicate a  load (or lack thereof) did not appear to depend on individual
significant interaction (b = .610, #j92.43 =4.91, p =< .001). WM capacity.

However, model comparisons proved inconclusive (Fig. S2),

thus we cannot definitively confirm or reject the modulatory  gepavioral summary

effect of memory load on reward sensitivity. Memory load produced subtle but consistent effects: HL re-

Finally, we tested the hypothesis that lower WM ca-  duced early trial rewards, shortened search distances through
pacity accentuated memory load impairments of reward- increased number of near choices (dist. = 1) and reduced
guided search. The preregistered mixed-effects Pois- number of far choices (dist. > 1). While one might expect
son model, dist ~ reward * cond * WMScore + decreased search distance could be due to weaker reward sen-
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sitivity under HL, our data did not support this prediction.
Furthermore, while individual WM capacity boosted overall
performance, it was not predictive, in either condition, of
search distances across different reward levels. These pat-
terns hint at interactions between memory constraints and
generalization, but behavioral analyses alone cannot reveal
the underlying mechanisms. Next, we directly assess these
mechanisms using our computational model of forgetful gen-
eralization.

Computational modeling

We introduce a computational model of “forgetful generaliza-
tion” (along with lesioned variants; Fig. 4a, b) to provide an
algorithmic account of how memory constraints shape gener-
alization and decision-making, thus unifying mechanisms of
value generalization from episodic RL (Fig. 1a) with the mem-
ory dynamics of RLWM (Fig. 1b). In contrast to prior work
using Gaussian Process (GP) regression, and the episodic RL
framework more generally, our model assumes past episodes
are stored with variable precision, reflecting the limited and
selective nature of memory (Fig. 1¢).

Specifically, we test mechanisms prioritizing the precision
of past experiences according to their recency, the degree of
signed surprise given prior expectations, and their interac-
tions (Fig. 4c). These mechanisms of forgetful generalization
extend the standard GP-UCB framework!”, which combines
GP regression for value generalization and upper-confidence-
bound (UCB) sampling for exploration.

Value Generalization

GP value generalization is performed using Bayesian infer-
ence about the expected rewards for a target location on
the grid x,, conditioned on past observations &, = {X;,r,}
of choices X; = [xj,...,X;] and associated rewards r, =
[r1,...,r¢] at time ¢. In our particular setting, the poste-
rior predictive distribution takes the familiar Gaussian form
p(r(x)|Zs) ~ A (my(X),v(Xx)), with mean and variance:

mi(x. | 2:) = ki [Kxx + 021 1y (1)
vi(x. | Z0) = 1 K] [Kxx +021] k.. )
Here, k, = [k(X1,X4),...,k(X;,X,)] is the vector of kernel sim-

ilarities between past observations and the target location
(illustrated in Fig. 1a), and Ky x is a matrix of pairwise kernel
similarities between all past observations in X;. To define
similarity, we adopt the common radial basis function (RBF)
kernel:

112
krpF (X,X') = exp (”Xz;”> : 3)
where the lengthscale parameter A controls the degree to
which rewards generalize over space.

An important link to episodic RL'>4¢ (Fig. 1a) emerges
from the fact the posterior mean (Eq. 1) can be re-
expressed!”*7 as a similarity-weighted sum over value (v)

of past episodes (see Fig. 1a)

13

mt(x* | @z) = Zk(Xi,X*)Vi, 4)

i

where v; € v=r;-[Kx x + G,%I]*'. This formulation clarifies
the mechanistic assumption that generalization is achieved by
retrieving prior episodes and integrating them based on (a)
their similarity to the current situation k(-,x,) and (b) how
much weight they carry v. This weight depends jointly on
the observed rewards and the assumed reliability, with the
latter governed by the observation noise parameter G,%. In
standard GP regression, G,f is fixed to a constant, implying
that all episodes are remembered with equal precision. In
the next section, we relax this assumption by allowing this
noise parameter to vary across episodes. This enables us to
formulate a mechanistic account of how some memories are
stored with higher fidelity than others (Fig. 4c).

Memory prioritization

We operationalize variable precision memory
statistical framework of heteroskedastic GP regression
Related approaches have used heteroskedastic GP regression
in simpler contexts (e.g., assigning different noise levels to
individually experienced vs. socially observed rewards*’).
Here, we extend this idea to model how memory precision
varies continuously with cognitive factors such as recency
and surprise. Intuitively, past observations (i.e., memories)
are stored with greater precision when they are associated
with less noise an. This means that the greater the noise, the
more the model posterior decays back to the prior (similar to
REF?2%). We define 67 for each observation as a function
of fixed baseline noise Gg = 10~ plus an observation specific
variance gain g;(x) > 0:

3,40.48 ysing the

38,39

62 =02 +g/(x) where g(x)=exp(f-w)—1 (5)

Thus, variance gain is an exponentiated linear combination
of features f; € [0,1] and weights w; > 0. Features capture
various mnemonic prioritization mechanisms (Fig. 4b), such
as recency'-133 and surprise!>!*, while weights are free
parameters estimated to determine their contribution such that
g:(x) = 0 when all weights are zero.

