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Abstract

Artificial intelligence (AI) can enhance human decision-
making by providing assistance at different levels of abstrac-
tion. This study investigates whether AI should offer broad,
high-level guidance (global AI) or focused, low-level assis-
tance (local AI) to optimise performance and learning. Us-
ing a hierarchical multi-armed bandit task where both AI types
provide equally valuable recommendations, we evaluate how
participants leverage AI support in making sequential deci-
sions. Findings reveal that while participants benefited from
both types of AI suggestions, global AI led to significantly
greater performance improvements. These results contribute
to our understanding of human-AI interaction in hierarchical
problem-solving, highlighting the importance of designing AI
systems that effectively support human cognitive processes.
Keywords: human-AI interaction; hierarchical decision-
making; cognitive assistance; complementary AI

Introduction
As the use of artificial intelligence (AI) in decision-making
grows, determining how AI can best complement human cog-
nitive processes becomes an important and relatively under-
explored topic (Bastani, Bastani, & Sinchaisri, 2021; El-
malech, Sarne, Rosenfeld, & Erez, 2015; Steyvers, Tejeda,
Kerrigan, & Smyth, 2022). A key question is how to structure
the division of labour between humans and AI systems (Roth,
Sushereba, Militello, Diiulio, & Ernst, 2019). Building on a
classification framework by Song, Zhu, and Luo (2024), we
ask whether it is more effective for AI to offer global (i.e.,
high-level and general) or local advice (i.e., low-level and
specialised).

Human decision-making frequently involves hierarchical
problems, where global objectives depend on the interaction
between local elements (Consul, Heindrich, Stojcheski, &
Lieder, 2022; Gavetti, Levinthal, & Rivkin, 2005; Piriyaji-
takonkij, Itthipuripat, Ballard, & Pappas, 2024). For exam-
ple, designing a home requires deciding the function of each
room at a global level, while also arranging each room’s fur-
niture at a local level (Fig. 1A). Similarly, travellers make
global decisions by scheduling an overall route and also local
decisions at each traffic light or restaurant menu. By attend-
ing to patterns at both levels, people build structured knowl-
edge (Karuza, Thompson-Schill, & Bassett, 2016; Liu et al.,
2023), and reduce cognitive load by decomposing complex
tasks into manageable subtasks (Correa, Ho, Callaway, Daw,
& Griffiths, 2023; Ho et al., 2022; Huys et al., 2015; Rubino,
Hamidi, Dayan, & Wu, 2023).

In this view, AI can complement human decision-making
across an entire spectrum of specificity, from global strategy
to local execution. While current AI navigation tools typi-
cally give low-level, turn-by-turn instructions, they could in-
stead suggest useful subgoals along the way (e.g., reach the
river, then continue toward the mountains), which may boost
situational awareness and spatial learning (Ishikawa, Fuji-
wara, Imai, & Okabe, 2008; Zhang & Li, 2025). Another
example comes from the medical field (Midyett, 2023; Sbi-
tan, Alzraikat, Tanous, Saad, & Odeh, 2025), where AI rec-
ommendations are transitioning from a high-level, one-size-
fits-all approach (e.g., patients with hypertension should exer-
cise regularly) to low-level, personalised medicine (e.g., this
patient should engage in moderate cycling for at least 30 min-
utes 5 times a week).

Even large language models (LLMs), though flexible, do
not automatically switch between high-level and low-level
guidance but require explicit prompting from the user to op-
erate at the desired level of detail (Mu, Bai, Bontcheva, &
Song, 2024; Shi, Su, Yang, Yang, & Cai, 2023). For instance,
when using LLMs for a complex task such as vacation plan-
ning or event coordination, a user might have to first ask for
an itinerary outline at a global level, and then separately re-
quest detailed daily schedules or checklists at a local level. In
summary, most current AI tools offer help at a fixed level of
granularity, and users must adapt to that level. This observa-
tion motivates our investigation into which level of AI assis-
tance (global or local) is more effective for human problem-
solving.

Goal and scope. We evaluate whether global or local AI
assistance better complements human decision-making in a
hierarchical contextual bandit task (Fig. 1B-G). In a between-
subjects design, we paired study participants with AI advisors
offering either high-level (global AI; Fig. 1D) or low-level
(local AI; Fig. 1E) guidance. While both AI types improved
decision-making, global AI assistance led to significantly bet-
ter performance. When global AI users adhered to the AI rec-
ommendation, they managed to improve upon it further and
receive higher rewards than local AI users. Moreover, par-
ticipants showed a subjective preference for the global AI as
they rated it more useful, and reported higher adherence to AI
suggestions, even when objectively that wasn’t the case.



