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Abstract

Large Language Models (LLMs) have rapidly become a central topic in Al and cognitive science, due to their unprecedented performance in
avast array of tasks. Indeed, some even see "sparks of artificial general intelligence" in their apparently boundless faculty for conversation
and reasoning. Their sophisticated emergent faculties, which were not initially anticipated by their designers, have ignited an urgent
debate about whether and under which circumstances we should attribute consciousness to artificial entities in general and LLMs in
particular. The current consensus, rooted in computational functionalism, proposes that consciousness should be ascribed based on a
principle of computational equivalence. The objective of this opinion piece is to criticize this current approach and argue in favor of an
alternative "behavioral inference principle", whereby consciousness is attributed if it is useful to explain (and predict) a given set of behavioral
observations. We believe that a behavioral inference principle will provide an epistemologically valid and operationalizable criterion to

assess machine consciousness.
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Large Language Models (LLMs) are a type of neural network char-
acterized by their vast numbers of parameters and their capacity to
learn from extremely large data sets. Today, they have taken the world
by storm and have fundamentally reshaped how people think about
artificial intelligence (AI) and what it is capable of. Combining the
surprisingly effective "self-attention mechanism" (Vaswani et al. 2017)
with human-in-the-loop reinforcement learning (Brown et al. 2020),
LLMs have demonstrated remarkable performance across a stagger-
ingly wide range of tasks. For instance, fooling humans in a Turing
test (Bayne and Williams 2023, Jannal et al. 2023, Jones and Bergen
2024) or passing law school exams (Choi et al. 2021). And despite a
number of key challenges, such as a surprising difficulty in solving
rather simple abstract reasoning problems (e.g. the ARC Prize, Chollet
et al. 2024, Moskvichev et al. 2023) or reliably reasoning about the
mental states of people (i.e. Theory of Mind; Xu et al. 2024), researchers
are increasingly using LLMs as models of human cognitive (Binz et al.
2024, Niu et al. 2024, Yildirim and Paul 2024) and neural processes
(Schrimpf et al. 2021, Saanum et al. 2024).

While the testing and benchmarking of LLMs continues to generate
a wealth of evidence about their strengths and limitations (Gandhi
et al. 2023, Kiciman et al. 2023, Moskvichev et al. 2023, Xu et al. 2024,
Dettki et al. 2025), the wide availability of these tools has reached a
larger audience than perhaps any other Al tool before it (Summerfield
2025). Indeed, everyone from journalists to politicians to Aunt Mary
now has anecdotal evidence of the conversational abilities of LLMs
and has begun to form their own opinions about how we should evalu-
ate the consciousness of these systems (Colombatto and Fleming 2024).
Thus, the question of whether an artificial system has consciousness
holds immense political and societal sway, and is a topic where public
opinions are already starting to form (Lenharo 2024, Palminteri and
Pistilli 2025).

In the realm of philosophy and cognitive science, several perspec-
tives have already been proposed about how to formally evaluate
consciousness in LLMs (Butlin et al. 2023, LeDoux et al. 2023, Bayne
etal. 2024, Evers et al. 2024). Although other approaches exist, such as
phenomenology-first and biology-first ones (Polger 2019, Findlay et al.
2024, Block 2025, Seth 2025) the vast majority of these arguments are

Received 14 April 2025. revised 8 January 2026. accepted 9 January 2026
© The Author(s) 2026. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article
page on our site—for further information please contact journals.permissions@oup.com.

920z Arenigad 9 uo 1sanb Aq 661.818/2006eIU/L/9Z0Z/a101HE/OU/WOD N0 dIWapPEdE//:SANY WO} papeojumoq


https://orcid.org/0000-0001-5768-6646

 43331 21835 a 43331 21835 a
 
mailto:stefano.palminteri@ens.fr
mailto:stefano.palminteri@ens.fr
mailto:stefano.palminteri@ens.fr

grounded in computational functionalism. According to computational
functionalism, what defines a cognitive process are the computational
operations that transform input variables into outputs, irrespective of
the physical substrate implementing such computations, whether by
neurons, transistors, or pencils on paper (Piccinini 2009). This allows
for "multiple physical realizability" (Bickle 1998), where the same cog-
nitive process can be physically realized by different material systems.
Thus, an artificial system (the candidate) can be said to be conscious
if it processes information by implementing the same computational
processes (the target computations) that characterize consciousness in
other systems already known to possess this capacity (the reference). In
other words, an artificial system is considered conscious if it displays
a form of computational equivalence with the reference system, specifi-
cally with respect to the target computations underlying the cognitive
process under investigation.

For instance, a recent paper led by Patrick Butlin, Robert Long,
and co-authored by seventeen other experts in the science of con-
sciousness and Al follows this tradition (Butlin et al. 2023). In their
comprehensive review, the authors conclude that Al systems, particu-
larly LLMs, are not conscious because these systems do not explicitly
execute several key computational processes that have been proposed
by previous theories of consciousness, such as recurrent processing, a
global workspace, attentional schema, and metacognition or predic-
tive processing (Lamme and Roelfsema 2000, Koriat 2007, Dehaene
etal. 2017, Graziano 2020, Hohwy and Seth 2020).

