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Abstract 
Sensory experiences are encoded as memories — not as verbatim copies, but through 
interpretation and transformation. Rate Distortion Theory (RDT) frames this process 
as lossy compression, aligning with numerous experimental findings. Despite its 
successes, RDT has a glaring problem: it assumes environmental regularities are 
known and unchanging, dismissing surprising experiences as noise. However, the 
brain's model of environmental regularities (semantic memory) is continually learned 
and refined, with surprising events playing a pivotal role. In this Perspective, we 
highlight the relevance of this challenge for structure learning and argue that 
adaptively learned compression fosters characteristic curriculum sensitivity, which has 
been a recent focus of learning research. We suggest this process provides novel 
insights into the role of episodic memory in preserving experiences in a relatively raw 
format for later interpretation. Our Perspective offers a normative framework for the 
interplay between semantic and episodic memory, encompassing memory distortions, 
curriculum effects, and prioritised replay. 

1. Introduction  
Over a century of research has revealed that human memory, far from storing a 
verbatim copy of sensory experience, is prone to distortions or even the creation of 
entirely false recollections1. Memory can be strikingly inaccurate even for frequently 
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encountered stimuli such as coins2, traffic signs3, corporate logos4, or icons from popular 
culture5. Rather than being random, many of these memory distortions and biases are 
systematic6 and remarkably pervasive. A particularly salient example is the Mandela 
effect, named after the widespread false memory that Nelson Mandela died in prison 
during the 1980s, when in fact he was released and later became the President of South 
Africa. Using a visual analogue (known as the Visual Mandela effect), a recent study 
demonstrated that a majority of people falsely recognize manipulated versions of visual 
cultural iconography, such as a monocle-wearing version of the Monopoly Man, even 
when presented alongside the original5.  
 
The extent of these inaccuracies might seem surprising and could be perceived as 
fundamental flaws of human memory. However, they have become widely recognised 
as reflections of how the primary purpose of memory is not merely the accurate recall 
of past experience, but rather to support other cognitive functions6,7, such as prediction, 
generalisation, decision-making and creativity. For example, many of these errors fall 
under the category of gist-based distortions, where the essential meaning (or “gist”) of 
an experience is retained instead of superficial details8,9. This process of gist extraction 
can be considered to prioritise information most relevant for anticipating future events 
and guiding behaviour, by interpreting experience in light of prior knowledge and 
expectations10–16. Yet, this leaves the question: what computational principles underlie 
the way that multiple memory systems (e.g., semantic and episodic memory) encode 
past experiences in service of these cognitive goals?  
 
An emerging normative perspective on this question is via compression (Box 1) – 
specifically, the mathematical framework of Rate Distortion Theory (RDT), which 
originated in the 1950s as an extension of information theory17,18. RDT asks the question 
of how to optimally encode an input so that it fits within the available capacity budget 
(the rate), while also taking the goals of the system into account. This characterises a 
fundamental trade-off, whereby reducing distortion (measured between the input and 
the reconstructed memory trace; Fig 1b), results in a corresponding increase in the 
required rate of information (Fig. 1c). An intuitive example is how a streaming video 
appears degraded when the connection is unstable, with better compression algorithms 
achieving higher image fidelity for a given connection speed. 
 

https://paperpile.com/c/6AGr3u/y59UM
https://paperpile.com/c/6AGr3u/wzUmW
https://paperpile.com/c/6AGr3u/eTkzl
https://paperpile.com/c/6AGr3u/Lfr4w
https://paperpile.com/c/6AGr3u/rPS4
https://paperpile.com/c/6AGr3u/Lfr4w
https://paperpile.com/c/6AGr3u/Yvpu+rPS4
https://paperpile.com/c/6AGr3u/s74kc+8eUM
https://paperpile.com/c/6AGr3u/ucFZY+TaRsZ+kxxSi+mzkhg+VSc1g+BPcg+P2Ba
https://paperpile.com/c/6AGr3u/vDsdO+jMzIJ


3 
	

	

A key insight in RDT is that consistent regularities in the environment can be exploited 
to remove redundant information17 and thereby use resources more efficiently. This 
idea has been influential in neuroscience since the 1960’s under the rubric of the 
Efficient Coding Hypothesis19–21. However, when resources are insufficient for perfect 
reconstruction (i.e., lossless compression), RDT allows even further compression by 
strategically discarding information (i.e., lossy compression) and later trying to 
reconstruct them based on known regularities. However, this reconstructive process 
often introduces distortions that make the recalled stimuli more aligned with previously 
observed regularities.  
 
Applied to human memory, these regularities are a form of pre-existing knowledge 
typically thought to belong to the domain of semantic memory. They can be formalised 
as an internal generative model of the environment, enabling the interpretation and 
prediction of ongoing experience14,22–24. This process of compression using semantic 
memory introduces distortions in the encoding-decoding process – such as adding a 
monocle on the Monopoly Man (Fig. 1d). This prediction aligns with gist-based 
distortions and, more broadly, with early theories of memory distortions, which 
attribute such errors to the influence of pre-existing knowledge structures known as 
memory schemas10.  Although classical compression algorithms produce qualitatively 
different memory distortions than humans (e.g., blocky compression artefacts in Fig. 
1e),  recent advances in machine learning, particularly in applying deep generative 
models25–27 to compression28–30 have enabled RDT-based models to capture memory 
phenomena in complex domains, such as human drawings, text, and natural 
images11,12,31. These findings demonstrate that RDT can serve as a unifying framework 
for parsimoniously explaining how prior knowledge affects sensory experiences, with 
characteristic patterns of memory distortions11–14,32 (Box 1).  
 
In contrast to semantic memory, which retains general knowledge, episodic memory is a 
different representational format that retains traces of specific events and sensory 
experience in a relatively raw form33,34. However, the normative role of episodic 
memory, specifically its tendency to maintain rich details relative to what is directly 
relevant to behavioural objectives, has historically been seen as more elusive and the 
subject of numerous proposals34–40. Along this line, recent work applying RDT to 
memory distortions builds on the distinction between memory systems by arguing that 
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semantic memory provides the encoding framework for the efficient compression of 
episodes11,13,14.  
 