E Example for local adviceExample for global adviceD

B Screenshot of the experimental interface

Select this combo You earnt: ??? points

Total points: 603 points
Remaining selections: 14

Select this combo You earnt: ??? points

Total points: 603 points
Remaining selections: 14

A Global vs. local AI assistance in home design

Global AI: assigns functional 
roles to rooms within a home

Local AI: optimises furniture 
arrangements within a room

Bedroom

Kitchen 
area

Bath-
room

Bedroom
Hall

Living 
room

Dining 
area

Changing the colour configurationC
Before clicking on a square After clicking on a square

Illustration of a reward computationG
Example reward computation for 
this colour configuration: 

100 

High-level
coefficients

Rectangle
colours

×

Low-level
coefficients

Square
colours

×

+
Offset Reward

= 100 + 3 - 2  

-1 -1 -1 1 1 -1 1 1

1 -1 -1 1

-3

3
0

-3

3
0

F Experimental procedure overview
Tutorial

Pre-AI
AI instructions

AI (global or local) 

Post-AI 
Questionnaire Time

Figure 1: Task overview. (A) An intuitive example of global and local AI assistance in home design: a global AI might suggest
which part of the home would best serve as the kitchen, dining area, or living room, whereas a local AI might help choose the
placement of the couch, TV, or coffee table within the living room. (B) A screenshot of the hierarchical contextual bandit task,
represented as a row of coloured squares (low-level features) and rectangles (high-level features). (C) Participants clicked on
a square to modify its colour, while the colour of the surrounding rectangle would change automatically based on whether the
pair of squares was the same or different colours. (D) The global AI recommended the colours of the four oblong rectangles.
(E) The local AI suggested the specific colours of two pairs of squares and the two surrounding rectangles. (F) Experiment
procedure. Participants completed 3 pre-AI rounds (without AI), 6 AI-assisted rounds (either global or local; between-subjects),
and 3 post-AI rounds (without AI). (G) The payoff for each solution was scored as a function of the squares and rectangles that
were selected, where each round corresponded to a different payoff function with different low-level and high-level coefficients.

Methods
Participants completed a hierarchical decision-making task
where they aimed to maximise rewards across a series of con-
textual bandit trials (Fig. 1B). On each trial, they selected a
colour configuration with a noisy reward determined by two
hierarchical levels: (1) low-level features: eight individual
squares with a binary colour (e.g., orange/lavender); (2) high-
level features: four rectangles with their binary colours (e.g.,
maroon/blue) determined by an exclusive-NOR gate (1 if the
two squares inside match, or −1 if they differ). Participants
could modify the colour configurations by clicking on the
low-level squares (Fig. 1C), whereas the high-level rectangles
updated automatically.

Participants and design
We recruited 101 participants on Prolific. After excluding
4 participants via multivariate outlier detection (Fig. 3A),
we arrived at a sample size of N = 97 participants (Mage =

34.0 ± 10.5; 47 female, 48 male). Participants were as-
signed to either the global AI assistance or the local AI as-
sistance condition in a between-subjects design (Fig. 1D-
E). Participants were compensated with a base payment of
£3.60 and a performance-based bonus of up to £3.60. On
average, participants spent 23.2±11.3 minutes on the study,
and earned £4.76± £0.38. The study was approved by the
Ethics in Psychological Research Commission of the Univer-
sity of Tübingen (Wu 2021/0124/213) and informed consent
was obtained from all subjects.

Materials and procedure

Participants completed 12 rounds in three phases—pre-AI (3
rounds), AI-assisted (6 rounds), post-AI (3 rounds)—to mea-
sure baseline performance and retention of gains after AI re-
moval (Fig. 1F). Each of the 12 rounds comprised 20 trials
where participants chose a colour configuration and then re-
ceived a reward. Every round started with a random configu-



ration of the coloured shapes that the participants could mod-
ify to their liking. To minimise memory effects, the interface
showed all prior choices and rewards from that round.

Before starting the experiment rounds, participants re-
ceived instructions and completed a tutorial explaining the
task’s mechanics. They learned to toggle square colours by
clicking them, that rewards depended on both square and rect-
angle configurations, and that optimal settings for elements
were independent. To avoid biases due to colour preference,
rounds cycled through a palette of five visually distinct and
colour-blind accessible colours. After the tutorial, partici-
pants were required to pass a comprehension test with perfect
accuracy before proceeding to the experimental rounds.