An equivalent position is taken by Susan Schneider in another
collective piece (LeDoux et al. 2023), where, despite admitting the
need for better behavioral tools to assess consciousness, she explicitly
defines a necessary condition for machine consciousness such that:
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"the system processes information in a way analogous to how a
conscious human or non-human animal would respond when in a
conscious state."
These computational equivalence arguments all share the underlying
logic: the target computations must be explicitly identified in the can-
didate system as a necessary condition for consciousness. Accordingly,
the philosopher David Chalmers (2023) describes the general form of
a typical computational equivalence argument as:
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"LLMs lack C.
If LLMs lack C, then they are probably not conscious."

where C would be some computational process considered to be nec-
essary for consciousness, such as recurrent processing, metacognition,
or a global workspace (Butlin et al. 2023).

We agree that demonstrating computational equivalence can be a
sufficient condition to ascribe consciousness to an artificial system.
However, we argue that it should not be deemed a necessary con-
dition. In other terms, we challenge the computational equivalence
principle as the appropriate demarcation criterion between conscious
and non-conscious entities, both in theory and in application.

To rewrite Chalmers’ formulation, our alternative approach sug-
gests:

"LLMSs displays B.
If LLMs displays B, then they are probably conscious."
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where B is some observable (i.e. overt and inter-subjective) pattern
of behavior (which we define more precisely later), from which we
are justified to infer the presence of an unobservable (i.e. latent and
hypothetical), computational process C.

Our paper is structured as follows. We first show the limitations
of the computational equivalence principle and motivate why a new
approach is now more necessary than ever. We then provide argu-
ments in favor of an alternative behavioral inference principle, which
we believe is more consistent with the epistemological and method-
ological approaches used by cognitive scientists to study natural con-
sciousness, and which is also more practically implementable—and
more appropriate—given our current limited understanding of the
mechanisms underlying the higher cognitive functions of LLMs.

The goal of this paper is to argue that the principle of computational
equivalence, as rooted in computational functionalism, is inadequate
for attributing consciousness to artificial systems, such as LLMs (or
very distant species, such as some arthropoda or mollusca; Birch
2025). However, as a disclaimer, we do not dismiss computational
equivalence or functionalism as invalid or unimportant for other
purposes. On the contrary, these principles have played a crucial
role in cognitive science and philosophy, by detaching computational
processes from their material substrates (i.e. multiple physical realiz-
ability; Bickle 1998). In fact, we endorse computational functionalism
as a valid metaphysical framework for cognitive science, which has
allowed great advances by conceptualizing cognitive processes as
computationally defined forms of information processing (Piccinini
2009). We do not deny that other metaphysical frameworks beyond
computational functionalism can and are applied in cognitive science,
and in the science of consciousness in particular (Doerig et al. 2019,
Tsuchiya et al. 2019, Ellia et al. 2021, Tononi et al. 2025). However,
here we focus on computational functionalism since it can easily be
integrated into the debate concerning artificial systems.

Thus, our contention lies not with computational functionalism
itself, but with the idea that computational equivalence should be
a necessary condition for attributing consciousness. To clarify, the
attribution of a cognitive process based on computational equivalence
consists of verifying whether the target computational architecture is
implemented in the candidate system. This presupposes two condi-
tions: (i) that there is an explicit hypothesis regarding the structure of
the target computation, and (ii) that the computational architecture of
the candidate system is transparent enough to allow one to verify the
presence (or absence) of the target computation.

The first condition (requiring explicit hypothesis) is, at best, only
partially fulfilled in the current and contentious landscape of con-
sciousness research, where there is much disagreement about which
computational processes underlie consciousness or even whether
consciousness constitutes a unitary construct (see Frohlich et al. 2024,
Gomez-Marin and Seth 2025, IIT-Concerned Klincewicz et al. 2025,
Tononi et al. 2025 for recent debates). But even imaging a future
where the scientific community arrives at a consensus, it should be
stressed that the relevant computational processes are never known
with the degree of certainty that the computational equivalence prin-
ciple presupposes. They are hypotheses—educated inferences drawn
from human behavioral phenomena, since the brain’s computational
architecture cannot be directly read.
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The second condition of transparency is also not satisfied. LLMs
are extremely complex black-box systems, with billions of parameters,
whose lack of functional transparency parallels that of the human
brain. Their impressive cognitive capacities arise from computational
processes that cannot be directly inspected in the code or weights but
must, again, be inferred from their behavior (Summerfield 2025).

Thus, in an ideal case where the target computations are known
with reasonable certainty, and the candidate system’s computational
architecture is transparent, the computational equivalence principle
could be applied as a sufficient criterion. Yet in practice—at least
in the case of consciousness and LLMs—neither condition is met.
As a result, computational equivalence does not represent a viable
criterion for the attribution of consciousness. In the remainder of this
article, we provide arguments in support of an alternative behavioral
inference principle, which, as we will show, naturally emerges from the
epistemology of cognitive science.

The epistemology of cognitive science

Our search for an alternative criterion begins from the recognition
that cognitive science, like all empirical sciences, advances through a
process of inductive inference, relying on iterative cycles of empirical
corroboration (evidence supporting a theory) and falsification (evi-
dence against a theory, thus requiring revision; Lakatos 1970, Meehl
1990). This involves using behavioral phenomena to infer plausible
and instrumentally useful (e.g. for prediction and control; Harman
1965, Staddon 2021) latent processes that explain the observed behav-
ior (subject to potential falsification by future evidence). In other
terms, cognitive science, understood as an empirical interdisciplinary
effort to study the mind, operates as a form of "methodological behav-
iorism" (Day 1983).