 
 
Fig 1. Compression in memory. a. The core computational challenge of memory is determining how to 
adapt the brain based on incoming experiences. Viewed as a lossy compression process, the critical question 
is which information to retain and what can be safely discarded to conserve memory resources. b. RDT 
characterises compression algorithms using two key measures: distortion, which quantifies how much 
the reconstructed experience differs from the original, and rate, which measures the average amount of 
information preserved in the memory trace. c. According to RDT, there is no single optimal encoding 
strategy, but rather a continuum of trade-offs between rate and distortion. Higher rates allow for more 
accurate recall, whereas lower rates result in greater distortions. Drawings reprinted from Prasad and 
Bainbridge (2023)5. d. A compressed representation relies on knowledge of prior regularities to fill in 
information missing from the memory trace, leading to gist-based distortions.  e. Compression artefacts 
in human memory differ qualitatively from those produced by classical algorithms, such as JPEG. 
 

In this Perspective, we point out that despite its successes in describing how pre-existing 
knowledge affects the encoding and reconstruction of sensory experience, RDT as a 
normative framework for human memory (Box 1) suffers from a glaring issue. While 
providing a unifying account of a wide variety of memory distortions and biases, RDT 
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neglects a key challenge for memory, namely, the need to learn and update an internal 
generative model on the basis of continually accumulating experiences. To address this, 
we begin by proposing an augmented framing of the computational problem of memory 
as iteratively learned compression and offer a resolution through the combination of 
semantic and episodic memory systems. Our proposal suggests that the relative richness 
of episodic memories is due to their role in supporting the online learning of causal 
structure under resource constraints. We then review literature on curriculum 
sensitivity in human learning, supporting the view. This allows us to contrast our 
predictions with Complementary Learning Systems37,41 (CLS), which provides an 
alternative account of the interaction between episodic and semantic memory. Next, we 
turn to the question of what is stored in episodic memory and interpret recent 
theoretical and empirical investigations into memory prioritisation and experience 
replay under the light of our framework. Finally, we plot trajectories for future research 
with a specific focus on how the brain might balance the opposing goals of conserving 
memory resources and maintaining an ability to learn. 
 

 
Fig 2. Interactions between semantic and episodic memory. a. We conceptualise episodic memory as 
retaining traces of individual experiences, and semantic memory as a simplified internal model of the 
environment, formalised as a probabilistic generative model over experiences. b. Our framework offers 
a perspective on the bidirectional interactions between episodic and semantic memory systems. In 
these interactions, in line with recent RDT accounts, semantic memory facilitates the efficient 
compression of episodic memories by providing the statistical model required for compression. 
However, we argue that the iterative refinement of the model through learning critically relies on 
encoding surprising and novel episodes in a less compressed format, to preserve them for later re-
evaluation, ensuring they are preserved for re-evaluation if the current model proves to be inaccurate or 
incomplete. 
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2. The computational problem of memory 
While recent research has demonstrated that RDT can serve as a unifying explanation 
for a wide variety of memory phenomena11–14,31, there is a fundamental problem: RDT 
assumes a known and unchanging set of environmental regularities, abstracted into an 
internal generative model (see Box 1). In contrast, the brain must construct this 
generative model (semantic memory) over a lifetime, adapting it constantly in light of 
new experiences; As Barlow himself pointed out as a limitation of his Efficient Coding 
framework, “what is redundant today was not necessarily redundant yesterday”20. This 
divergence in assumptions also leads to a divergence in predictions: for RDT, since the 
generative model is assumed to be correct, the only available interpretation for 
surprising aspects of experience is that they are the result of coincidence or noise, and 
unlikely to recur. Thus, these surprising aspects are the first to be forgotten when 
resources are limited. In stark contrast with this prediction, humans tend to recall 
surprising, novel, and incongruent information with high episodic accuracy42–46. 
 
We propose that the normative computational problem relevant to human memory is 
not merely what is considered by RDT, namely, how to efficiently compress experiences 
under a known generative model. Rather, we need to consider two additional factors: 
First, the internal generative model is not given but needs to be learned. Second, this 
learning must proceed in an online, iterative manner, where the model is used for 
encoding the same experiences that also serve as the basis for updating it. These 
constraints present a delicate issue for the compression perspective, since during the 
course of optimising the rate distortion trade-off, an incorrect model discards the very 
information required for updating it.  
 
To see the inherent challenge in this augmented computational problem, consider the 
following illustrative example. Imagine learning how to brew good coffee with an 
unfamiliar machine (e.g., a stovetop moka pot), by figuring out how different variables 
affect the taste based on trial and error. Each “episode” of brewing a cup (Fig. 3a) 
involves both relevant (e.g., bean type or grind setting) and irrelevant variables (e.g., the 
weather or background music). In this situation, we might aim to create a semantic 
model of coffee brewing, by observing how the relevant input variables affect the taste 
and capturing this relation in a parametric model. According to normative theories of 
learning, this can be achieved without specifically remembering any individual episodes. 

https://paperpile.com/c/6AGr3u/TaRsZ+kxxSi+2hd6M+mzkhg+VSc1g
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Rather, all relevant information can be captured by iteratively updating the parameters 
of the semantic model and then discarding the raw experiences (Fig. 3b top).  
 
Now, imagine that after many brewing episodes, we have figured out a configuration of 
variables that consistently produces tasty coffee. Yet today, it tastes inexplicably 
terrible. If we had direct access to all past episodes, we could readily determine the 
cause: while all features deemed relevant were identical to those during past successes, 
this time the water added to the pot was too cold, causing the coffee grounds to burn 
while being heated to a boil. Since water temperature was a factor we previously 
considered irrelevant, its value in past episodes has been discarded. Thus, we are left 
surprised, with no clear indication of what went wrong or how to adjust for the next 
attempt. We might misattribute the failure to coincidence, or worse still, the wrong 
variable, leading to erroneous parameter updates. 
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Fig 3. Online structure learning in the coffee 
brewing example. a. Each episode consists of values 
for relevant (black) and irrelevant (grey) variables, 
where for novel situations, initial relevance 
judgments might be made on the basis of general 
regularities through generalisation. In online 
learning, the information content of irrelevant 
variables is not retained in the parameters, 
preventing learning about the regularities governed 
by them. b. Iterative learning involves parameter 
adjustments, such as how grind setting influences 
coffee quality. Previous data points (grey, shown for 
reference) are discarded, with relevant information 
summarised in the model’s parameters. For 
simplicity, quality is shown as a function of grind 
setting, though in reality other factors are also 
relevant. c. Structure learning entails a discrete 
learning problem where qualitatively different 
hypotheses are evaluated based on a measure of 
congruence with observations. The structure (here 
understood as probabilistic causal bayesian 
networks47 but see Box 2 for alternatives) determines 
the set of relevant variables and their connections.  
d. Episodes contain numerous variables, with the 
semantic model determining which of these are 
deemed relevant. During model updates, only the 
information from relevant variables is retained, while 
irrelevant information is discarded. However, this 
process carries the risk of misclassifying a relevant 
variable (such as water temperature) as irrelevant, 
potentially leading to the systematic loss of 
information essential for future model updates. 

