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Abstract

Sensory experiences are encoded as memories, not as verbatim copies, 
but through interpretation and transformation. Rate distortion theory  
frames this process as compression in which irrelevant details are  
discarded. Despite the successes of approaches based on rate– 
distortion theory in aligning with empirical findings, these approaches 
assume that environmental regularities are known and unchanging 
and that surprising experiences are dismissed. However, the brain’s 
model of environmental regularities (semantic memory) is continually 
learned and refined, and surprising events have a pivotal role in this 
learning. In this Perspective, we offer a normative framework that 
addresses the interplay between semantic and episodic memory in the 
context of this computational problem that encompasses memory 
distortions, curriculum effects and prioritized replay. We propose to 
consider memory as solving an online structure learning problem, 
with semantic and episodic memory each having a role. We argue that 
semantic memory must learn the regularities that enable the efficient 
encoding of experience and that episodic memory supports this 
process by preserving surprising experiences in a relatively raw format 
for later interpretation. This framework opens up avenues towards 
understanding how adaptive compression and surprise shape the 
trajectory of learning and memory distortions.
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events and guiding behaviour by interpreting experience in light of 
prior knowledge and expectations10–16. However, it is still unclear what 
computational principles underlie the ways in which multiple mem-
ory systems (including semantic and episodic memory) encode past 
 experiences in service of these cognitive goals.

A normative perspective on this question that has recently gained 
traction in memory research highlights the importance of compres-
sion. Specifically, the mathematical framework of rate–distortion 
theory, which originated in the 1950s as an extension of information 
theory17,18, asks how to optimally encode an input so that it fits within the 
available capacity budget (the rate), while taking the goals of the system 
into account (Box 1 and Fig. 1b). With a sufficiently large budget, per-
fect reconstruction (lossless compression) is possible, but the theory 
extends to the more general case in which even the best possible encod-
ing leads to distortion in the reconstructed input (lossy compression). 
Rate–distortion theory derives a fundamental trade-off, showing that 
a reduction in rate leads to a corresponding increase in the minimum 
achievable distortion (Fig. 1c). For example, when streaming video 
with a poor connection, video quality is reduced to maintain smooth 
playback. In rate–distortion terms, the system lowers the rate of the 
encoding to match the available budget, which increases the distortion 
(in this case, the visual degradation of the image).

A key insight in rate–distortion theory is that regularities in the 
environment can be exploited by the encoder to remove redundant 

Introduction
Human memory does not store a verbatim copy of sensory experience, 
but rather is prone to distortions or even the creation of entirely false 
recollections1. Memory can be strikingly inaccurate even for frequently 
encountered stimuli such as coins2, traffic signs3, corporate logos4 or 
icons from popular culture5. Rather than being random, many of these 
memory distortions and biases are systematic6 and remarkably perva-
sive. A particularly salient example is the ‘Mandela effect’, named after 
the widespread false memory that Nelson Mandela died in prison during 
the 1980s, when in fact he was released and later became the President 
of South Africa5. A visual analogue of this effect is that a majority of 
participants falsely recognized manipulated versions of visual cultural 
iconography, such as a monocle-wearing version of the Monopoly man, 
even when they were presented alongside the original5.

The extent of these memory inaccuracies might seem surpris-
ing and could be perceived as fundamental flaws of human memory. 
However, the primary purpose of memory is generally recognized 
as not merely to accurately recall past experience, but rather to sup-
port other cognitive functions6,7 such as prediction, generalization, 
decision-making and creativity (Fig. 1a). For example, many of these 
errors fall under the category of gist-based distortions, in which the 
essential meaning (or ‘gist’) of an experience is retained instead of 
superficial details8,9. This process of gist extraction can be consid-
ered to prioritize information most relevant for anticipating future 
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Fig. 1 | Compression in memory. a, Viewed as a lossy compression process, 
the core computational problem of memory is what sensory information to 
retain and to discard to conserve memory resources. b, Rate distortion theory 
characterizes compression algorithms using two key measures: distortion 
(how much the reconstructed experience differs from the original) and 
rate (the average amount of information preserved in the memory trace). 
c, According to rate–distortion theory, there is a continuum of trade-offs 
between rate and distortion. Higher rates allow more accurate recall on average, 

whereas lower rates result in greater distortions. d, A compressed representation 
relies on knowledge of prior regularities to fill in information missing from the 
memory trace, leading to gist-based distortions. e, Compression artefacts in 
human memory differ qualitatively from block compression artefacts produced 
by classical algorithms, such as block distortions in .jpeg files. Panel a (mountain 
photo) credit: john lambing/Alamy Stock Photo. Parts b,c and e adapted with 
permission from ref. 5, Sage.
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information17 from the encoding. This redundancy reduction enables 
compression even in the lossless case, inspiring the efficient coding 
hypothesis in neuroscience19–21. When resources are insufficient for 
perfect reconstruction, rate–distortion theory enables further com-
pression by strategically discarding non-essential information and later 
trying to reconstruct it on the basis of known regularities. However, 
this reconstructive process often introduces distortions that align the 
recalled stimuli better with previously observed regularities.