Recency is defined as the number of elapsed trials since
observation x, normalized by the maximum number of trials
tmax = 25:

fr:(s(xat)/tmax' (6)

The higher the corresponding weight wy, the greater the noise
associated with older observations (i.e., memory decay). Note
that f; is actually the inverse of recency, but this intentional
formulation allows us to simplify the interpretation of the
weights in w.

Surprise is defined by the mismatch’! at time 7 between the
observed reward r,(x) and the predictive mean m, (x) (i.e., the
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Figure 4. Computational modeling. a) Illustrative comparison of different computational models in a simplified (1D) setting
with a continuous input. Each panel shows model predictions after observing the same three rewards. The rewards are given by
the true reward function (black curve). The numbers above observations indicate temporal order. The colors of observations
indicate observation noise (c2). The gray line indicates posterior predictive mean conditioned on all 3 observations, and the
surrounding band corresponds to posterior predictive variance. The red line signifies the upper confidence bound (UCB), under
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recency and surprise (a monotonic function of prediction error) is controlled by the corresponding prioritization weight (w; or
ws), such that greater weights correspond to more extreme prioritization. Additionally, the asymmetry parameter o, controls
the asymmetry in how negative vs positive prediction error affect variance gain.

expected reward at time ?):

[ (x) = i (x))|

= l—erf
fi=1-e 2 ()

)

where erf is the Gauss error function, which in our case, is
the cumulative density function of a half-normal distribution
with standard deviation defined by the prior predictive vari-
ance \/v;(x). The farther an observation r;(x) is from the
expectation m, (X), the closer the error is to 1. The correspond-
ing weight wy defines the degree with which less surprising
observations are forgotten.

We also include an asymmetric variant of surprise-based
forgetting'> !4, which differentiates positive and negative pre-
diction errors with a surprise-asymmetry parameter o:

o fs if rp(x) > my(x),
fs otherwise.

fi= ®)

Thus, if the reward is greater than expected, the surprise fea-
ture f; is multiplied by . When « > 1, positive prediction
errors have greater mnemonic priority compared to negative
prediction errors, and vice versa for a < 1.

Exploration and choice
Following the GP-UCB framework'”, we model choices using
a softmax function over the upper confidence bound (UCB)

values associated with each option. UCB values are com-
puted as a linear sum of the posterior predictive mean and
variance: UCB(x) = m(x|%;) + B+/v(x|Z;), where B is the
exploration bonus, defining how much the reduction of un-
certainty is traded-off against exploiting immediate rewards.
The softmax choice rule, p(x) o< exp (UCB(x)/7), includes
the temperature parameter T > 0, which defines the degree of
random exploration.

Together with a “baseline” model without forgetting, we
consider a set of five models (Fig. 4a) with different combi-
nations of recency (Eq. 6), surprise (Eq. 7), and asymmetric
surprise (Eq. 8). As illustrated in Figure 4b, the models can
make distinct predictions given the same set of observations.

Model results

Model estimation was based on leave-one-block-out cross-
validation (CV) using a differential evolution optimizer>2.
We fitted each model to each condition of each participant.
We then performed hierarchical Bayesian model selection®?
to infer the most likely model in the population (protected
exceedance probability; PXP).

In both conditions, the full model with recency and
asymmetric-surprise forgetting (GPRS,) had the highest PXP
(Fig. 5a) and reliably lower CV loss compared to all other mod-
els (Fig. 5b). Crucially, all models were highly recoverable
(see S4), allowing us to reliably identify the true generating
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Figure 5. Model results. a) Model comparison using
protected exceedance probability (PXP). The bars indicate
the probability that a given model (x-axis) is most likely in a
population (separate for LL and HL), while correcting for
chance. b) Mean cross-validation loss (£95% CI) relative to
the winning model (GPRS,), where larger values are worse.
¢) Joint distributions of the full GPRS, model’s parameters
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depict marginal distributions of the parameters for each
group. The lines illustrate linear mixed-effects models’
predictions of parameter values as functions of WM score
and condition. Brackets above the box plots summarize the
results of significance tests on the fixed-effects of condition
on fitted parameters, with * indicating p < .05 and **
indicating p < .01

model when simulating behavior>*. Interestingly, the “forget-
ful model” performed best in the LL as well as HL conditions,
suggesting that the model also captures attentional limitations
account for all observations, even when they do not disappear.

We then examined the parameter estimates of the win-
ning GPRS, model, which were also recoverable (see Fig.

S5), to examine how they varied with cognitive load and
WM scores. Specifically, we fit a linear mixed-effects model
(Fig. 5c¢; see Fig. S6 for Regression coefficients and signifi-
cance tests), modeling each parameter as a function of con-
dition and WM score: param ~ cond * WMScore +
(cond|id). While wg and ¢ were estimated as separate
parameters, we can interpret ¢ - W as a single parameter con-
trolling the effect of positive surprise, in contrast to wg for
negative surprise. Thus, we entered wg and o - w as separate
dependent variable in the regressions.