  

A key property behind the failure of the learning process outlined above is that beyond 
parameter estimation (i.e., refining a known parametric relationship between known 
variables), it also features an additional problem of structure learning48,49 (Box 2). 
Structure learning involves, for example, identifying causal variables in a given 
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environment (e.g., weather, clothing, grind setting), as well as determining how they 
affect each other (e.g., weather may directly affect mood, but not the grind setting). In 
terms of compression, a known model structure allows for highly efficient use of 
memory resources by only encoding information relevant to the parameters. While this 
means that parameter estimation may often be accomplished in an online way, for 
structure learning, online updates require tracking and updating each possible 
hypothesis in parallel. Unfortunately, this quickly becomes impractical, as even in the 
case of a toy problem with just four variables, there are 543 possible hypotheses about 
the causal structure, with this number growing to over 29,000 with a single additional 
variable. Such a combinatorial explosion of the hypothesis space is typical for structure 
learning problems, and due to this proliferation of hypotheses, maintaining the relevant 
information for each candidate structure is as challenging as storing all past episodes 
directly.  
 
Therefore, we face a conundrum: On the one hand, limited memory resources require 
us to store experiences in a compressed format, which is supported by a learned 
semantic model of the environment. On the other hand, learning and maintaining a 
semantic model requires access to details of previous episodes that may not have been 
considered relevant under the current model. How, then, does the brain thread the 
needle between a combinatorial explosion of hypotheses and the risk of discarding key 
information?  
 
We propose that the brain uses an approximation relying on the combination of two 
interlinked memory systems (Fig. 2).  Semantic memory builds a model of environmental 
regularities to facilitate compression and due to computational and memory 
constraints, tracks only a restricted set of hypotheses over structure (perhaps only the 
single most likely hypothesis50–53). However, restricting the set of tracked hypotheses 
risks being stuck in a dead-end, where information that is necessary for further 
improvement of the model has already been selectively discarded (as in our coffee 
brewing example). Therefore, episodic memory retains a relatively raw and 
uncompressed encoding of novel and surprising episodes (i.e., those most likely to be 
misinterpreted under the current hypothesis), offering some insurance against inherent 
failure modes of online structure learning. 
 

https://paperpile.com/c/6AGr3u/NQtTz+Hsbmv+mymx1+eyeNl
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In the following, we propose a new integration of semantic and episodic memory that 
solves the dual theoretical problems of learning to remember (building a semantic 
compression model) and remembering to learn (storing relevant episodes for future 
model updates), while explaining a range of different empirical findings. Section 3 
describes the process of building the semantic model, drawing on the analogy of 
Neurath’s ship as a metaphor for structure learning under bounded rationality50. Here, 
the need for approximate inference implies a distinct sensitivity to the order in which 
stimuli are encountered (i.e., curriculum effects). In Section 4, we show how episodic 
memory can effectively complement semantic memory. By preserving surprising events 
in a high-fidelity format, episodic memory serves as a “life-raft” enabling future updates 
to the semantic model by retaining seemingly irrelevant details. We then review two 
families of replay algorithms proposed in prior research (prioritised replay and 
generative replay) in light of our framework, arguing that our proposal suggests a 
combination that draws on the benefits of both. 
 

3. Learning to remember 
In earlier sections, we argued that the efficient allocation of memory resources 
necessitates the construction and continual updating of a generative model of the 
environment (i.e., semantic memory) based on observations. Specifically, we have 
highlighted the challenge of identifying the correct causal structure, given the 
combinatorial explosion of the space of hypotheses capturing potential relationships 
between relevant variables. Although causal learning is a specific instance of the 
broader domain of structure learning that our argument applies to (see Box 2), both 
face a common challenge: vast and difficult-to-navigate hypothesis spaces, necessitating 
the use of approximations. 
 
 
One of the most common methods for approximate structure learning is to use Monte 
Carlo sampling, tracking a selected set of hypotheses instead of the full distribution. 
Converging evidence from multiple learning paradigms suggests that the brain may also 
be limited to tracking a restricted set or even a single structural hypothesis50–53. In the 
context of learning global causal structure, this reflects the intuition that it is challenging 
to maintain parallel interpretations of experience under vastly different hypotheses. A 
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compelling proposal50 has likened this learning process to the metaphor of Neurath’s 
ship, originally introduced in the philosophy of science54,55 to illustrate the gradual and 
continuous development of scientific theories: 
 
“We [theorists] are like sailors who on the open sea must reconstruct their ship but are 
never able to start afresh from the bottom. Where a beam is taken away a new one 
must at once be put there, and for this the rest of the ship is used as support. In this way, 
by using the old beams and driftwood the ship can be shaped entirely anew, but only by 
gradual reconstruction.” 
 