After the pre-AI rounds, participants received condition-
specific instructions about their AI assistant (global or lo-
cal) and had to pass a second comprehension check about
the AI advisor. During AI-assisted rounds, participants re-
ceived a different AI suggestion on each trial. They were
informed that the AI adapted its suggestions based on their
within-round choices and performed better when participants
explored diverse configurations. Participants could view and
freely accept or ignore the AI’s advice.

Critically, the AI’s guidance differed between conditions.
In the local AI condition, the suggestions targeted two of the
four rectangles and the containing squares (Fig. 1E), with the
chosen subset changing between rounds. In the global AI
condition, suggestions always targeted all four rectangles (but
not any squares; Fig. 1D). These two settings were strictly
controlled to ensure the same quantity and quality of infor-
mation (see Balancing AI conditions). After completing all
rounds, participants answered a questionnaire evaluating the
perceived usefulness of the AI and their adherence to its sug-
gestions.

Reward landscapes
A reward landscape is a mapping between colour configura-
tions and numerical rewards, determining how each configu-
ration is scored within an experiment round (Fig. 2). We gen-
erated the reward landscapes based on the parametric inter-
action model from Buzas and Dinitz (2013) and Reeves and
Wright (1995), which provides a flexible, hierarchical frame-
work that allows for defining rewards with relatively few pa-
rameters while encoding dependencies between global and
local elements. Mathematically, these landscapes are similar
to NK landscapes (Kauffman & Levin, 1987) that have been
widely used in studies of individual and collective decision-
making (Barkoczi, Analytis, & Wu, 2016).

In each reward landscape, every high-level element (rect-
angle) is associated with a high-level coefficient h ∈ RH , and
every low-level element (square) is associated with a low-
level coefficient l ∈ RHL, where H and HL are the number
of high-level and low-level coefficients respectively. Intu-
itively, the coefficients determine the importance of each ele-
ment (rectangle or square) for the total reward (Fig. 1G).

For a given configuration x ∈ {−1,1}HL, the reward r(x)
combines weighted contributions from both levels: the value
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Figure 2: Reward landscape. (A) Illustration of a reward
landscape (left), with an example of local and global AI sug-
gestions (right). Each node corresponds to a colour config-
uration, where the node colour indicates the associated re-
ward. Connected nodes represent configurations that differ
by one square and one rectangle change, or by two squares
only. (B) Histogram comparing AI values for global and local
AI conditions across different reward landscape sets. (C) The
quality of local and global AI overlapped entirely when they
learned from the trials of a random decision-making agent.

of individual squares (local features) is based on their colour
(±1), and the value of each rectangle (global feature) is the
product of the corresponding L low-level features y(x)i =

∏
iL
j=(i−1)L+1 x j (e.g., 1 if all squares match, −1 otherwise).
Formally, the reward r(x) is defined as:

r(x) =
H

∑
i=1

y(x)ihi +
HL

∑
i=1

xili. (1)

To ensure interpretability, the raw reward values were lin-
early scaled to a range of positive integers. After sampling
a minimum reward m uniformly from [20,70], we calculated
a scaling factor s = (m− 100)/min(r(x)), where min(r(x))
is the lowest unscaled reward. When a participant selected a
configuration x, the displayed reward was obtained by adding
Gaussian noise sr(x) + 100 + N (0,4), and rounded to the
nearest integer without exceeding the deterministic bounds
of the minimum m and the computed maximum. Participants
were informed that the maximum rewards could vary in each
round, with the average reward fixed at 100 points.

AI assistance
The AI advisors approximated the reward landscape using
linear regression models. They incorporated prior knowl-



edge about the structural form of the payoff function (Eq. 1)
as well as the value of the average reward. These advisor
models learned the feature coefficients ĥ (high-level) and l̂
(low-level) from participant-selected configurations and cor-
responding rewards. Specifically, the reward rk for the kth

configuration xk was approximated as:

rk ≈ r̂(xk) =
H

∑
i=1

yk
i ĥi +

HL

∑
i=1

xk
i l̂i +100, (2)

where yk are high-level (rectangle colours) and xk are low-
level features (square colours). The advisor models updated
the high-level and low-level coefficients, ĥ and l̂, to minimise
the squared prediction error on the selected configurations.