First, we observed an effect of condition on all three pri-
oritization parameters (w;, Wg, and o - wg; see box plots
in Fig. 5c¢), with HL predicting greater recency weights
(b =—-0.04, t195 = —3.28, p = .001), and both higher neg-
ative (b = —0.09, tj95 = —3.10, p = .002) and positive sur-
prise weights (b = —0.33, tj95 = —2.43, p = .016). There
were no reliable effects of condition on the generalization A,
directed exploration f3, and random exploration T parameters
(all p > .242). Thus, HL specifically increased recency and
surprised-based prioritization of reward information.

Next, we looked at how individual WM scores influenced
parameters in each condition. While neither generalization A
nor random exploration 7T were influenced by WM score (all
p > .612), participants with higher WM scores had greater 3
estimates (b = .41, tj95 = 2.08, p = .039). WM scores did
not interact with condition (b = .12, t195 = .81, p = .419).
Thus, greater WM capacity contributed to more directed ex-
ploration in both conditions, consistent with past work linking
the two’2.

And while WM scores had no significant effect on recency
prioritization (b = —0.02, tj95 = —0.97, p = .332), higher
WM scores predicted a lower degree of both negative (wy:
b = —0.13, tj9g5 = —2.99, p = .003) and positive surprise-
based prioritization (¢ - wg: b = —0.80, tj95 = —3.06, p =
.003). Thus, individuals with high WM had less differen-
tial prioritization of surprising vs. unsurprising information,
whereas those with low WM prioritized surprising observa-
tions to a greater degree, commiserate with their greater need
to efficiently allocate limited resources.

Fitted model parameters also showed negative effects of
prioritization parameters (wy, ws, and ¢ - ws) on overall perfor-
mance and reward sensitivity (see Fig. S7). This suggests that
individuals with stronger forgetting of older and unsurprising
observations performed worse, and adapted their choices to
observations less effectively.

Discussion

The assumption that future choices depend on representations
stored in memory is ubiquitous among RL models of learn-
ing and exploration. Yet, little is known about how memory
limitations influence generalization and exploration in new
situations. In this study, we manipulated cognitive load by
having participants search for spatially correlated rewards
with either permanent (low load; LL) or disappearing reward
observations (high load; HL). Under HL, where representa-
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tions of past outcomes are likely to impaired, participants
were less efficient at maximizing rewards and searched more
locally. Furthermore, lower working memory (WM) capacity
reliably predicted lower average performance. Overall these
results align with the assumption that memory limitations have

implications for future decisions via value generalization'”.

To formalize the link between memory limitations and gen-
eralization, we integrate the episodic RL framework with
ideas from RL with limited WM. Whereas standard GP mod-
els assume each episode is stored with equal precision, we
introduce a boundedly rational account of “forgetful gener-
alization” where experiences are encoded with variable pre-
cision, reflecting systematic distortions introduced by mem-
ory limitations*’. Specifically, we implement this using the
statistical concept of heteroskedastic noise, allowing some
experiences (e.g., more recent and surprising events) to be
represented sharply, while others are degraded. This new
framework provides both an intuitive statistical formalization
of memory prioritization, but, as confirmed by model and
parameter recovery (see Fig. S4-S5), also offers an effective
empirical framework to test different mechanistic hypotheses
about which factors compete for limited memory resources.

Our main prioritization mechanisms included modulation
of observation noise by recency, surprise, and outcome asym-
metry (positive vs. negative surprise), which are factors that
have empirical links to forgetting?’ and learning'® !4, The
winning GPRS; model incorporated all three mechanisms and
beat all lesioned variants, suggesting that each mechanism
uniquely contributes to explaining how memory limitations
shape generalization and decision-making. Recency captures
the natural decay of memory fidelity over time'2, surprise re-
flects the heightened salience of unexpected outcomes '3 1440,
and asymmetry allows for differential impacts of better- or

worse-than-expected outcomes'.

Both our experimental manipulation of cognitive load (LL
vs. HL) and individually measured WM scores were captured
by changes in model parameters. Specifically, participants
increased their prioritization of recent (w;) and surprising
events (asymmetrically more for positive & - ws vs. negative
outcomes wy) under higher load (HL), while participants with
lower WM scores had generally higher levels of prioritization
for these same factors. In addition, WM capacity predicted
the degree of directed exploration, with higher WM associ-
ated with greater reliance on uncertainty-directed search ()
Thus, when less memory resources are available (by either
situational load or individual capacity), they become more
effectively prioritized towards recent and surprising events,
particularly for positive, better-than-expected outcomes, while
also shaping how effectively uncertainty is leveraged for ex-
ploration. Taken together, these findings suggest an adaptive
allocation of memory resources, at both short timescales (be-
tween LL and HL rounds) and at the population level (across
individual differences in WM capacity).

We also recognize that the full GPRS, model provided the
best predictions in both LL and HL conditions. This suggests

that even when veridical records of past experiences are avail-
able (LL condition), value generalization may nevertheless
involve imperfect representations and/or integration of data.
One likely possibility is that participants did not always attend
to or encode all available reward information, especially given
the sheer size and complexity of the decision space (i.e., 121
options). Much like ordering at a restaurant without carefully
considering every option on the menu, participants may have
selectively focused on a subset of observations, effectively
“forgetting” or ignoring the others, despite their availability.
Given that we had the same winning model with the same pri-
oritization mechanisms in both conditions, we may speculate
that similar prioritization mechanisms exist for both attention
and memory®>>. This could be based on a general principle
that when cognitive resources are constrained (be it through
memory or attentional factors), they should be reallocated as
effectively as possible. However, more research is required to
support this hypothesis. Here, we set out to develop a model
of “forgetful generalization”, which may in fact be more gen-
eral than intended, capturing both attentional bottlenecks as
well as memory limitations.