Applied to the brain, the ship represents an individual’s evolving understanding of the 
structure of the world in their semantic memory: a dynamic and evolving hypothesis 
that informs perception, decision-making, and — as we propose — memory. Neurath’s 
metaphor underscores the locality of the changes made to the ship, reflecting the idea 
that updates to the brain’s model of the world are not wholesale replacements but 
rather incremental modifications. Just as sailors replace individual planks or beams 
while keeping the rest of the ship seaworthy, the brain updates its hypotheses by 
adding, removing, or adjusting elements to make local changes to the  current model 
without compromising its ability to function effectively within its environment (Fig 4a; 
for details, see Box 2).   
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Fig 4. Neurath’s ship analogy for human learning.  a. Neurath’s ship represents the evolution of 
structural hypotheses during learning. b. Comparison of curriculum dependence in ANNs versus human 
learners. Blue and yellow bars indicate the first and second tasks, respectively. ANNs suffer from 
catastrophic interference in the blocked setting, while humans do not. However, humans tend to show 
better performance in blocked settings. C. Schematic of blocked versus interleaved curricula in a 
decision-making task from Flesch et al. (2018). Each observation presents a tree characterised by two 
features—leafiness and branchiness (depicted as colour and size, respectively)—and a context indicated 
by the background (represented by outline colour). Participants learn through trial and error which 
plants thrive (i.e. are rewarded) in specific contexts. d. An example of possible hypothesis evolution in 
the Flesch et al. task. Nodes depict the relevant variables given a particular hypothesis. Coloured plates 
show the hypothesised dependence of reward magnitude on the strength of one or the other feature 
(horizontal and vertical axes). Interleaved training prevents the discovery of the regularities governing 
the two distinct contexts. e. Stylised depiction of the data used in the Zhao et al. task56. The object in the 
left column (referred to as a “magic egg” in the experiment) possesses two features—number of stripes 
(St) and number of spots (Sp)—which determine its effect on the stack of rectangles (Re) upon collision. 
One group of participants is presented with the top block first, followed by the bottom block, while the 
other group sees the reverse order. f. Illustration of hypothesis evolution in the Zhao et al. (2023) task. 
The top panel depicts a learner in the “construct” curriculum, who has successfully identified the 
primitive structure (St x Re) in Block I, and can therefore use this primitive to constrain the search 
problem in Block II. In contrast, the learner in the bottom panel, having encountered a more challenging 
structure inference (St x Re – Sp) in Block I, and having failed to identify a useful structure for retaining 
the relevant information from Block I, by Block II the discovery of the same primitive comes too late.  

https://paperpile.com/c/6AGr3u/5876H
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According to our compression perspective, the ship represents a single structural 
hypothesis in semantic memory, determining how new experiences are interpreted and 
therefore what information is retained. In an experimental setting, the subject forms 
this structural hypothesis on the basis of earlier observations. If they succeed in 
discovering the correct structure, then further congruent observations can be integrated 
quickly and efficiently46,57,58, with semantic memory determining which aspects of the 
observations are safe to discard. However, an incorrect structural hypothesis can lead to 
two key failure modes in learning: First, it may compromise the interpretation of future 
observations, leading to erroneous parameter updates. Second, even if the subject 
eventually realises that their hypothesis is flawed, alternatives are evaluated on the 
basis of past data, which was compressed on the basis of an incorrect hypothesis. As a 
result, supporting evidence for the correct structure may have been mistaken for noise 
and systematically discarded, leaving the learner stranded in a dead-end hypothesis. 
This entanglement of learning and compression in the Neurath’s ship approximation 
leads to learning dynamics with specific patterns of order dependence39,59,60, which have 
been observed in human data, but diverge from learning dynamics characteristic of 
alternative accounts of semantic learning using Artificial Neural Networks (ANNs), such 
as CLS theory.  
 
CLS models the acquisition of the semantic model as the gradual updating of an ANN, 
integrating information across multiple experiences over time. Similar to human 
learning, ANNs also display robust curriculum effects, but often in an opposite pattern 
to what humans tend to exhibit. In a study by Flesch and colleagues61, both humans and 
artificial neural networks were given the same context-dependent decision-making task 
(Fig. 4b) in either blocked or interleaved curriculum. When ANNs were presented with 
different tasks or learning contexts in a blocked manner, the different blocks tended to 
overwrite one another, in a well-studied phenomenon known as “catastrophic 
forgetting”62,63. But when the training data was interleaved, with a shuffled ordering of 
the same data, ANNs could learn reliably64. CLS theory37,41, one of the most influential 
proposals for why an episodic memory system is required, was concerned with exactly 
the challenge of mitigating catastrophic forgetting. The utility of episodic memory in CLS 
is that interleaving older episodes with current observations protects older knowledge 
from being overwritten. In contrast to ANNs, humans performed better in blocked 
settings, but were hindered by interleaved curricula, with a stronger effect as the 
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complexity of the task was increased (i.e., by adding more features for each context). 
Other empirical studies have also found similar effects of blocked curricula leading to 
better performance for humans in tasks with structural uncertainty65–67. Note that some 
studies have also found benefits to interleaved curricula in different settings, especially 
when generalisation between stimuli was beneficial to the performance of the task68, or 
in discrimination tasks where the immediate juxtaposition of exemplars from different 
classes seems to highlight the differences between them69–71.  
 
From the perspective of online structure learning, blocked data is ideal, since 
consecutive trials from a single context allow the learner to focus on a subset of the 
complete structure39,60,67, creating a more manageable hypothesis space to be searched. 
Once the structure has been discovered, semantic memory can be used to efficiently 
compress further observations from the same context, allowing the learner to fine-tune 
the parameters, similar to our coffee example (Fig. 3b). In the case of interleaved 
training, the initial hypothesis space to be considered is much larger, making it difficult 
to form an initial hypothesis. Furthermore, without the interpretative structure 
provided by an effective hypothesis, the useful information in the observations cannot 
be selectively retained, preventing the accumulation of evidence for the correct 
structure. One possible outcome of this is that certain subjects might fail to retain the 
context accurately or arrive at an overly simplified structure that merges the contexts 
together. A key distinction between CLS and our framework is that in CLS, semantic 
memory relies on interleaved training, with episodic memory mitigating the adverse 
effects of blocking. In contrast, our approach suggests a benefit to blocked training for 
semantic memory, while episodic memory is essential for counteracting failure modes 
caused by interleaved training. 
 