Applying rate–distortion theory as a normative framework 
for human memory, previously observed regularities are a form of 
knowledge typically thought to belong to the domain of semantic 
memory. These regularities can be formalized as an internal gen-
erative model of the environment, enabling the interpretation and 

prediction of ongoing experience14,22–24. The process of compression 
using a generative model maintained in semantic memory introduces 
distortions in the encoding–decoding process — such as adding a 
monocle to the Monopoly Man (Fig. 1d). This explanation aligns with 
gist-based distortions and with early theories of memory distortions 
that attributed similar errors to the influence of pre-existing knowl-
edge structures (memory schemas)10. Although classical compression 
algorithms produce qualitatively different memory distortions from 
human memory (Fig. 1e), advances in machine learning — particularly 
in applying deep generative models25–27 to compression28–30 — have 
enabled models based on rate–distortion theory to capture memory 
phenomena in complex domains, such as human drawings, text and 
natural images11,12,31. These findings have been used to demonstrate 

Box 1 | Rate–distortion theory and human memory
 

Although rate–distortion theory provides an appealing framework 
for human memory126,127, investigations of their alignment have been 
hampered by the difficulty of learning accurate generative models 
of naturalistic stimuli. Thus, engineered compression algorithms 
typically produce compression artefacts or ‘memory distortions’ 
that are qualitatively different from what is observed in human 
experiments. Modern machine learning methods, and in particular 
the application of deep generative models25–27 such as variational 
autoencoders for compression28–30, have drastically changed this 
picture. Variational autoencoders have enabled models of memory 
dynamics based on rate–distortion theory that are directly applicable 
in complex naturalistic domains, such as human drawings, text and 
even natural images11,12,31.

Generative models, such as variational autoencoders, can learn 
to generate new stimuli consistent with their training data, often by 
‘encoding’ the stimuli into a latent representation and then ‘decoding’ 
it to produce a (typically imperfect) reconstruction of the original 
stimulus. Intuitively, this process resembles the encoding and 
decoding of a memory trace. Indeed, variational autoencoders —  
specifically, an extended version called a beta-variational 
autoencoder26 — can be interpreted as an approximate implementation  
of rate–distortion theory26,28,29. These autoencoders can also be 
considered an analogue to the internal generative model in the 
brain, either couched explicitly in the normative framework of 
rate–distortion theory11,12 or relying on a qualitative match to human 
data13,14,32. Altogether, rate–distortion theory provides three principles 
for memory, which we detail here: prior knowledge, capacity limits 
and task dependency.

The most straightforward application of rate–distortion theory 
in the context of human memory concerns the influence of prior 
knowledge on recall. If a learned model of environmental regularities 
provides the basis for an efficient encoding of memory traces,  
it follows that domain experts have more accurate recall than do 
novices, as they have a more accurate model of the domain. However, 
this benefit for domain experts holds only for model-congruent 
stimuli. This pattern has been demonstrated in studies of memory 
for synthetic words128 and chess configurations11,129. Using a learned 
generative model for compressing experiences accounts not just 
for varying accuracy of recall with expertise, but also the kinds 
of error introduced. The process of encoding a stimulus can be 
seen as interpreting it in terms of the internal variables of the 

generative model; this high-level interpretation constitutes the 
‘gist’. When specific details of an experience are discarded from the 
memory trace, they are generated from the latent representation 
of the model. The resulting distortions, such as the appearance 
of a monocle on the Monopoly man5, are known in the memory 
literature as gist-based distortions1,6,8. A well known example is the 
Deese–Roediger–McDermott effect96, in which recalling lists of 
semantically related words often leads to the recall of a strongly 
related but non-presented item with nearly the same probability as 
presented items. Approaches based on rate–distortion theory using 
variational autoencoders to learn a generative model of natural 
language have been used to show that the intrusion of non-presented 
items can be explained by reconstructing the word list from the latent 
representation of the model. The influence of gist-based distortions 
also implies that when the interpretations of ambiguous stimuli are 
manipulated (such as via contextual cues), both recall accuracy and 
the nature of distortions should be affected97, and this effect can also 
be reproduced using rate–distortion theory11,14.