At this point, the reader might be surprised, given the widespread
(but historically inaccurate) belief that cognitive science emerged as
the antithesis of behaviorism (Leahey 1992). While it is true that
cognitive science rejects radical forms of behaviorism (Schneider and
Morris 1987), its methodology has progressively built upon behav-
iorist innovations (Simon 1992). There is perhaps no better way to
illustrate this point than to defer to the words of Bernard ] Baars, a
key proponent of the global workspace theory of consciousness, in the
introduction of his book "The Cognitive Revolution":

"Some of the central tenets of behaviorism are at this point so taken
for granted that they have simply become part of standard experi-
mental psychology. All modern psychologists restrict their evidence
to observable behavior, [...]. In this way, we are all behaviorists."
(Baars 1986)

Thus, recognizing that even modern cognitive science is at its core
grounded in behaviorism sets the stage for a crucial clarification (see
Box 1 for counter-arguments to common critiques of behavior-based
attribution). If cognitive science proceeds by explaining observable
behavior in terms of latent constructs, then we must carefully dis-
tinguish between what is observed and what is hypothesized (Fig. 1).
Nowhere is this distinction more important than the study of con-
sciousness, where the temptation to treat conscious experience as the
direct object of scientific inquiry is particularly strong. To avoid this
conflation, we must reflect on the epistemological and ontological
status of cognitive constructs like "consciousness” and their relation
to the behavioral phenomena from which they are inferred.

Phenomena are explained by theory, but not vice versa

When seeking a criterion for attributing consciousness to LLMs, it
is essential to clarify the epistemological status of consciousness in
cognitive science. While we all have our own first-person subjective
experience of consciousness, these experiences are private and not
directly accessible for scientific scrutiny. Empirical science, in contrast,
depends on intersubjective and publicly accessible facts. For this
reason, consciousness is not an observable behavioral phenomenon.!
What cognitive scientists can measure are patterns of behavior, such
as body and eye movements, choices, reaction times, or even verbal
reports (e.g. hetero-phenomenology; Cohen and Dennett 2011), which
can be quantified and distilled into data. In contrast, consciousness
is a latent variable, which is not directly observable in the data, but
hypothesized to explain the phenomena (Bogen and Woodward 1988).

In other terms, the observable behavioral phenomena (and nothing
else!) constitute “the thing that needs an explanation”, or in Latin,
the explanandum (Hempel and Oppenheim 1948). In contrast, latent
cognitive constructs and theories are “the thing that explains”, or
explanans. The phenomena are explained by the theory, but not vice
versa (Fig. 1).

Yet, in cognitive science, explanandum and explanans are frequently
confused for one another. This conflation is particularly easy (and
problematic) in the study of consciousness, for reasons that can be
linked to the complexity of the subject, but also due to the fact that
scientists experience the phenomenological existence of their own
consciousness firsthand, thus making it counterintuitive to challenge
the primacy of conscious experience (Metzinger 2021, Bayne et al
2024). Consequently, scholars may lose sight of the fact that conscious-
ness, as a cognitive construct, is not an explanandum or object of study
in itself (at least not with empirical science). Rather, consciousness is
an explanans: an unobservable, latent construct that is hypothesized
in order to explain empirically observable behaviors.

It is, of course, an acceptable shortcut for an empirical scientist
to say, “I study consciousness”, provided we do not lose sight of the
underlying implication. What she essentially means is:

"I study complex forms of behavior that justify the assumption
of a latent, unobservable cognitive construct we refer to as

n

‘consciousness’.
A theoretically minded "consciousness" scientist will aim to describe
this construct in formal terms and, with some measure of success,
may even develop a valid computational model of consciousness—
subject, of course, to potential falsification. But make no mistake: the
ontological primacy of what constitutes the object of study is the
behavioral phenomenon (the explanandum), not the resulting hypo-
thetical computational process (the explanans).

Crucially, it is important to note that the primacy of behavior is
not only ontological but also "historical." An initial consensus on
what counts as a behavioral manifestation of the cognitive process
of interest is, in fact, necessary before one can undertake the task
of its computational characterization. For instance, in the case of

1 Another crucial type of observables consists of experimental variables,
such as visual, auditory, or written stimuli, which are typically manipulated
by researchers to generate or control behavioral phenomena (in the cognitive
scientist’s laboratory, experimental variables usually take the form of behavioral
tasks). These observables—both behavioral and experimental—are then employed
to construct and validate hypotheses regarding latent cognitive constructs and the
processes underlying their relation.
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Box 1. Attributing cognitive processes based on behavioral observations.

While behavioral criteria for attributing cognitive processes have historically had an intuitive appeal for empirical scientists (Lashley 1923, Skinner
1965), they have been criticized by philosophers of mind (Blanshard 1939, Putnam 1960, Block 1981). Here, we summarize some of these historical
criticisms and clarify how our behavioral inference principle (If an agent displays behavior B, then it probably possesses cognitive process C) avoids these
arguments.

The first class of critiques target "false positives,” where B can occur without C. Ned Block's influential Blockhead thought experiment (Block 1981)
imagines a machine that passes the Turing test (Turing 2009), not because it possesses intelligence, but simply because all possible responses have
been pre-programmed, relegating the machine’s role to merely retrieving the correct response. Searle’s Chinese Room (Searle 1980) illustrates a
similar point, where a person in a room using a rulebook to manipulate Chinese symbols is imagined to produce fluent responses without
understanding the language. These thought experiments illustrate the logical possibility of displaying behavior B (fluent conversation) without
possessing cognitive process C (intelligence or knowledge of Chinese). However, empirical science—as opposed to mathematics and philosophy—is
concerned with physical rather than merely logical possibilities. A machine with infinite memory for all possible responses pre-coded is physically
infeasible. Even if it were, the retrieval and response times would be infinitely long (Shannon 1948), making the machine unable to demonstrate
fluent, real-time conversation. Thus, a scientist waiting an eternity for the machine’s responses would be justified—on purely behavioral grounds—in
rejecting the machine as demonstrating a genuine form of intelligence. Similarly, the occupant of the Chinese room, searching through an
astronomical number of rules, would also fail to demonstrate a speed of response consistent with a fluent speaker. Even if the rulebook were
entirely internalized, the sheer volume of rules involved would render this mechanism implausible from both the perspective of memory and
fluency. Conversely, a scientist receiving prompt and sensible responses to virtually any question would be justified to infer that the machine or the
room is truly intelligent (subject to integrating the behavioral evidence with prior expectations; Eq. 1).