A more direct connection between curriculum dependence in human learning and the 
problem of structure discovery was established in a recent study by Zhao and 
colleagues56. The study focuses exclusively on blocked curricula, where the content of 
the blocks themselves are manipulated (Fig. 4c), as participants learn a causal 
relationship between the features of a dragon egg (stripes and spots) and the length of a 
magic wand. Under the “construct” curriculum, the first block only contains examples 
where one feature is present (either stripes or spots), while the second block introduces 
the second feature (stripes + spots). In contrast, the “deconstruct” curriculum reverses 
the order, presenting a more challenging structure inference problem in the first block, 

https://paperpile.com/c/6AGr3u/FS0lN+Mg3YP+wFu3
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where both features are varied simultaneously. Subjects in the experiment were 
allowed to revisit previous examples within the same block, mitigating the demands on 
their memory. The study found that more participants discovered the correct structure 
– here conceptualised as a program72,73 (see Box 2) – under the “construct” than the 
“deconstruct” curriculum. This is because in the “construct” curriculum, a correct partial 
rule (i.e., only incorporating the first feature) could be easily inferred from the simple 
Block I, and then extended to also incorporate the second feature in Block II. In contrast, 
the reversed order in the “deconstruct” curriculum made the initial hypothesis space 
much more complex in Block I, and even the comparatively simple stimuli in Block II did 
not guide them to the correct solution. Even though the simpler Block II allowed a 
significant proportion to identify the correct structural primitive, they were unable to 
retrospectively apply this knowledge to the observations from the first block, consistent 
with the hypothesis that they were unable to effectively compress its information 
content due to the lack of a suitable interpretative structure. 
 
In summary, we argued that efficient compression requires the brain to iteratively 
construct a generative model of the environment in semantic memory, while 
simultaneously applying the same model to compress observations. We proposed that 
the brain relies on an approximate solution to this problem of online structure learning 
that can be likened to Neurath’s ship. This approximation leads to a characteristic path-
dependence in learning, where the ability to compress is critically reliant on the success 
of structure discovery. The resulting curriculum effects align with empirical data, but 
contrast with the dynamics observed in ANNs, which are commonly used as models of 
human learning. A key insight of our framework is that online structure learning via 
approximate inference implies a trade-off between efficient compression and robust 
structure learning: efficient compression involves using semantic memory to discard 
irrelevant information, whereas learning the underlying structure requires holding onto 
seemingly irrelevant aspects of experience in episodic memory in order to evaluate 
alternative hypotheses. Next, we focus on this latter component of our proposed 
framework, exploring how episodic memory may support the acquisition of semantic 
knowledge. 
 

https://paperpile.com/c/6AGr3u/zero+Pb3t
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4. Remembering to learn 
Thus far, we have focused on how people learn to remember—how we build a model of 
the environment in semantic memory that allows us to selectively retain information 
necessary for further adaptation of our predictive model. In this section we explore the 
use of remembering as opposed to simply knowing, that is, an ability to create rich 
reconstructions of prior experience including haphazard details. We have already 
pointed out that when the current structural hypothesis used to interpret and compress 
incoming experiences is flawed, this can result in erroneous model updates and an 
inability to evaluate alternative models. Thus, our framework is based on the insight 
that the only generally applicable way to mitigate these failure modes of semantic 
learning is to retain information that might seem irrelevant in the context of the current 
hypothesis, but relevant for evaluating potential alternatives. Therefore, the ability to 
remember is crucial to ensure that future learning remains possible. 
 

 
  
Fig 5. The episodic “life raft”.  a. In a category learning task classes disjunct classes are inferred from 
data, illustrated by a 2D embedding of stick figure animals74. The segment lengths and angles cluster 
around species but individual species are characterised by considerable variance.   b. Structure learning 

https://paperpile.com/c/6AGr3u/wB4hx
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entails the discovery of the number and property of classes. While multiple hypotheses about the 
number of classes can be compatible with the data, the inventory of possible hypotheses needs to be 
navigated eventually based on a single hypothesis at a time. c. An unconstrained learner tracks all 
possible hypotheses, while the semantic learner only relies on a single hypothesis, learning about the 
current classes but ignoring alternatives. The episodic learner integrates multiple experiences by 
selectively or non-selectively retaining raw past experiences, prioritising experiences by the degree of 
surprise under the current hypothesis.  d. Variable-rate encoding. Increasing the resources dedicated to 
encoding surprising experiences makes recall more accurate for these episodes (e.g., retaining more 
variables). From the perspective of replay, using surprise to define the rate of encoding couples the 
priority of an episode to the level of detail generated by the model. This mechanism combines the 
benefits of prioritised and generative replay by retaining informative episodes with higher fidelity while 
conserving resources where they are unlikely to hinder further learning (see Box 3).  
 
In our coffee making example (Fig. 3), the omission of water temperature from the set 
of relevant variables meant that it was unclear how to update the model after an 
unexpectedly poor outcome. If the unpleasant episode were encoded in episodic 
memory, it might include details that are irrelevant in the context of the current 
hypothesis, such as the water being drawn from a cold tap. Although the significance of 
these details may not be immediately apparent, a subsequent episode—where the 
water comes from a preheated kettle and produces a much better tasting result—could 
retrospectively reveal water temperature as a relevant contextual variable. Thus, 
extending the Neurath’s ship metaphor with an “episodic life-raft” (Fig. 5a), allows a 
learner to make greater overhauls to model structure by preserving experiences in a 
detail-rich and relatively unrefined format.  
 
A study by Nagy and Orban39 provides an intuitive demonstration of the value of an 
“episodic life-raft” in a simple category learning task. In this study, learning agents had 
to iteratively learn categories through sequential observations, akin to categorising 
unknown animals into species based solely on their observed features (Fig. 5a). Here, 
structure learning simply requires the learner to determine the number of categories 
(e.g. species; Fig. 5b), whereas parameter estimation requires refining the feature 
distributions for each category. Consistent with our current proposal, the study found 
that a “semantic-only” learner often failed at this structure learning task, by 
systematically underestimating the number of categories unless the observations were 
carefully ordered (i.e., blocked curricula). However, endowing the learner with episodic 
memory, even with severely limited capacity, greatly improved successful structure 
discovery (Fig. 5c). Since this episodic memory stored a small subset of past experiences, 

https://paperpile.com/c/6AGr3u/pZJ3t
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they could be replayed when considering alternative structures, thus augmenting the 
information contained in the parameters of the current hypothesis. This process can be 
viewed as an analogue to replay for memory consolidation75, where episodic memories 
are integrated with the knowledge maintained in semantic memory. 
 