To generate suggestions, the AI advisors sampled configu-
rations probabilistically using a softmax distribution over es-
timated rewards r̂(x), favouring high-reward configurations
while retaining exploratory variability. The chosen configu-
ration was then partially masked to provide targeted guidance
(e.g., global AI masks square values, while local AI masks
two of the four rectangle values). From here on, we refer to
AI value as the mean reward of the colour configurations that
match an AI suggestion (i.e., the average of the highlighted
subgraph in Fig. 2A right).

Balancing AI conditions
To ensure neither AI condition had an inherent advantage, we
controlled for both the quantity and quality of information
provided to participants. In terms of information quantity,
both global and local AI suggestions transmit 4 bits of infor-
mation and restrict the search space to the same quantity of
matching solutions: from 256 to 16 (Fig. 2A).

To balance information quality, we controlled for three cri-
teria. First, we generated reward landscapes so that the stan-
dard deviations of the distributions of the global and local AI
values were equal. Second, the most rewarding colour con-
figuration aligned with both local and global highest-value
suggestions. Third, we used a landscape filtering process to
ensure that the difference between the value of the local and
the global AI suggestion was minimised (Fig. 2B) after m
random trials with m ∈ {0, . . . ,19} (matching the 20 trials of
the experiment). Specifically, we generated 100,000 land-
scapes, and then selected 20 sets of 3 landscapes (60 in total),
where the absolute sum of differences between global and
local AI suggestion values was smallest across the sets and
trials. We chose sets of 3 environments because our experi-
mental phases consisted of multiples of 3 rounds, thus entire
sets could be assigned to the different phases. This ensured a
balanced comparison between the two AI conditions, which
can be observed as near-identical AI values when the local
and global AI learn from random trials (Fig. 2C).

Results
We screened participants using multivariate outlier detection,
excluding 4 participants who were more than 3 standard de-
viations from the mean based on performance and selection

diversity per round (Fig. 3A). The final cohort comprised 52
participants in the global AI condition and 45 in the local AI
condition. All statistical analyses were conducted using lin-
ear mixed-effects models with random intercepts for partici-
pants. For these we report the estimated regression coefficient
b, the standard error SE, the z-score z, and the p-value p.

Performance
We first examined the effects of AI condition (global vs. lo-
cal), experiment phase (pre-AI, AI-assisted, post-AI), and
their interaction on participant scores. These analyses con-
trolled for the mean pre-AI score as a covariate, since it was
a strong predictor of overall performance (b = 0.415, SE =
0.063, z = 6.558, p < .001). In general, participants signifi-
cantly improved during the AI-assisted phase compared to the
pre-AI baseline (b= 7.811, SE = 1.229, z= 6.359, p< .001),
but regressed after AI removal (b = −5.291, SE = 1.229,
z = −4.307, p < .001; Fig. 3B). Due to sample variabil-
ity, participants in the local AI condition started with greater
scores in the pre-AI phase (b= 4.432, SE = 1.804, z= 2.457,
p = .014). However, in the AI-assisted phase, global AI par-
ticipants outperformed their local AI counterparts (b= 3.043,
SE = 1.229, z = 2.477, p = .013), yielding faster learning
curves (Fig. 3C). When AI support was withdrawn, the mag-
nitude of performance decline did not differ significantly be-
tween conditions (b = −3.104, SE = 1.804, z = −1.721,
p = .085).

AI adherence
To understand why participants performed better in the global
AI condition, we analysed individual AI adherence rates,
which we defined as the proportion of trials that were con-
sistent with the AI advice. We looked at how AI adherence
was influenced by trial number, condition and their interac-
tion. We found no significant difference in adherence rates
between conditions (b = −0.071, SE = 4.457, z = −0.016,
p = .987), and the interaction between condition and trial
number also was not significant (b = −0.087, SE = 0.138,
z = −0.630, p = .528). This suggests that differences in AI
adherence rates (or some temporal differences in when AI ad-
vice was followed) cannot account for the superior outcomes
in the global AI condition.