Formally, our heteroskedastic GP model can be viewed as
introducing an adaptive form of Bayesian regularization*’. By
scaling down the influence of older or less surprising observa-
tions on prediction, the model behaves more conservatively
in how it generalizes (i.e., an analogue of Tikhonov regular-
ization’®57, where observation-specific noise modulates how
closely predictions follow the data vs. the prior). This comes
at the cost of precision, as reflected in the negative relation-
ship between prioritization weights and performance (Fig. S7).
Yet, noisy representations can also be adaptive®® in some set-
tings. Here, we specifically observe a resource-rational use
of limited resources®>>->% % where participants selectively
allocate limited representational capacity to information that
is most likely to improve predictions. From this perspective,
forgetting is not merely a limitation but an adaptive feature of
cognition®!, ensuring scarce resources are effectively directed
towards recent and surprising events, which are most infor-
mative for updating believes about a structured, yet uncertain
environment.

A first limitation concerns how our model conflates working
memory and episodic memory. Although it is reasonable to as-
sume that decreased working memory resources (due to load)
would reduce the fidelity with which episodic experiences
are encoded or maintained®>~%*, our model does not explicitly
distinguish between the active maintenance of information in
working memory and the longer-term storage and retrieval
of episodic memory®. By treating them as a single source
of representational noise, we may blur potentially important
mechanistic differences®®®’. Future work could address this
by extending our framework to include separate and distinct
contributions both systems, or by combining modeling with
neural data to isolate their distinct signatures.

Another limitation lies in the strength of our memory load
manipulation. Our behavioral paradigm manipulated the avail-
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ability of outcome information (persistent in LL and disap-
pearing after 400ms in HL), which revealed reliable effects
on performance, exploration patterns, and model-based pa-
rameter estimates. However, not all of our preregistered pre-
dictions** were validated by the data. One potential reason
is that the HL condition did not sufficiently tax participants’
memory resources. Other manipulations, such as visual-noise
masking®®, a parallel WM load task*?, fixed delays between
choice and feedback®, or imposing time pressure®> 7%, may
be necessary to ensure stronger behavioral effects. Thus, new
experimental designs may be necessary to further clarify the
effect of memory demand, and to additionally understand how
it interacts with other resource constraints, such as attention.

In conclusion, our study provides a first step towards
a mechanistic account of how memory limitations distort
value generalization and exploration. By integrating memory-
prioritization processes with a Bayesian model of episodic
RL, we show that both experimental manipulations of load
and individual differences in WM capacity systematically
modulate the precision of stored experiences and the use of
uncertainty-directed exploration. Under high load and for
participants with lower WM capacity, prioritization was in-
creased for recent and surprising events, consistent with a
resource-rational allocation of limited representational capac-
ity. Together, these findings highlight how forgetting is not
only a costly error, but also an adaptive feature of cognition,
shaping how people learn from the past to guide decisions in
complex environments.

Methods

The study protocol was preregistered on the Open Science
Framework platform and carried out accordingly*?. The exper-
imental procedure was reviewed and approved by the Ethics
Committee of the Faculty of Economics and Social Sciences,
University of Tiibingen. Informed consent was obtained from
all participants. Participants were paid a fixed base fee of
£4, plus the bonus amount up to 100% of the base fee earned
during the tasks.

Participants

We recruited N = 200 participants (53.4% male, 46% female,
1 non-binary) from the Prolific US (59.7%) and UK pools.
All participants reported fluency in English. We excluded 3
participants who self-reported using external aids (e.g., notes)
during the tasks. The age ranged between 19 and 74 years
(M =39.36, SD = 12.95). Data from three participants were
excluded from analyses due self-reported use of external aids
(e.g., written notes).

The number of participants was determined by a priori
power analyses conducted in GxPower v3.1’!. The power
analyses were conducted for tests of the preregistered hy-
potheses, with the goal of obtaining .8 power to detect a
small-to-medium effect size of d = .20 (comparison of mean
reward levels between conditions) and r = 0.20 (correlation
between working memory score and the effect of condition)

as the smallest effect size of interest at the significance level
of .05.

Study design

Participants underwent a three-part ordered procedure (on-
line) consisting of a symmetry span task (Fig. 2a), a spatially
correlated bandit task (Fig. 2b), and a demographics and per-
sonality questionnaire. During the spatially correlated bandit
task, we manipulated memory load (within-subject), such that
half of the 14 blocks were randomly assigned to the low load
condition (LL), and the other half to the control high load
condition (HL), with the conditions presented in randomized,
interleaved order. In the LL condition, reward observations
were visible until the end of the block, whereas they disap-
peared after 400 ms in the HL condition, requiring participants
to rely on memory to guide their exploration.