While an episodic life-raft is clearly advantageous for structure learning, episodic 
memory is a costly memory format, with this cost stemming from the very source of its 
utility. This raises the question of which experiences are most beneficial to allocating 
scarce resources to, or rather, which episodes should be prioritised? First, we consider a 
simplified context where the only limitation is on the number of episodes that can be 
stored, but assume each of these episodes can be recalled perfectly. Then we extend 
this idea to more realistic scenarios where episodes themselves are stored in 
compressed form. We have argued that, to avoid losing relevant information, the most 
critical experiences to capture accurately are those that seem incongruent with the 
current model. Either because they are surprising, or because they relate to a new, 
previously unexplored area or aspect of the environment, such incongruent experiences 
are expected to be the most useful for the goal of structure learning.  
 
Consistent with this reasoning, simulated learners with limited episodic memory 
capacity that selectively prioritised experiences with high Bayesian surprise76–78 
performed better in online structure learning39 (Fig. 5c). This approach is similar to 
earlier proposals in category learning that learned exceptions to general rules, sharing 
the need to store anomalous events79,80. An advantage of Bayesian surprise is that it 
distinguishes between surprise due to mere noise and surprise that warrants model 
change76,81, although alternative formalizations of surprise or novelty could be explored 
in the future82. Surprise can also signal environmental change, and underlie the 
detection of new types of events, thus contributing to event segmentation83,84. 
 
The idea that incongruent and novel information is selectively prioritised in memory has 
a long history in psychology45 and is supported by extensive empirical findings42–44,46,85.  
Similarly, in neuroscience, the idea that the hippocampal formation (associated with 
episodic memory) serves to retain novel information has been extensively explored46, 
particularly in the context of experience replay and memory consolidation38,41,86,87. 
The normative question of how episodes should be prioritised is typically referred to as 
prioritised replay88,41,87. Since constraints on memory resources are not a primary 
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concern in these approaches, prioritisation refers not to which episodes should be 
retained, but to how frequently they should be replayed. Note that in the limit, lowering 
the probability of replaying an episode corresponds to discarding it. Prioritising episodes 
based on their associated reward prediction error has been instrumental in recent 
machine learning advancements88–90. In reinforcement learning, it has also been argued 
that the utility of retaining episodes is greatest in the early stages of encountering a 
novel environment, before a sufficiently accurate semantic model can be 
established35,91,92.  
 
After considering the simplified normative problem where selected episodes could be 
recalled perfectly (i.e. exact replay), we now turn to more realistic scenarios, where 
memory resources are more limited. The RDT perspective suggests that memory 
resources can be decreased if episodes are compressed lossily, with missing details filled 
in by a generative model maintained in semantic memory (Box 1). In the replay 
literature, the solution of replaying what are essentially compressed episodes during the 
training of ANNs, called generative replay, has been shown to place significantly lower 
demands on memory resources compared to exact replay while still protecting against 
catastrophic forgetting93,94.  
 
Although compressing episodes using semantic memory enables significant savings in 
memory resources94, it appears to be directly at odds with our proposed role for 
episodic memory. If episodes are stored to preserve seemingly irrelevant details for 
later reinterpretation in case the current model is incorrect, how can the same model be 
relied upon to compress these experiences? A key insight of RDT, discussed in Section 1, 
may be crucial in resolving this tension: episodes can be compressed at varying levels of 
detail, reflecting different trade-offs between allocated resources (rate) and distortion 
(Fig. 1c). Rather than a binary choice between storing an exact copy of an event in 
episodic memory or merely updating the model’s parameters, RDT allows for a 
continuum of choices regarding the desired fidelity of the reconstruction.  
 
We propose that this variable-rate encoding of sensory experience underlies the brain’s 
ability to balance the competing goals of conserving resources and maintaining 
robustness to novelty (Box 3). Specifically, we suggest that the rate of encoding — or 
equivalently, the desired accuracy of recall — should be determined by a measure of 
surprise or novelty associated with each observation (Fig. 5d). Under this approach, 
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most experiences would leave a trace in episodic memory, but well-predicted episodes 
would be stored in a highly compressed form relative to surprising ones. This makes 
them prone to increasing degrees of gist-like distortions as a result of increasing levels 
of compression, as demonstrated in previous work on the RDT perspective on human 
memory11,12. However, when semantic memory has lower confidence in its 
interpretation, due either to violated predictions or novel situations, additional memory 
resources could be allocated to encode the episode in greater detail. This mechanism 
could prioritise information in episodes in a graded fashion, and explain why surprising 
experiences are often recalled with more episodic detail42–44,46,77,85. Altogether, our 
proposal provides a computational account of memory distortions through the 
interaction between episodic and semantic memory. However, the impact of variable-
rate compression on episodic memory’s ability to prevent structure-learning failures 
remains theoretically unexplored and awaits empirical validation. 
 
 
 

5. Conclusion 
We argued that RDT, in its current form, faces a fundamental challenge when applied as 
a normative framework for human memory. While RDT-based approaches describe how 
episodes might be compressed using a semantic model, they overlook how semantic 
knowledge is acquired in the first place—from the same experiences that the model 
interprets and compresses. We highlighted how this omission results in qualitative 
discrepancies from the empirical phenomena of human memory and argued that 
addressing them requires a rethinking of the fundamental assumptions of RDT.  
 
Thus, we proposed a revised normative framework, where semantic memory tracks a 
limited approximation of the environmental structure, based on the analogy of 
Neurath's ship. Since interpreting observations under a single structural hypothesis can 
result in systematic loss of essential information, we argued that Neurath's ship also 
requires an episodic life-raft, recruiting additional memory resources to encode novel 
and surprising observations in a relatively uncompressed format. By accounting for the 
role of episodic memory in safeguarding against learning the wrong generative model, 
we arrive at a normative explanation for why surprising stimuli are often remembered 

https://paperpile.com/c/6AGr3u/TaRsZ+kxxSi
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with higher fidelity. However, for experiences that are congruent with the current 
structural hypothesis, our framework produces typical RDT-like distortions. Ultimately, 
our perspective on the interplay between episodic and semantic memory systems offers 
a parsimonious explanation for a wide range of phenomena in human learning and 
memory, while also providing new insights into several ongoing challenges in the field.  
 