The second class of "false negative" critiques is exemplified by the Super-Super-Spartans thought experiment proposed by Putnam (1961), where in
a parallel universe, Spartans have been trained to successfully suppress all involuntary and voluntary external manifestations of pain, even though

they feel and dislike pain just like us. Imagine that in such a parallel universe, a scientist from Athens is sent to study pain in the
Super-Super-Spartans by administering various pain-inducing experiments. She diligently conducts the experiments and receives no empirical,
behavioral evidence of pain from her subjects. The Athenian scientist, based on the available behavioral evidence, therefore concludes that the
Spartans do not experience pain, which we as omniscient observers know is false. This thought experiment successfully demonstrates that,
theoretically, it is possible to possess cognitive process C without displaying behavior B. However, from a scientific perspective, we must agree with
the conclusions reached by the Athenian scientist, who made the correct inference based on the available evidence. Of course, should the Athenian
scientist return to Sparta equipped with advanced neural recording devices, she would eventually revise her conclusions after detecting neural
markers of pain. In other terms, for the proposition "Super-Super-Spartans experience pain" to be true, it must translate into some intersubjective
physical evidence at some level of observation. Another instance of "false negative" argument is represented by "philosophical zombies" (Kirk 1974,
Chalmers 2009), hypothetical beings who are indistinguishable from us with the exception of lacking conscious experience. While they have proven
divisive among philosophers, by any standard of empirical cognitive science, zombies do not pose a major challenge. Even though the thought
experiment requires us to accept the counterintuitive (and seemingly unprovable) claim that they lack conscious experience, from a scientific
perspective, they are not puzzling at all: all evidence points to them being conscious.

Thus, while these thought experiments highlight logical possibilities, they do not undermine the use of behavioral criteria when applying the
scientific method of cognitive science, which operates on evidence-based inferential logic. Thus, our behavioral inference principle avoids both false
positive and false negative scenarios by adopting the flexibility of inductive reasoning, grounded in the epistemological fact that cognitive processes
are theoretical constructs useful for explaining particular classes of behavioral observations, not objects of study in themselves.

consciousness, an initial agreement on behavioral tasks—such as
visual masking, binocular rivalry, continuous flash suppression,
or metacognitive ratings—is required in order to claim that these
paradigms can provide insights into the computational mechanisms of
consciousness. This illustrates, time and again, that behavior precedes
theory.

Before the scientific enterprise of characterizing the computational
form of consciousness, everyday folk attribution already proceeds on
the basis of behavioral observation, together with prior expectations.
The reason we know that another human subject is conscious in a
given moment (e.g. sleeping or awake) is not because we directly
perceive computational equivalence. In fact, we often have relatively
little insight into our own internal computations (Chater 2018), much
less those of others. Rather, we observe behavior exhibiting cer-
tain features and complexities that are most coherently explained
by assuming the latent construct known as "consciousness." In other
words, we attribute consciousness to others on behavioral grounds
(although, as we discuss later, prior expectations also play a key role).

A very similar point is made quite eloquently by Gilbert Har-
man, who takes the attribution of mental states as a case study
to exemplify and explain the principle of inference to the best
explanation:

"[...] when we infer from a person’s behavior to some fact about
his mental experience, we are inferring that the latter fact explains
better than some other explanation what he does" (Harman 1965)

Translating to the theme of consciousness in artificial systems, the
priority should not (and cannot) consist in verifying whether a
machine’s code presents a set of computations that a group of scientists
has proposed as representing the latent process underpinning
conscious behavior. Instead, the focus should be on whether the
machine exhibits a specific pattern of behavior that allows (and
compels) us to infer a latent computational process that we agree to call
consciousness, given the available data and background knowledge.
In the case of LLMs, the relevant behavior is their language output,
which—although very different from human verbal behavior in
terms of physical medium and mode of generation—nonetheless
shares key features. Most importantly, it consists of responses elicited
in specific contexts by given stimuli, depends on some internal
information-processing architecture, and, crucially, is intersubjective
and measurable.

In other terms, considering computational equivalence as a neces-
sary condition for attributing consciousness to artificial systems does
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Figure 1 The epistemological status of cognitive (or mental) constructs. A) the relation between observables (e.g. phenomena and public facts) and
latent processes (e.g. theories and models). Inference typically follows an inductive process, where hypotheses about latent processes are initially
generated using heuristics such as plausibility, parsimony, and analogy (among others), and are later validated through cycles of induction-based
corroboration and deduction-based falsification. Theories and models, in turn, can be used to explain, predict, and control both past and future
observations. B) the relation between a cognitive process (explanans: The thing that explains), the behavioral phenomena (explanandum: The thing
that needs an explanation), and the environment (i.e. experimental factors). The spatial organisation and colour scheme are the same in panels A and
B: the explanans (latent processes) are shown at the top and coloured in teal, whereas the explanandum (observable phenomena) are shown at the

bottom and coloured in orange.

not align with how the target computational processes themselves
have been discovered in humans (or other animals) in the first place
(Butlin et al. 2023, LeDoux et al. 2023, Evers et al. 2024). Rather, these
processes were identified through inferences to the best explanation
of behavioral phenomena produced by an otherwise architecturally
opaque computational substrate: the brain (Lipton 2004, LeDoux et al.
2023, Bayne et al. 2024, Birch 2025, Negro and Mudrik 2025).