Rate–distortion theory also naturally accounts for the effect 
of varying resource constraints. Theoretical analyses of memory 
suggest that the likelihood of a piece of information being needed 
decreases with time130–132. Consistent with this pattern, human 
forgetting curves seem to be adapted to such declining need 
probabilities131,132, with recalled stimuli showing increased gist-based 
distortions as a function of delay before recall133–135. In rate–distortion 
theory, the amount of resources allocated to a memory trace 
corresponds to the targeted point on the rate–distortion curve 
(Fig. 1c), which also modulates the amount of model-congruent 
distortions in the reconstructed stimuli11,12.

Last, rate–distortion theory also accounts for how memory is 
shaped by task demands and behavioural goals. Human memory 
and perception consistently show sensitivity to the cost of confusing 
stimuli within a given task2,12,136–138. For instance, in category-learning 
tasks, human memory becomes increasingly accurate for features 
that are relevant to the learned category, while accuracy for irrelevant 
features declines12,136 Rate–distortion theory can incorporate these 
factors through the distortion function, for example, by overweighting 
errors related to danger or reward12,136. This degree of freedom in 
rate–distortion theory can also be exploited to optimize for the goal 
of prediction, which can be shown to imply a need for updating 
parameters rather than a precise reconstruction of stimuli139,140.
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that rate–distortion theory can be adapted as a unifying framework 
for parsimoniously explaining how prior knowledge (maintained in 
semantic memory) affects sensory experiences, with characteristic 
patterns of memory distortions11–14,32 (Box 1).

In contrast to semantic memory, which retains general knowledge, 
episodic memory is a different representational format that retains 
traces of specific events and sensory experience in a relatively raw 
form33,34. However, the normative role of episodic memory — specifi-
cally, its tendency to maintain rich details relative to what is directly 
relevant to behavioural objectives — has been the subject of numer-
ous proposals34–40. Work applying rate–distortion theory to memory 
distortions builds on the distinction between memory systems by 
arguing that semantic memory provides the encoding framework for 
the efficient compression of episodes11,13,14.

By describing how pre-existing knowledge affects the encod-
ing and reconstruction of sensory experience, approaches based on 
rate–distortion theory successfully account for a wide variety of mem-
ory distortions and biases11–14,31. However, we argue that rate–distortion 
theory neglects a key challenge for memory: the need to learn and 
update an internal generative model on the basis of continually 
 accumulating experiences.

In this Perspective, we propose an augmented framing of the 
computational problem of memory as iteratively learned compression, 
achieved through the combination of semantic and episodic memory 
systems. We suggest that the relative richness of episodic memories is 
due to their role in supporting the online learning of causal structure 
under resource constraints. We then review the literature on curriculum 
sensitivity in human learning and contrast our predictions with predic-
tions of the complementary learning systems theory37,41, an alternative 
account of the interaction between episodic and semantic memory. 
Next, we turn to the question of what is stored in episodic memory and 
interpret theoretical and empirical results regarding memory prior-
itization and experience replay in the light of our framework. Finally, 
we plot trajectories for future research with a specific focus on how 
the brain might balance the opposing goals of conserving memory 
resources and maintaining an ability to learn.

The computational problem of memory
A fundamental problem with rate–distortion theory as a unifying expla-
nation for human memory is that it assumes a known and unchang-
ing set of environmental regularities, abstracted into an internal 
generative model. In reality, the brain must construct this generative 
model (semantic memory) over a lifetime, adapting it constantly in 
the light of new experiences. Notably, this assumption of known and 
unchanging regularities was later acknowledged as a limitation of the 
efficient coding framework by its originator, who observed that what 
is redundant today is not necessarily what was redundant yesterday20. 
The assumption also leads to misaligned predictions about human 
memory. Because the generative model is assumed to be correct, the 
only available interpretation for surprising aspects of experience is 
that they are the result of coincidence or noise, and unlikely to recur. 
Therefore, these surprising aspects are the first to be forgotten when 
resources are limited. In stark contrast with this prediction, humans 
tend to recall surprising, novel and incongruent information with high 
episodic accuracy42–46.

To address this issue, we propose to consider two additional fac-
tors beyond how to efficiently compress experiences under a known 
generative model. First, the internal generative model needs to be 
learned. Second, the learning of the generative model must proceed 

in an online, iterative manner, in which the model is used for encoding 
the same experiences that also serve as the basis for updating it. These 
constraints present a delicate issue for the compression perspective, 
because while it is optimizing the rate–distortion trade-off, an incorrect 
model discards the very information required for updating it.

To see the inherent challenge in this augmented computational 
problem, consider the following example. Imagine learning how to 
brew good coffee with an unfamiliar machine (such as a stovetop moka 
pot) using trial and error, by figuring out how different variables influ-
ence the taste of the coffee. Each ‘episode’ of brewing a cup (Fig. 2a) 
involves both relevant variables (such as the bean type or quantity) 
and irrelevant variables (such as the weather or background music). In 
this situation, a generative model of coffee brewing could be created 
by observing how the relevant input variables influence the taste of the 
coffee and capturing these relations in the parameters of a generative 
model. According to normative theories of learning, a generative model 
of coffee brewing can be acquired without specifically remembering 
any individual episodes. Rather, all relevant information can be cap-
tured by iteratively updating the parameters of the generative model 
and discarding the raw experiences (Fig. 2b).