Participants could earn a bonus of up to a 100% of the base
fee. Half of the bonus points could be earned by maximizing
performance in the symmetry span task, and the other half
by maximizing performance in the bandit task. The median
completion time was /= 31 minutes and the participants earned
an average of £6 (including the bonus).

The study was conducted online using custom and Labjs’?
code served with JATOS”?. The procedure consisted of two
main parts: the symmetry span memory task and the spatially
correlated bandit task. After providing informed consent, par-
ticipants read the overview of the entire procedure and then
continued to the memory task, followed immediately by the
bandit task. At the end of the study, we administered a ques-
tionnaire collecting demographic data (age, gender, education)
and measuring the Need for Cognition trait’*. Participants
read a dedicated set of instructions before each task. Partici-
pants could not start the behavioral task unless they correctly
answered procedure-comprehension questions.

Symmetry span task
The symmetry span task is a validated variant of a widely used
complex span paradigm for measuring the ability to main-
tain target information under interference caused by complex
task demands**. Our implementation followed an existing
shortened procedure*!-4>. Participants completed sequences
of sizes between 2 and 5, with each sequence repeated twice
(for a total of 8 unique sequences). A single trial required
participants to memorize (in correct order) the locations of
sequentially presented visual stimuli on a 4 x 4 grid, with
sequences interleaved with independent trials of a distractor
“processing” task that required participants to judge whether
arandomly generated pattern was symmetrical along a verti-
cal centerline. In the encoding component, each target loca-
tion appeared as a red square on the grid for 650 ms before
disappearing. The distractor symmetry component showed
randomly generated black-and-white patterns, manipulated to
be either symmetric or asymmetric along the vertical center-
line. The order of sequences, target locations, and symmetry
patterns were all randomized.

Participants had limited time to make symmetry judgments,
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with the maximum decision time determined during a pre-
measurement phase. In this phase, participants completed
15 self-paced symmetry judgments, and the time limit was
calculated as the mean + 2.5 SD of the last 12 trials. At the
end of each sequence, participants were prompted to recreate
the sequence of targets on an empty 4 x 4 grid.

Bandit Task

In the spatially correlated bandit task?!, participants com-
pleted 14 blocks of 25 trials, where they were instructed to
maximize the number of points, which would be later con-
verted to real money. Participants earned points by clicking
tiles on a 11 x 11 square grid, and were explicitly informed
they could also reclick previously revealed tiles. Each block
consisted of 25 free-choice trials to sample arms (i.e., tiles on
the grid) and collect their rewards, where the grid started off
empty except for one randomly revealed tile. Since the num-
ber of trials (25) was significantly less than the total number
of options (121), efficient exploration required generalization
from limited experience.

To provide traction for generalization, participants were
informed that nearby tiles tended to yield similar rewards, but
the exact structure was unknown. Reward information was
displayed using both tile colors and numbers, where darker
colors indicated higher reward. In the LL condition, the most
recent payout from each visited tile remained visible until
the end of the block. However, in the HL condition, reward
information disappeared after 400 ms, requiring participants
to rely memory.

We randomized the order of blocks for each participant.
To minimize the transfer of information between blocks, we
also randomized the range of rewards in each grid using the
following procedure. First, we pregenerated a set of 50 en-
vironments by sampling functions from a standard Gaussian
Process prior with the mean function set to zero and using a
radial basis function (RBF) kernel (Eq. 3) with the lengthscale
parameter A = 2. Then, we sampled without replacement 14
environments for each participant. Finally, each environment
was normalized into a [0, 1] range and then scaled by a random
uniform variable ~ U (65, 85).

Analyses

All significance tests were non-directional, with the signifi-
cance level set to 0.05.

Behavioral analyses

All analyses including the reward variable used normalized
rewards. Each observed reward value was normalized via fea-
ture scaling relative to the minimum and maximum expected
reward of the corresponding bandit environment. Thus, a nor-
malized reward of 0 signifies the minimum (expected) reward
of a bandit, and 1 the maximum. In practice, due to the envi-
ronment stochasticity, observed rewards could be fall outside
the min-max range. Values above the max were clamped to
1 and values below the min were clamped to 0. For models

reported in Results, normalized rewards were mean-centered
within participants.

The working memory (WM) score was computed for each
participant using partial-credit scoring**. This can be un-
derstood as a two-step calculation. First, we calculated the
proportion of correct responses (i.e., correct spatial and se-
quence position) for each of the 2 x 4 recall blocks, and then
calculated the mean of these proportions. We used z-scored
WM scores in statistical analyses.

Computational modeling

For each model type, we fitted a vector of parameter values
to each participant’s data from each condition. The param-
eters were fitted using leave-one-block-out cross-validation
(CV). For each of the 7 CV folds, we estimated maximum-
likelihood parameter values using the differential evolution
algorithm. The population size was set to 10 times the num-
ber of parameters being optimized. The mutation factor (F)
was set to 0.8. We used random selection with the binomial
crossover (with p = .5). The algorithm stopped upon reaching
the convergence criterion of absolute difference of 1073,

To compare the models, we used the CV loss (negative log
likelihood) on the held-out block, aggregated across all 7 CV
folds. The final parameter estimates were obtained by taking
the unweighted mean across the estimates from all CV folds.