What about neural phenomena?

While we focus on overt behavior, we do not deny the relevance of
neural phenomena in the attribution of consciousness. Once mea-
sured with appropriate techniques (e.g. neuroimaging, electrophys-
iology), neural activity is itself an observable, public fact much like
behavior, and can therefore contribute to the overall inferential pro-
cess.

Neural evidence is obviously key in cases where consciousness may
exist despite the absence of overt behavioral markers, as in severe
locked-in patients (or super-super Spartans; see Box 1). Of note, while
locked-in patients are often taken as paradigmatic cases of dissociation
between behavior and consciousness, in practice, their detection still
relies on minimal behavioral responses (e.g. eye movements). How-
ever, in some severe cases where oculomotor responses are not possi-
ble, neural recordings (e.g. electroencephalographic patterns overlap-
ping with those of conscious individuals) can provide a sufficient sign
of consciousness.

A few qualifications follow. First, neural evidence does not alter
the overall epistemological framework: neural phenomena are useful
insofar as they expand the set of observables that must be explained
by the latent process, and symmetrically, can contribute to inferences
about the computational form of that latent process. Second, they
neither require nor support a strict computational equivalence

principle, since neural markers are generally identified by correlation
with behavior, not by reference to an explicit computational
mechanism. Once again, consensus on behavioral markers must
therefore precede the recognition of corresponding neural markers
(e.g. alpha oscillations associated with sleep). Third, while neural
markers may be sufficient in some cases, they are not strictly
necessary. Many sophisticated cognitive processes—such as learning,
imitation, communication, and possibly consciousness—are found in
species with brains very different from ours (Wong 2025) or even no
brain at all in the case of single-celled organisms (Gershman et al.
2021).

Thus, neural evidence may serve as a sufficient but not a neces-
sary criterion for consciousness. Furthermore, neural phenomena are
often considered secondary to behavioral phenomena in inferring
computational mechanisms (Niv 2021), since behavior can both cor-
roborate and falsify a cognitive model, whereas neural recordings
typically serve only to corroborate. In humans, for example, neural
markers are often used atheoretically (e.g. in the detection of locked-in
patients; Adama and Bogdan 2025) or as a means of providing external
validity to computational processes already specified by behavior (e.g.
model-based fMRI; O’Doherty et al. 2007, Glascher and O’Doherty
2010, Wilson and Niv 2015, Lebreton et al. 2019). In neither case
does neural evidence permit a direct "discovery" of computations, nor
do they enable a genuine assessment of computational equivalence.
For these reasons, and for the sake of parsimony, we will restrict our
discussion to behavior as the primary object of empirical investigation
in cognitive science (Niv 2021).

Here, we provide arguments in support of the behavioral inference prin-
ciple as a criterion for attributing consciousness (see Supplementary
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discussion and Fig. S1 for more details on this issue). We defend it
both on both epistemological and on pragmatic grounds, as it is more
applicable and better suited to black-box systems such as LLMs. We
also discuss how our priors about hypotheses should influence the
way we interpret behavioral evidence for or against consciousness
attribution, and how the behavioral inference principle relates to
other criteria, differing in both method and applicability.

The crucial role of priors in the behavioral inference
principle

The behavioral inference principle relies on a form of inductive rea-
soning, which is concerned with forming belief about the probability
of a cognitive process (consciousness, C) from behavioral evidence (B).
This can be described as a form of Bayesian inference:

P(B|C) « P(C
P(CIB) = % )

Here, the posterior P (C|B) represents our inferred belief about
whether the system possesses consciousness (or any other latent
property C), conditioned on the observed behavioral evidence B. This
posterior is proportional to the likelihood of the data P (B|C), while P(C)
and P(B) represent priors. How can these terms be interpreted in the
context of consciousness attribution? The likelihood P (B|C) captures
how probable the observed behavior is, assuming that the cognitive
process is present. The dependence of the posterior P (C|B) on the
likelihood is evident, and in the practice of cognitive science this term
is usually at the basis of any model comparison criterion (Wilson and
Collins 2019). Importantly, Bayesian model comparison also naturally
implements a form of Occam’s razor, where simpler hypotheses are
favored over more complex alternatives with equivalent explanatory
power (Myung and Pitt 1997, Blanchard et al. 2018).