Next, we analysed how AI adherence influenced partici-
pant reward while controlling for AI suggestion value (mean
reward across advice-consistent solutions). Fig. 3D shows
the results of this analysis, where reward was modelled as
a function of AI value, condition, and prior performance
(the maximum reward so far in a round and the participant’s
mean pre-AI score). When participants adhered to the AI ad-
vice, the advice value strongly predicted rewards (b = 0.482,
SE = 0.016, z = 30.322, p < .001), with global AI users
benefiting more from AI adherence (b = 0.071, SE = 0.021,
z = 3.401, p = .001). This suggests that participants may
have found it easier to capitalise on the global AI suggestions.
However, when participants ignored the AI recommendation
(i.e., their choice was inconsistent with the suggestion), AI
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Figure 3: Results. (A) Identifying the participants excluded from data analysis. (B) Mean scores and standard errors in the
pre-AI, AI-assisted and post-AI phases. (C) Participants in the global AI condition showed greater improvement over trials. (D)
Regression lines for two cases: when participants adhered to the AI suggestions, and when they did not. (E) Difference between
participant reward and AI value across trials, showing the average values for two cases: when participants adhered to the AI
suggestions, and when they did not. (F) The frequency of participants matching the AI suggestions, including the actual AI
experienced by the participants, and the simulated counterfactual AI. (G) The dots correspond to AI-assisted rounds, indicating
the participant’s usefulness rating of the AI and their score. The two regression lines correspond to the two conditions.

value negatively predicted participant reward (b = −0.065,
SE = 0.024, z = −2.691, p = .007), suggesting that disre-
garding high-value suggestions was costly. In this case, there
was no significant interaction between condition and AI value
(b = 0.036, SE = 0.033, z = 1.078, p = .281), so ignoring AI
advice was equally detrimental in both conditions.

Another way of looking at the interaction between the AI
and human participants, is to consider how much participants
managed to improve upon the AI suggestion (Fig. 3E). We
modelled the relative improvement on AI based on whether
the participant acquired a reward that was higher (positive im-
provement) or lower (negative improvement) than the value
of the AI suggestion. When participants followed the AI rec-
ommendations, they obtained significantly higher improve-
ments on the AI values (b = 11.112, SE = 0.454, z = 24.468,
p < .001), with a stronger effect for the global AI condition
(b = 4.945, SE = 0.658, z = 7.515, p < .001). This further
supports the interpretation that participants found it easier to
build on the global AI suggestions. When the AI was not
followed, participant performance did not significantly differ
from the AI value (b = −0.217, SE = 0.783, z = −0.278,
p = .781), with no difference across conditions (b = 1.357,
SE = 1.146, z = 1.185, p = .236).

Counterfactual AI
To test whether the observed differences between global and
local AI conditions were due to the quality of the AI sug-
gestions (i.e., an unfair advantage) or because of differences

in how participants responded, we simulated counterfactual
AI suggestions for each participant. This was defined as the
opposite AI type: for participants assigned to the global con-
dition, we simulated a local counterfactual AI, and for partic-
ipants assigned to the local condition, we simulated a global
counterfactual AI. For every participant trial, the counterfac-
tual AI suggestions were simulated 100 times. We then com-
puted counterfactual AI adherence rates, measuring how of-
ten participants unintentionally followed a recommendation
that they had not seen (Fig. 3F).

We first compared the real and counterfactual AI values,
finding no significant difference between conditions (b =
−0.311, SE = 0.788, z = −0.394, p = .693), nor any dif-
ferences in the interaction between suggestion type (actual
vs. counterfactual) and condition (b = 0.223, SE = 0.288,
z = 0.774, p = .439). This confirms equivalent suggestion
quality across AI types, ruling out inherent algorithmic ad-
vantages.

We then looked at AI adherence rates for both actual and
counterfactual advice. We found that global AI users were
more likely to adhere to the counterfactual local AI (b =
0.066, SE = 0.016, z = 4.001, p < .001). This suggests that,
rather than just passive compliance, participants in the global
AI condition were more likely to integrate the AI recommen-
dations into their own reasoning process by selecting low-
level features that would be consistent with a local AI advi-
sor. There was less integration in the local condition, since
participants adhered less to the counterfactual global advice.



Subjective ratings
In the final questionnaire, participants rated their adherence
(“I followed the AI’s suggestions”) and usefulness (“The AI
assistant was useful”) on a 7-point Likert-scale (1 = Strongly
disagree; 7 = Strongly agree), and they also rated usefulness
after each AI-assisted round. Higher usefulness ratings were
predicted by higher scores (b= 0.050, SE = 0.006, z= 8.128,
p < .001) and higher AI adherence (b = 0.009, SE = 0.002,
z = 3.751, p < .001). As seen in Fig. 3G, the relationship
between score and the usefulness rating was stronger in the
global AI condition (b = 0.019, SE = 0.008, z = 2.291, p =
.022), suggesting that the global AI users were more likely to
attribute their performance improvements to the AI.