Cross-validation loss was defined as the negative log-
likelihood of the parameter vector 6y, (M indexing the model
type):

25
CV Loss = —log.Z(0y) = — ) logpe, (X;: | Z:),
=1
where pg,, (x,|7,) 1s the probability of observation x; given by
model 6y, conditional on data up to trial # (Z;).

The parameters were optimized within bounded regions:
A,B,7 € [e10.%; wy € [e¥3,€°]; ws € [1%,e31P]; o €
[e!873 ¢3]. In practice, we defined search bounds in the log
space (e.g., [~10,5] instead of [¢~!9 ¢°]) and exponentiated
the sampled proposals for simulations. Parameter bounds
were determined to ensure robust model recoverability (see
Fig. S4).

Software

Statistical analyses were performed in R v4.5.0. Gener-
alized linear mixed-effects models were fit using glmmTMB
v1.1.12; general linear mixed-effects models were fit us-
ing lme4 v1.1-37. Hypothesis ¢-tests on model coeffi-
cients from 1me4 models were performed using ImerTest
v3.1-3; the z-tests on model coefficients from glmmTMB
models were included in the package; all other tests were
performed using R’s base package.

Computational modeling tasks (simulations and parame-
ter fitting) were performed in julia v1.10.3. Gaussian
Process regression relied on AbstractGPs v0.5.24 and
KernelFunctions v0.10.65. Differential evolution
was implemented in Evolutionary v0.11.1. Data vi-
sualizations were performed using GLMakie v0.13.5).
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In search of lost memories: Modeling exploration with forgetful generalization
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Effect of working memory on performance

Normalized reward

0.00
Condition —_——
0.02 ***
WM Score
Q.00
Interaction —_——
T T T T
0.00 0.01 0.02 0.03 0.04

Estimates

Figure S1. Model coefficients from reward ~ cond * WMScore + (cond|id);*** indicates p < .001.

Modulation of reward sensitivity by memory load

The preregistered Poisson model indicated a non-significant modulation of reward sensitivity by condition. However, the
raw data in Fig. S2a,b suggested a slight downward trend in the effect of condition on search distance as rewards increased.
Compared to the linear model, the Poisson model had much larger confidence intervals for estimated means at lower levels of
the reward. This is not surprising, given that participants were instructed to maximize earnings and thus avoided low-rewarding
choices. Due to the tighter confidence intervals in the linear model, the interaction between reward and condition appears
significant (Fig. S2c¢). However, model comparisons between the Poisson and linear models proved inconclusive (see Fig. S2
caption).

a 25 b 25 Cc
2 20 T 204 Search Distance
g 8 -7.25 **
£ s}
c 151 E 15 -
o 5 Reward-| —e—
@
2 107 £ 01 —0.2q "
a = .
= 054 — 05+ Condition [HL] °
5 00 T 001 617
§ ~05 é _05 Reward * Condition [HL] -
=
-1.0 45 : : : : : -1.0 4 T T : T T B B 4 2 0
00 02 04 06 08 1.0 00 02 04 06 08 1.0 Estimates

Figure S2. a) Inset from Fig. 3e of the main text. The plot is showing for each reward bin, the mean differences (+95% CI) in
search distance between LL and HL conditions (positive values indicate higher distance in LL). Raw data is represented by dots
and whiskers, and the mean+95% CI predicted by the Poisson mixed-effects model dist ~ reward = cond +
(reward = cond|id) isrepresented as gray line and band. b) Shows the same raw data as a, but the predictions (gray line
and band) are given by a linear model (with Gaussian likelihood and an identity link). The linear model performed slightly
better in terms of 30-fold cross-validated MSE (MSEL inear [95% CI] = 4.40 [4.29, 4.52], compared to

MSEpqisson [95% CI) = 5.23 [5.00, 5.45]), but the information criteria strongly favored the Poisson model

(AAICpoisson—Linear = —62203.23, ABICpojisson—Linear = —62212.37). We note, however, that the information criteria may not
be appropriate for comparing these models, since their likelihood functions are qualitatively different. Based on these
investigations, we cannot draw strong conclusions about the modulatory effect of load condition on reward sensitivity. ¢) Model
coefficients the linear model; *** indicates p < .001.
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Working memory and condition-modulated reward sensitivity
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Figure S3. Model coefficients from dist ~ reward * cond * WMScore + (reward x cond|id);***
indicates p < .001.

Computational modeling

Model recovery

Using each model type M € {GP,GPR, GPS, GPS,, GPRS,GPRS, }, we simulated 96 participants and their synthetic data (we
determined the number of simulated participants based on the maximum number of CPU jobs available on the computer
cluster). Each synthetic participant was generated by sampling a parameter vector with n(M) elements (e.g., n(GP) = 3 and
n(GPRS,) = 6). The baseline parameter values were sampled from a multivariate Gaussian distribution fitted to the sample of
parameters obtained in Witt et al.3? (solo condition), which used a setup similar to our control (low load) condition, except for a
shorter horizon (15 trials). When present in the model, the “forgetfulness” parameters (wy, ws, and al pha) were sampled from a
log-uniform distribution between e > and ¢°. In practice, we sampled values uniformly between -5 and 5 and exponentiated
them when simulating the data. After fitting the models, we constructed the confusion (Fig. S4a) and inversion matrices
(Fig. S4b) to assess model recovery”>.