But of course, priors are also important. Specifically, P(C) quantifies
how probable we believe the cognitive process (C) is in the system.
Crucially, this prior is (and must be) influenced by all prior knowledge
we have concerning the system under investigation. For instance, this
value is effectively P(C) = 1 in the case of other human beings, where
the presence of consciousness is not in question. This justifies why we
content ourselves with very scant behavioral or neural evidence when
attributing consciousness to other people, even locked-in patients. This
value is understandably very high for non-human primates, because
their deep physiological and behavioral similarity with humans jus-
tifies a high degree of generalization (Kemp and Tenenbaum 2009,
Wu et al. 2024). In contrast, we generalize much less for more distant
species, such as mollusks or arthropods, which are physiologically and
behaviorally "alien". Following this line of reasoning, we are justified
in being highly conservative when attributing consciousness to LLMs,
because they are physically radically different from us, and we have
no known example of a conscious artificial system. Of course, priors
based on computational architecture are also important (Wong 2025).
On one hand, the science of consciousness provides several educated
guesses concerning the probable computational architecture of con-
sciousness; on the other hand, even though the post-training weight
architecture of LLMs is huge, opaque, and uninterpretable, they do
come with architectural constraints that may be informative. Take,
for example, the fact that recurrence seems to be key to many com-
putational theories of consciousness (Lamme and Roelfsema 2000,
Dehaene et al. 2011, Tononi et al. 2016). If we adhere to these theories,

we might inform our inferential process so that P(C) is considered
higher in systems that explicitly feature recurrence (Gu and Dao 2023,
Peng et al. 2023, Sun et al. 2023, Dao and Gu 2024).

P(B), on the other hand, quantifies the baseline probability of
observing the behavior of interest, regardless of the presence of the
cognitive process. This term is probably why LLMs have sparked
such intense debate about consciousness both outside and inside
academia. The fact is that LLMs possess full conversational capacity,
as well as "flickers" of metacognition and Theory of Mind (Birch
2025). Historically, we encountered this combination of behaviors (i.e.
conversational capacity coupled with higher cognitive functions) only
in conscious beings, making P(B) a very low value. This is likely what
motivated naive misattributions of consciousness in cases like Blake
Lemoine and other users (Palminteri and Pistilli 2025). However,
priors change as we acquire new information, and as LLMs prolif-
erate and we accumulate evidence concerning their mechanisms, we
are slowly beginning to accept that full conversational proficiency—
even when combined with higher cognitive functions—may not be
a perfect behavioral marker for consciousness (Sejnowski 2023). We
are nonetheless left with the task of determining which behavioral
observations we should deem informative in the case of LLMs with
respect to this inferential process.

Thus, looking at the behavioral inference principle through the
lens of Bayesian inductive inference allows us to understand how
the consciousness attribution problem can rely on the same stream of
behavioral evidence for both natural and artificial systems. However,
it can still yield different interpretations for different systems, because
different amounts of behavioral evidence are required to override
different prior beliefs.

Situating the behavioral inference principle in the
context of other criteria

In situating the behavioral inference principle within the broader
context of other possible attribution criteria, we must return to two
key factors: (i) whether there exists an explicit (and ideally consensual)
hypothesis concerning the computational mechanisms underlying the
cognitive process of interest, and (ii) the degree of transparency in the
system under evaluation (Fig. 2).

The first question to ask is whether there is an explicit hypothesis
regarding the computational form of the cognitive process under con-
sideration. This maps onto the distinction between theory-heavy and
theory-light approaches. In our argument, theory-light and theory-
heavy approaches are defined with respect to the necessity of pos-
sessing an explicit computational hypothesis about the cognitive pro-
cess under investigation (in our case, consciousness). Theory-heavy
approaches require a well-defined hypothesis concerning the compu-
tational structure of the target cognitive process, whereas theory-light
approaches are more agnostic and do not require the target process to
be explicitly specified or agreed upon at the computational level.

If an explicit (and consensual) hypothesis exists concerning the
computational mechanisms of the cognitive process at stake (which
is only partially the case for consciousness), we can then ask whether
the computational architecture of the candidate system is sufficiently
transparent to allow for direct observation and verification. In cases
where the system is fully transparent (e.g. the brute force chess
algorithm DeepBlue), computational equivalence can be applied.
These systems, being fully interpretable, allow for a direct comparison
of the computational processes in the candidate and reference
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Figure 2 A diagram illustrating how initial conditions map into the applicability of different attribution principles. Theory-heavy criteria require explicit
hypotheses about the computational form of the cognitive process under investigation, whereas theory-light approaches do not. Computational
transparency refers to our capacity to read and interpret the computational operations in the candidate system. Complex systems such as human
brains and LLMs are too complex to be transparent, whereas the fully mapped brain of Caenorhabditis elegans and the brute force DeepBlue chess
algorithm could be considered examples of transparent systems. Physical similarity is a gradient within the animal kingdom when compared to the
conscious species par excellence (Homo sapiens): Some species are very similar (e.g. great apes), whereas others are less so (e.g. octopi). In pink, we
highlight what is currently the only feasible route for consciousness attribution to LLMs, optimistically assuming that current computational theories of
consciousness are valid. Of note, we do not mean to suggest that behavioral inference is the only way consciousness should be attributed; for instance,
we believe that a high degree of computational equivalence or physical similarity, if convincingly demonstrated, may also be sufficient.

systems. Of note, computational equivalence is also warranted—
and is in fact the only possible route for attribution—if one accepts
that the defining properties of consciousness depend on the form of
the computational operations rather than on their functional role,
as proposed in approaches such as Integrated Information Theory
(Tononi et al. 2016).

However, computational transparency is a rare case. For most com-
plex systems, humans and LLMs included, the system’s computational
mechanisms are not transparent. For these non-transparent systems,
we cannot directly observe or verify the computational processes, and
instead we must infer them from behavioral phenomena (behavioral
inference principle) (Eq. 1).