A key focus of our Perspective are the consequences that an evolving compression 
model (i.e., semantic memory) has for memory distortions. The standard RDT approach 
has served as a unifying framework for classical gist-based memory distortions, such as 
intrusions of semantically related items95 or label-consistent distortions in memory96 for 
sketches11,14. However, if we allow the compression model to evolve over time, updates 
driven by new observations will influence the encoding of subsequent ones – indeed the 
defining property of curriculum effects. Conversely, updating the model after a new 
experience (such as in post-event misinformation97 or hindsight bias98) changes the 
decoder, and thus alters how we reconstruct past experiences23, potentially also 
including associative memory errors99.  
 
In the study of both human and machine learning, stimuli are typically presented in 
randomised fashion, with simple or non-existent dependencies between trials. This has 
clear benefits for eliminating experimental confounds. However, it stands in stark 
contrast with the rich, multi-scale sequential structure that characterises natural 
environments. In this Perspective, we have focused on coarse-grained structure, 
neglecting the temporal breadth of episodes, and consequently the issue of how to 
segment continuous sensory inputs83,84,100–102. However, this fine-grained temporal 
structure and its interactions with structure learning are likely to be important in a more 
nuanced understanding of curriculum effects103, and an integration of these approaches 
may explain a larger variety of curriculum effects69–71 under a unified framework. A 
more refined understanding of path-dependencies in learning, also crucial for 
educational applications, will require improved theories about how semantic knowledge 
is represented and organised. One intriguing approach is to view semantic memory as a 
library of concepts, often formalised in a program induction framework104–106, where a 
goal of curriculum design is to induce widely applicable and composable conceptual 
modules that further learning can build on56,60,107.  
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Although absent from existing RDT accounts, emotional salience is empirically one of 
the strongest factors influencing memory108–111. However, our framework offers two 
promising directions. First, emotionally relevant aspects of experience can be prioritised 
by the RDT distortion function. This aligns with how rewards have been integrated with 
generative models in reinforcement learning contexts112,113, with emotions mediating 
reward-related computations114. Second, we proposed novelty and surprise to 
determine resource allocation in variable-rate encoding. Since emotional salience is 
indicative of whether the episode is expected to be retrieved in the future115, high 
salience implies an increased rate of the encoding. Accordingly, traumatic experiences 
may be understood as an extreme case of encoding primarily uninterpreted sensory 
features, which aligns with qualitative properties of PTSD116,117. More broadly, the 
combination of Neurath’s ship with the episodic life raft may prove fertile ground for a 
deeper, computational understanding of traumatic events on memory and their long-
term effects on development.  
 
While our Perspective focuses on how the combination of episodic and semantic 
memory support learning an effective model of the environment, these are unlikely to 
be the only learning systems an intelligent agent needs41, just as there are multiple 
memory systems1. While RDT helps illuminate some of these differences12, additional 
computational considerations — such as trade-offs in computational cost35,60 and the 
path-dependent co-evolution of these systems118—are also likely to play a crucial role.  

Display items 

Box 1 - RDT and human memory 
 
Rate distortion theory (RDT) provides a normative framework for how to optimally 
encode information in settings where resource limitations make it impossible to have 
lossless reconstruction17. Here, consistent regularities in the environment can be 
exploited to remove redundant information, with a fundamental trade-off that balances 
the degree of compression (i.e., rate) with encoding accuracy (i.e., distortion), producing 
a continuum of compression strategies (Fig. 1c). However, RDT has only recently 
emerged as a normative framework for human memory11,12,119,120, supported by the 
development of generative machine learning models known as variational 
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autoencoders25,27 (VAEs). Generative models can learn to generate new stimuli 
consistent with their training data, often by “encoding” the stimuli into a latent 
representation and then “decoding” it to produce a (typically imperfect) reconstruction 
of the original stimulus. Intuitively, this process resembles the encoding and decoding of 
a memory trace (Fig. 1b). Indeed it has been shown that VAEs, and specifically an 
extended version called a beta-VAE26 can be interpreted as an approximate solution to 
RDT26,28,29 and the internal generative model in the brain, either couched explicitly in the 
normative framework of RDT11,12 or relying on a qualitative match to human data13,14,32. 
Altogether, RDT provides three principles for memory, based on prior knowledge, 
capacity limits and task-dependency. 
 
While this provides an appealing framework for human memory, investigations have 
been hampered by the inadequacy of methods for learning generative models of natural 
environments. Thus, engineered compression algorithms typically produce compression 
artefacts or “memory distortions” (e.g., blocky artefacts in images) that are qualitatively 
different from what we observe in human experiments (exemplified in Fig. 1e). Modern 
machine learning methods, and in particular the application of deep generative 
models25–27 to compression28–30 have drastically changed this picture, enabling RDT-
based models of memory dynamics that are directly applicable in complex naturalistic 
domains, such as human drawings, text, and even natural images11,12,31. 
 
The most straightforward application of RDT in the context of human memory concerns 
the influence of prior knowledge on recall. It follows naturally from principles of 
compression that domain expertise leads to more accurate recall, but only for stimuli 
congruent with the statistics of past observations. This has been demonstrated in 
studies of memory for synthetic words121 and chess configurations11,122. According to 
RDT, when specific details of an experience are forgotten, they are reconstructed using 
the generative model based on a high-level interpretation (“gist”) of the stimulus. The 
resulting distortions, such as the appearance of a monocle on the Monopoly Man5, are 
known in the memory literature as gist-based distortions1,6,8. A well-known example is 
the Deese-Roediger-McDermott (DRM) effect95, where recalling lists of semantically 
related words often leads to the recall of a strongly related but non-presented “lure” 
item with nearly the same probability as presented items. The influence of gist-based 
distortions also implies that when the interpretations of ambiguous stimuli are 
manipulated (e.g., via contextual cues), both recall accuracy and the nature of 
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distortions are affected96, with both phenomena capable of being reproduced using 
RDT11,14.  
 
Additionally, RDT can also naturally account for the effect of varying resource 
constraints. Influential theoretical analyses of memory suggest that the likelihood of a 
piece of information being needed decreases with time 123–125. This can be incorporated 
into RDT by varying the targeted point on the rate-distortion curve (Fig. 1c), which 
increases the extent of gist-based distortions as a function of delay before recall11,12, and 
is a robust feature of human memory126–128. 
 