We also examined how usefulness rating and observed
rate of adherence influenced self-reported adherence. Lo-
cal AI participants reported significantly lower AI adherence
(b =−0.611, SE = 0.152, z =−4.030, p < .001). However,
observed AI adherence rate and usefulness rating were not
statistically significant effects (for both: b = 0.0, SE = 0.0,
z = 0.0, p = 1.0), suggesting a degree of misalignment be-
tween self-perception and reality, while also highlighting the
challenge of accurately assessing human-AI interaction based
on user-reported data (Papenmeier, Englebienne, & Seifert,
2019). These findings reinforce the idea that local AI partic-
ipants may have struggled more with AI recommendations,
leading them to feel that they were adhering to the AI less,
even when objective adherence rates were similar.

Discussion
We examined the impact of global versus local AI assistance
on human decision-making in a hierarchical problem-solving
task. We found that global AI led to greater performance
improvements compared to local AI, with participants better
able to improve upon global AI recommendations.

This advantage likely comes from two complementary
mechanisms. First, global AI appears to counteract the my-
opia of learning (Levinthal & March, 1993; Nagy, Orban, &
Wu, 2025), where decision-makers over-prioritise local ele-
ments. Global AI may help scaffold the formation of struc-
tured mental models (Zhou, Bamler, Wu, & Tejero-Cantero,
2024) that integrate local and global dependencies. Second,
people tend to reduce uncertainty in complex problems by
varying one factor at a time (Wüstenberg, Greiff, & Funke,
2012; Bramley, Dayan, Griffiths, & Lagnado, 2017) and
by performing dichotomous (Markant, Settles, & Gureckis,
2016) or confirmatory tests (Klayman & Ha, 1987) to obtain
easy-to-process feedback. Global AI can constrain the prob-
lem space into tractable components while allowing partici-
pants to explore locally.

Limitations and future directions. Despite the insights
gained, several limitations of our study warrant further inves-
tigation. While our task’s hierarchical structure was transpar-
ent, real-world problems may not have such clear demarca-
tions of global and local features. The explicit high-level fea-

tures in our task may have made the global AI advice more
useful. In real-world tasks, users might not even recognise
that an AI suggestion targets high-level features. Addition-
ally, our AI assistants relied on a linear model, reflecting the
task’s simple structure. In practice, most AI models used
in complex, real-world problems are black-box, non-linear
models based on deep learning. Future work should test AI
advice granularity on tasks with hidden hierarchies, complex
structures and opaque AI. In case global AI is only superior in
domains where humans naturally think hierarchically (Dedhe,
Clatterbuck, Piantadosi, & Cantlon, 2023), identifying those
domains will be important for applying these insights.

The intrinsic informativeness of global or local advice may
vary significantly across domains. In domains governed by
unifying principles—such as classical physics, where a hand-
ful of laws explain most phenomena—global advice might
immediately solve the problem, making local advice less
valuable. By contrast, in domains full of irregularities, such
as natural language learning, local advice may be more in-
formative than global advice. Our results are most relevant
for domains balancing global and local patterns and those
dominated by global patterns. In addition, practical engi-
neering constraints (e.g., data limitations, domain-specific re-
strictions) may preclude offering truly global guidance, likely
shifting optimal advice granularity in real-world systems.

How global and local AI advisors are defined and presented
to users can itself shape effectiveness. For example, in Sah,
Yoo, and Sundar (2011), participants trusted a robot more
when it was introduced as a specialist in physical exercise,
as opposed to a generalist in mimicking human body move-
ments, contrary to our results. Future experiments could ex-
plore alternative framings, such as introducing AI as a jack-
of-all-trades vs. an expert.

Our use of a between-subjects design to avoid carry-over
effects introduced its own limitations. While it allowed us
to focus on whether global vs. local AI is better at a pop-
ulation level, we did not measure individual preferences for
the two AI types. Prior research has shown that people spon-
taneously specialise into complementary roles during an im-
mersive foraging task (Wu et al., 2025), suggesting that in-
dividuals might also self-select global or local AI based on
their preferences. A historical parallel comes from advanced
chess, where expert players engaged with global strategic
planning themselves while delegating local tactical calcula-
tions to machines (Kasparov, 2010). Novices, by contrast,
may gain more from global advice as they build their mental
model. A within-subjects or interactive choice-based design
could reveal individual preferences and expertise effects more
directly.

Conclusion. Overall, by “seeing the forest for the trees”,
global AI assistance outperformed local guidance in enhanc-
ing human-AI learning. These findings highlight the need to
develop AI systems that align with the hierarchical nature of
human decision-making.



Code and data
All materials required to replicate the results, including code
and data, are publicly available at https://github.com/
orsiszocs/global-vs-local-ai-advice.
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