If there is no explicit hypothesis regarding the computational
mechanisms of the cognitive process, we must rely on theory-light
approaches and turn to physical similarity as a possible criterion
for attribution. In such cases, systems with high physical similarity
between the candidate and the reference systems may justify the
attribution of consciousness on the basis of strong prior expectations
alone. This is the rationale why we are probably justified to attribute
consciousness to Neanderthals, whose genetic and anatomic similarity
provides a strong basis for assuming similar cognitive mechanisms,
even in absence of any behavioral observation. Crucially, our position
is distinct from biology- or "meat-first"-approaches, which suggest that
at least some degree of physical similarity is not only sufficient, but
also necessary for attribution (Block 2025, Seth 2025).

In the absence of both consensus and physical similarity, we are left
with behavioral equivalence as the only viable criterion. Behavioral
equivalence is a theory-light approach that relies solely on observable
behavioral similarity between the candidate and reference system. If
behavior is sufficiently similar, we can infer that the system is likely to
share similar cognitive processes, although the exact nature of these

processes is left theoretically under-specified and open-ended (Turing
2009). The application of this criterion to LLMs is complicated by
our limited ability to identify truly diagnostic behavioral phenomena,
given that these systems are trained to display traits that are usually
associated with conscious processes—a problem often described as
"gaming" or "mimicry" (Birch 2025). This difficulty reflects the well-
known adage that a measure ceases to be a good measure once it
becomes a target (Goodhart’s law).

Several clarifications follow from this decision tree. First, behavioral
inference should not be confounded with behavioral equivalence, as
the former is theory-heavy while the latter is theory-light. More specif-
ically, the behavioral inference principle involves inferring putative
underlying computational processes from observed behavior, which
are then analyzed and compared to what we currently believe to
be the relevant processes in the reference system. In this sense, the
behavioral inference principle still requires explicit computational
hypotheses. These hypotheses are understood as valid explanations of
the behavioral observations, rather than as processes literally imple-
mented in the system. In contrast, behavioral equivalence is atheo-
retical: it bypasses hypotheses about computational mechanisms and
treats similarity of behavior as sufficient in itself. To circumvent the
mimicry or gaming problem, the behavioral inference principle, first
incorporates into its Bayesian structure the baseline probability of
displaying consciousness-like behavior (e.g. fluent conversation) as a
consequence of training, and second, relies on behavioral tests that are
specifically designed to be diagnostic of the computational process of
interest (Bayne et al. 2024).

Second, the applicability of these criteria to given cognitive pro-
cesses and candidate systems will evolve as science progresses. For
example, fundamental research in cognitive science is continually
bringing new insights into the computational mechanisms underlying
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consciousness, allowing new consensuses to emerge and opening the
door to more theory-heavy forms of attribution. Likewise, ongoing
efforts in LLM explainability are gradually making these models less
opaque, thereby increasing the feasibility of computational equiva-
lence assessments.

Finally, note that this classification is not intended to be strictly
normative (i.e. to prescribe which criterion should be applied), but
rather to illustrate the range of possibilities and how they map onto
critical features of the attribution problem, such as the computational
transparency of the candidate system (i.e. the system under evaluation
for consciousness) and its physical constitution with respect to the
reference system (i.e. systems in which we know that consciousness
exists). The choice of attribution criterion cannot be determined solely
by scientific and philosophical debate. It will also inevitably reflect the
beliefs and preferences of the community vis-a-vis the metaphysical
status of cognitive processes. For example, those who endorse com-
putational functionalism as the correct metaphysical framework for
cognitive science may argue that physical equivalence is unnecessary
(Dennett 1991), while others may disagree and continue to see physi-
cal similarity as indispensable (Block 1978, Seth 2025).

Having laid out our arguments against computational equivalence
and in favor of a behavioral inference principle, we would like to
clearly state that, in our opinion, even the most sophisticated current
LLMs (although they may exhibit some behaviors typically associated
with consciousness, such as language understanding and produc-
tion) are (very likely) not conscious (Butlin et al. 2023, Birch 2025).
Notably, LLMs lack continuity (each new interaction begins anew),
coherence (they can impersonate an unlimited number of personas
on command), multisensory integration (so that, for instance, a notion
of workspace could hardly be implemented), and embodiment (they
only interact through language)—all features that many people have
considered to be important for consciousness (Bayne et al. 2024).
But, we also concur with Butlin, Long, and colleagues (Butlin et al.
2023) that the engineering steps required to develop LLMs that exhibit
behaviors consistent with more complex forms of consciousness are
not insurmountable—and may even be simpler than those accom-
plished so far.

However, it’s important to discuss why we need to be able to
attribute cognitive constructs or latent processes, such as conscious-
ness, in the first place. In empirical science, and cognitive science
perhaps most of all, it is a widely held understanding that "all models
are wrong, but some are useful" (Box 1976). Models or theories provide
epistemic value by formally explaining some behavioral phenomenon,
thus helping us understand the world. However, models and theories
also crucially provide instrumental value in informing us how to act
better in predicting and controlling important factors in our world.
Indeed, much of the interest around artificial consciousness is pre-
cisely motivated by the instrumental need to act correctly vis-a-vis the
ethical questions related to the creation of such systems, along with
the inherent rights and responsibilities they may acquire (Hildt 2019,
Bengio et al. 2023, Wong 2025). These ethical questions usually have
two complementary faces.

The first ethical question is related to the problem of control and
potential existential harm that extremely powerful artificial agents
can cause to the human race (Bengio et al. 2023). The questions
of consciousness and danger are often confounded because it is

generally assumed that a conscious Al will also be extremely intel-
ligent and self-driven. However, the two things are not necessarily
linked: an Al could be extremely "intelligent" in its capacity to achieve
its goals, but not conscious (e.g. the famous paperclip maximizing
robot; Miller et al. 2020). Furthermore, goals and motivations do not
necessarily require high levels of consciousness. Many typically lower-
level organisms can be said to have goals and motivations (mainly
linked to self-preservation), even single-celled organisms (Gershman
et al. 2021). Thus, the control problem and other existential Al safety
issues are perhaps better addressed not by discussing and regulating
consciousness, but rather their capacity for agency (Wong 2025) vis-a-
vis their ability to influence the world around us (both digital and real).