Lastly, RDT also accounts for how memory is affected by goals and the task an individual 
is performing. RDT can incorporate these factors through the distortion function, for 
example, by overweighting errors related to danger or reward12,129. This degree of 
freedom in RDT can also be exploited to optimise for the goal of prediction, which can 
be shown to imply a need for updating parameters rather than a precise reconstruction 
of stimuli130,131.  
 

Box 2 - Structure learning and Neurath’s ship 
Structure learning refers to a class of learning problems in which competing hypotheses 
differ not only in the precise numerical values of parameters, but also qualitatively, such 
as in the number of parameters, choice of variables, forms of relationships, and even 
the fundamental building blocks used to specify the model. Normative theories of 
learning often decompose learning problems into these two processes:  determining the 
high-level structure of the model, and fine-tuning the parameters while keeping the 
structure fixed132,133. Some approaches further distinguish between structure and form, 
where a transition in the form of the model is a rare but fundamental shift, such as a 
child deciding to organise animal species into a tree structure rather than separate 
clusters48. However, for simplicity, we use structure learning here in the broader sense, 
encompassing both structure and form. 
 
Two properties of structure learning make it fundamentally more challenging than 
parameter estimation. First, just as causal graphs are constructed from nodes and 
directed edges, other structure learning problems are often defined by specifying 
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primitive components along with rules for their composition. These composition rules 
are typically open-ended, allowing arbitrarily complex structures to be “grown” over the 
course of learning134. While compositionality enables such models to construct 
genuinely novel explanations, it also results in inconceivably vast hypothesis 
spaces135,136. The second difficulty lies in navigating these spaces. To illustrate, imagine 
the “learning landscape”, with the horizon spanned by possible configurations of the 
model, and height of the terrain defined by the “goodness of fit” for that particular 
configuration (e.g., Fig. 2c). In parameter estimation, this landscape is typically smooth 
and continuous, with small changes in parameters resulting in small changes in model 
predictions. However, in structure learning, the possible configurations are typically 
discrete, and neighbouring points may sometimes correspond to dramatically different 
predictions, making the terrain rugged and treacherous107. 
 
These difficulties in searching over structures during individual learning mirror those 
encountered in the development of scientific theories, making the Neurath’s ship 
analogy, originally proposed in the latter context, applicable to the former as well50. 
Beyond offering an evocative analogy, the iterative rebuilding of Neurath’s ship can be 
precisely formalised as a specific type of approximate structure learning within the 
framework of hierarchical Bayesian inference. The Bayesian solution for uncertainty 
involves keeping track of all possibilities, summarising them in the posterior distribution. 
Ideally, hierarchical Bayesian inference prescribes computing the posterior distribution 
over all structural hypotheses, updating each, in parallel, with incoming observations. 
However, in practice, Monte Carlo approximations are commonly used, where on the 
highest levels of the hierarchy, only a restricted set (or even a single hypothesis) of 
“particles” are tracked. By keeping the high-level structural hypothesis fixed, the 
posteriors over parameters are much less resource intensive to maintain. In this class of 
Monte Carlo algorithms, the process for updating the model structure is encoded in the 
proposal distribution. This distribution specifies, for each hypothesis, what alternative 
hypotheses may be considered in a single update. The iterative replacement of the 
planks and beams in Neurath’s ship implies making this proposal distribution local, for 
example by only allowing the addition or removal of a single causal edge.  
 
Our prototypical example has been that of causal learning50. However, structure 
learning problems are ubiquitous in natural environments, encompassing contextual 
learning137, the identification of underlying structural forms within data48, and learning 
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visual105,138,139105,138 or abstract concepts56,60,104,106,107,136,140. Structure learning has also 
been implicated in event segmentation100–102, where the temporal structure of visual or 
auditory information stream needs to be discovered83,84,141. At the most general level, 
the composable building blocks for theories may define components of a programming 
language, making learning akin to program induction104–107.  
 
 

Box 3 - Implementation of variable-rate compression in the 
brain 
The idea of variable-rate encoding integrates both components of our proposed 
framework for the interactions of the semantic and episodic memory systems (Fig. 2). In 
this view, sensory experience is compressed via semantic memory, producing episodic 
memory traces with model-congruent distortions. This increases the effective capacity 
of episodic memory, but may also hinder its proposed role in retaining seemingly 
irrelevant details crucial for structure learning. The role of the variable-rate mechanism 
is to enable the system to selectively retain precise details when surprise or novelty 
suggests the compression model may be unreliable. 
 
Two key challenges stand out in bridging the computations of variable-rate compression 
with a neural implementation in the brain. First, while RDT allows encoding at multiple 
compression levels (Fig. 1c), each level relies on a distinct encoder-decoder pair 
optimized for a specific rate-distortion trade-off. This implies the maintenance of 
multiple semantic models in parallel, contradicting the principle behind Neurath’s ship. 
Second, RDT provides no mechanism for converting from detailed to more compressed 
memory traces after the initial encoding (e.g., forgetting over time; Box 1). 
 
Multiple approaches have been proposed in machine learning for achieving variable-
rate compression while avoiding multiple encoder-decoder pairs142–144. A promising idea 
for how the brain might implement variable-rate compression is through a hierarchical 
generative model145–148, with layers deeper in hierarchy corresponding to progressively 
stronger levels of compression (top panel of figure). Similar to these models, the visual 
cortex is thought to represent sensory information hierarchically: early layers respond 
to basic features like edges, intermediate layers detect textures, and deeper layers 

https://paperpile.com/c/6AGr3u/iDkgr+h8cp5+SgbDv
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integrate these features into representations of objects and scenes. Hierarchical models 
offer a straightforward way to reduce memory capacity by selectively discarding 
information over time, starting with lower-level details (bottom panel of figure). An 
intriguing possibility is to associate certain layers of the cortical hierarchy with layers of 
variables in the generative model.  Retaining a subset of these activations in 
hippocampal regions and reinstating them in the relevant cortical layers during recall 
has been proposed as a mechanism for memory storage and retrieval149. Memory 
resources could then be reduced by sequentially discarding the activations of 
increasingly deep layers in the memory trace, such that traces with more episodic 
details rely on earlier layers of the sensory hierarchy. Similar hypotheses have been 
proposed in the context of the visual hierarchy14,32,150,151, and behavioural evidence 
suggests that this framework may extend to other modalities as well152.  
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