As demonstrated by Fig. S4a, models defined naively over broad parameter regions cannot be reliably recovered. The problem
is the nested structure of the models, e.g., GP is a special case of GPRS with w; = ws = 0. To address this, we performed a grid
search in the forgetfulness parameters that would enable us to recover the generating model at a satisfactory rate. The idea was
that if our model comparison procedure failed to recover, for example, the generating GPR model by confusing it with the
simpler GP model, this would be due to the generating w, parameter being effectively indistinguishable from 0. If the model
has internal validity, there should be a region of w, at which the generated data becomes more distinct from what the baseline
GP model generates. The same logic applies to the GPS model and the wg parameter.

Our search for good recoverability regions proceeded as follows. First, we generated 96 synthetic baseline participants as
before. These are equivalent to participants with w, = ws = 0. Then, separately for models GPR and GPS, we manipulated
either w; or wy of each participant to take on one of 16 log-linearly spaced values on the interval [e—>,¢°]. Thus, we created
16 x 2 mutated clones of each synthetic participant, each of which had either w; or wy altered from O to a non-zero value
€ {e73106257 | i =0,....15}. We then simulated 7 blocks of 25 choices with each participant, resulting in 96 +96 x 16 x 2
datasets. Finally, separately for each model type (GPR and GPS), we fitted both the baseline and a corresponding forgetful
model to all datasets to assess recovery. Specifically, we fitted the baseline model to each of the baseline-generated datasets and
each of the forgetful-model-generated datasets. We then fitted the forgetful models to baseline datasets and to their respective
forgetful-model-generated datasets. When fitting the forgetful models, we manipulated the lower bound of the optimization
interval for the corresponding forgetful parameter. Thus, each of the 96 baseline datasets was fitted by GPR model 16 times,
once inside the interval [e~>, %] for the w; parameter, once inside [e~*37> 7], and so on until [¢*37> ¢3]. The procedure was
replicated for the GPS model and the w, parameter. When fitting forgetful models to the forgetful-model-generated data, the
lower bound was set to the same level as the true generating parameter.

The results are presented in Fig. S4b. Recoverability of the baseline and the forgetful GPR models increased steadily as a
function of wy, going beyond 90% for both at >>. Thus, when the data from the forgetful model was generated by either the
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Recovery with naive parameter bounds Recovery with optimized parameter bounds
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Figure S4. Model recovery. a) Confusion (left) and inversion (right) matrices. The confusion matrix shows the the estimated
probability that a fitted model (listed in rows) fits better than other models, given the data generated from a specific generating
model (organized in columns). The inversion matrix gives us probabilities of a generating model, given a certain best fitting
model. Using naive parameter bounds on the distributions of generating parameters and the search bounds of differential
evolution, generating models cannot be reliably recovered or identified. b) Illustrates our bound restriction procedure to ensure
model parameters result in distinct behavioral patterns which can reliably identify the generating models. The lines show the
estimated probability that generating model (e.g., GP on the left most plot) is better than the competing model (GPR or the left
most plot). As we increase the value of the lower bound of the w; parameter in the GPR model, the probability of correctly
selecting each of the models increases and reaches a satisfactory level of .9 at w, = ¢>. (red region). The same procedure was
applied to set the lower and upper bounds on the w, parameter (middle plot) that allow us to reliably distinguish between GP
and GPS models. Finally, the procedure was repeated again to find the lower bound on the asymmetry ¢ parameter that allows
to differentiate between the GPS and GPS’ models (both with informed wg bounds). ¢) confusion (left) and inversion (right)
matrices for forgetful models with recover-informed parameter bounds. Constraining the generating and fitted parameters to
specific regions allowed us to define models that were highly distinct from each other.

baseline model or the forgetful model with w; > %, we were able to recover the generating model at least 90% of the time.
Thus, we set the fixed the lower bound of the optimization search for the w, parameter at 2. We left the upper bound at 5 for
this parameter, as recoverability was still above 90% at that level. Similarly, recoverability of the baseline and the forgetful GPS
models increased as a function of wy, however at high levels of wy, it worsened again. Using the same approach, we bounded
the wy parameter search in [e! 2% ¢312].

The GPS is a special case of GPS,, since any GPS model is equivalent to GPS, with @ = 1. The issue is similar to
that raised by the nestedness of the GP model within GPR and GPS. To address this issue, we performed another set of
recoverability optimization, this time focusing on the asymmetry parameter «. Specifically, we generated 96 synthetic forgetful
symmetric-surprise-sensitive participants using the [e!>3,e3123] interval for wy established earlier. Next, we mutated each of
these participants by setting the asymmetry parameter ¢ to a value € {e>*0257 | =0, .., 15}. Next, we fitted the GPS and
GPS’ models to the data generated by the forgetful participants and their mutated counterparts. As before, we set the lower
bound for parameter fitting of the & parameter according to the generating value. The results are shown in Fig. S4b. We could
only differentiate positively-asymmetric GPRS, models from the GPS that were satisfactorily distinct from the baseline GP
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model. As expected, models with the asymmetry parameter set at O were the most difficult to recover when compared to simpler
GPS models. The recovery rate for both model types crossed our criterion of 90% at @ = ¢>'?°. Thus, the lower bound the o
parameter in asymmetric models was set to e31%.