The second ethical issue that often fuels the debate on machine
consciousness (e.g. the clamorous case of Blake Lemoine’s resignation
from Google; Lemoine 2022) concerns the potential for these entities
to acquire moral status, which is the degree to which an organism
deserves ethical consideration (Nusshaum 2006, Singer 2009, Birch
2024). However, it is unclear whether consciousness per se is the
appropriate criterion. Taking the example of non-human animals
(DeGrazia 2002), many ethical theories require not only some degree
of awareness, but also the ability to demonstrate an understanding
of "pleasure" and "pain," or, broadly speaking, to show strong pref-
erences regarding possible experiences or world states (Birch 2024),
which at a minimum would constitute a demonstrated preference
for one’s own existence over non-existence (Singer 1989). Currently,
most theories of consciousness are silent regarding notions of plea-
sure, pain, and preferences, which are of fundamental importance
for moral status. Meanwhile, pleasure, pain, and preferences are the
cornerstone of reinforcement learning (RL) algorithms (Eldar et al.
2016, Sutton and Barto 2018, Watson et al. 2019), leading to arguments
that RL agents may already possess a non-zero moral status, even
in the absence of consciousness (Tomasik 2014). In this regard, we
believe caution may be warranted as LLMs are coupled with goal-
directed RL algorithms to improve planning and control, as these
systems may increasingly display behavioral patterns we are likely to
attribute to a conscious agent.

Thus, we are not proposing some single and final behavioral "litmus"
test for consciousness akin to the "Turing test” (Turing 2009). As we
encounter or even construct new subjects of study (e.g. LLMs), we
will continually need to develop new tests and experiments to refine
our inferences about the underlying computational processes. These
methods must be adapted to the system under investigation, as we
are increasingly realizing it is necessary, for instance, when assessing
consciousness beyond the mammalian case (Schneider 2020). As long
as LLMs remain restricted mainly to language processing, the most
promising behavioral markers will likely consist of context-sensitive
linguistic exchanges (Gui et al. 2020) and adaptive problem-solving
across varied domains (Tian et al. 2024, Pan et al. 2025), as opposed
to behaviors that are unlikely to be informative about consciousness,
such as rote repetition of training material and phenomenological
mimicry (Birch 2025). As LLMs evolve toward more multimodal sys-
tems, the ability to integrate information across modalities will prob-
ably become an important dimension to assess. To avoid premature
(mis)attribution, our behavioral criteria must be stringent, and we
believe that multidimensional benchmarks are necessary within the
behavioral inference approach (Yin et al. 2023, Li et al. 2024).
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Figure 3 A metaphor. Blind monks examining an elephant by Hanabusa
Itcho (1652-1724). This image is in the public domain.

But the science of machine consciousness must nonetheless
embrace the behavioral methodology of cognitive science in doing
away with "necessary and sufficient conditions", and being willing to
continually evolve through inference, corroboration, and falsification,
in order to develop new empirical standards and operational
definitions of consciousness (or other latent cognitive capacities).
Thus, arriving at a consensus about what behavioral evidence
warrants the attribution of consciousness to any given system will
inevitably evolve as new data is acquired, new theories are proposed,
and new goals are set (Mitchell and Krakauer 2023, Sejnowski 2023).

To conclude, in the cognitive science community, the question of
consciousness in LLMs has become the "elephant in the room". Yet, we
are reminded of a different metaphor, also involving an elephant, but
one being examined by blind Buddhist monks (Fig. 3). In the parable,
one monk touches the trunk and believes it to be a snake, another
feels the ear and imagines it to be a fan, while a third, grasping a leg,
concludes it is a tree. The story illustrates the challenges of identifying
something complex and multifaceted that cannot be directly perceived
as a whole when working with limited and fragmented information.
The monks would only be able to arrive at the correct conclusion
(that they are examining an elephant) if they could gather sufficient
data and communicate their findings. Even then, without tools like
MRI or genetic analysis, their conclusion would only represent the
most probable explanation based on the available (tactile) evidence.
Similarly, when it comes to artificial consciousness, there will unlikely
be a single, definitive piece of evidence that conclusively demon-
strates consciousness in machines. Instead, we may see a gradual
accumulation of behavioral features that increasingly suggest the
presence or absence of consciousness. Importantly, the absence of a
single "litmus test" (akin to a Turing test for consciousness) does not
entail that behavioral inference is invalid: even within computational
functionalism, unless dramatic advances are made in the mechanistic
explainability of LLMs, multiple and converging behavioral evidence
remains the only viable route for inference. As "blind" cognitive sci-
entists, our task will be to critically and fairly evaluate this growing
body of evidence and decide whether it is sufficient for us to attribute
consciousness to these systems, given our current understanding
concerning the mechanisms underlying this cognitive process.

Indeed, the monks themselves are applying an inductive methodol-
ogy, trying to infer the best possible explanation for their observations.

Through touch, they are conducting experiments to the best of their
ability with the phenomena at hand. However, the reason it serves
as a comical parable is that the monks fail to integrate their own
conclusions at the group level and come to a consensus. In contrast, the
success of cognitive science is via debate, and above all else, dialogue
and collaboration.
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