When we generated data using these optimized parameter bounds, the recovery improved dramatically (Fig. S4c). Restricting
parameter bounds allows us to be more confident in our model comparison results, because, assuming that the data was
generated by one of the 6 models, we can be 74-95% confident that the generating model is indeed the best fitting model.

Parameter recovery
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Figure S5. Parameter recovery. Each subplot illustrates the joint distribution of the generating and fitted parameter values
from the GPRS, model. Note the log scale for both. The red dashed diagonal lines signify identity.

Parameter recovery is summarized in Fig. S5. To assess recovery, we first simulated choices across 7 blocks of 25 trials
using the GPRS, models fitted to each participant in each condition. We then used the same parameter fitting procedure
on the simulated data as we used on the human data to get the recovered values. The recovery patterns were similar across
conditions. all fitted parameters correlated significantly (p < .01) with the generating parameters, indicating that parameter
values have meaningful effects on observable choices. Recovery of generalization (1) and random-exploration (T) parameters
was excellent (Kendall’s 7 € [.78 .85]); recovery of recency (w;) and surprise (ws) prioritization parameters was good (Kendall’s

T € [.38, .64]); recovery of directed exploration () and surprise-asymmetry (@) parameters was modest, but statistically
significant (Kendall’s 7 € [.15, .32]).

For reference, we also include histograms of parameter estimates for each model type in Fig. S8.
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Computational model parameters predicted by memory load and WM score

{AB, T, w,ws,a} ~ cond *x WMScore + (cond | id)
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Figure S6. Coefficients from linear mixed-effects regressions of GPRS, model parameters on condition and WM score. ***
indicates p < .001; ** indicates p < .01; * indicates p < .05.

Winning model (GPRS,) parameters and human behavior

For these analyses, we turned to three behavioral indices: mean normalized reward, mean search distance, and mean reward
sensitivity. Mean normalized reward was calculated as the mean normalized reward in each condition and each participant.
Mean search distance was defined as the Manhattan distance between consecutive choices averaged for each condition in each
participant. Mean reward sensitivity was calculated as negative Kendall’s 7 statistic — quantifying the association between
reward at time 7 and search distance at 7 4+ 1 — again, separately for each condition in each participant. We then regressed each
of these behavioral indices on the interaction between fitted parameters and condition, using a linear mixed-effects model.
The general form was beh ~ param x cond + (param % cond | id), where beh was either mean normalized
reward or mean reward sensitivity, and param was one of the {1, B, 7, wr, ws, &t - ws }. We analyzed the 12 resulting models to
detect significant associations between the fitted model parameters and behavior. The results are summarized in Fig. S7.
Mean normalized reward, as an index of individual performance, was predicted by every parameter of the GPRS, model
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Figure S7. Model parameters predict behavior. Rows correspond to behavioral indices (a: reward, b: search distance, ¢:
reward sensitivity), and columns correspond to model parameters (from left to right, generalization (1), directed exploration
(B), random exploration (7, recency prioritization (w;, negative surprise prioritization (ws, and positive surprise prioritization
(ws - a). Each panel shows a joint distribution of fitted values of model parameters and behavioral indices (conditions
superimposed). The lines illustrate the effects. Where both the main effect of parameter and and interaction with condition are
significant (p < .01), we plot predictions separately for each condition (in light and dark blue). Where the overall effect of
parameter on behavior was significant (p < .01) in the absence of interaction (p > .01), we show a single black line.
Nonsignificant overall effects are shown as gray dashed line. Effect estimates are included in each subplot; double asterisk (**)
indicates p < .01. either for overall effect, or for both the overall and the interaction effects.

except the generalization parameter A (Fig. S7a). Performance was positively correlated with directed exploration (f3) and
negatively correlated with random exploration (7), as well as memory prioritization weights (wy, ws, and wg - @ (all p < .01;
see Fig. S7 for coefficients). Moreover, the effect of random exploration was significantly stronger in the High load condition.
Overall, these results suggest that undirected exploration and memory prioritization were costly for performance.

Search distance was also associated with every parameter of the model, except the generalization parameter A (Fig. S7b). All
correlations were positive, indicating that exploration (both directed and random), as well as memory prioritization corresponded
to less local search.

Reward sensitivity was predicted by all parameters predicted positively, with the exception of directed exploration (f3).
Specifically, increased reward sensitivity was associated with less generalization, less random exploration (and more directed
exploration), and less memory prioritization (Fig. S7c).
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Distributions of fitted model parameters from all models
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Figure S8. Parameter estimates. Distributions of fitted parameters for each model type. Model types occupy rows and
parameters occupy columns. Note that the x axis corresponds to the logarithms of the fitted values.
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