Imagine that after many brewing episodes, you have figured out 
a configuration of variables that consistently produces tasty coffee. 
Yet today, it tastes inexplicably terrible. If you had direct access to all 
past episodes, you could readily determine the cause: although all 
features deemed relevant were identical to those during past successes, 
this time the water added to the pot was too cold, causing the coffee 
grounds to burn while the water was heated to a boil. However, because 
initial water temperature was previously considered irrelevant, its value 
in past episodes has been discarded. Therefore, you are surprised and 
have no clear indication of what went wrong or how to adjust for the 
next attempt.

A key property behind the failure of the learning process outlined 
above is that beyond parameter estimation (refining a known parametric 
relationship between known variables), it also features an additional 
problem of structure learning47,48 (Box 2). Structure learning involves 
identifying causal variables in a given environment (for instance, the 
bean type, weather or background music) and how they affect each 
other (for instance, weather might affect mood, but not bean type) 
(Fig. 2c). In terms of compression, a known model structure enables 
highly efficient use of memory resources by only encoding informa-
tion relevant to the parameters and often enables them to be estimated 
online. By contrast, for structure learning, online updates require each 
possible hypothesis to be tracked and updated in parallel. Online track-
ing and updating quickly becomes impractical, as even for a toy prob-
lem with just four variables, there are 543 possible hypotheses about 
the causal structure (and with a single additional variable it becomes 
29,000). Such a combinatorial explosion of the hypothesis space is 
typical for structure-learning problems. This proliferation of structural 
hypotheses means that maintaining the relevant information for each 
candidate structure is as challenging as storing all past episodes directly.

On the one hand, limited human memory resources require expe-
riences to be stored in a compressed format, which is supported by a 
learned generative model of the environment. On the other hand, learn-
ing and maintaining a generative model requires access to details of 
previous episodes that might not have been considered relevant under 
the current model structure. Thus, there must be a balance between 
a combinatorial explosion of structural hypotheses (considering all 
possible model structures) and the risk of discarding key information 
(considering interpretations under only a single structure) (Fig. 2d).
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We propose that the brain uses an approximation that relies on 
the combination of two interlinked memory systems (Fig. 3). Seman-
tic memory builds a generative model that captures environmental 
regularities and facilitates compression. Thanks to computational and 
memory constraints, semantic memory tracks only a single working 
hypothesis about the overarching causal structure of the environment. 
Although our argument can be extended to cases in which multiple 
structural hypotheses are tracked within restricted local domains,  

for simplicity we assume a single hypothesis. We refer to the generative 
model based on this single structural hypothesis, stored in seman-
tic memory, as the semantic model. However, restricting the set of 
tracked hypotheses risks being stuck in a dead end, where information 
that is necessary for further improvement of the semantic model has 
already been selectively discarded (as in the coffee example above). 
Thus, episodic memory retains a relatively raw and uncompressed 
encoding of novel and surprising episodes (episodes most likely to be 
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Fig. 2 | Online structure learning in the coffee-
brewing example. a, Each episode consists of values 
for relevant (left) and irrelevant (right) variables. 
In online learning, the information content of 
irrelevant variables is discarded, preventing learning 
about the regularities governed by them. b, Online 
learning involves parameter adjustments, such as 
how grind setting influences coffee quality. Previous 
data points (light purple) are discarded, with relevant 
information summarized in the model’s parameters 
(green). For simplicity, quality is shown as only a 
function of grind setting. The parameters summarize 
an increasingly large number of observations 
(compare the 3rd and 7th attempts); at each point 
in time, only the parameters and the current 
observation (dark purple) are available for making 
decisions. c, In structure learning, qualitatively 
different hypotheses are evaluated using a measure of 
congruence with observations (model evidence). Each 
hypothesis determines the set of relevant variables. 
The hypothesis with the highest evidence (red bar) is 
selected as the basis for relevance judgements, while 
alternative structures (grey bars) are not tracked. 
d, During online model updates, only the information 
from relevant variables is retained, whereas irrelevant 
information is discarded. This process carries the  
risk of misclassifying a relevant variable as irrelevant, 
potentially leading to the systematic loss of information 
that is essential for future model updates.
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misinterpreted under the current hypothesis), offering some insurance 
against an incorrect structural hypothesis.

This proposed integration of semantic and episodic memory 
solves the dual theoretical problems of learning to remember (building 
a semantic model that enables compression) and remembering to learn 
(storing relevant episodes for future model updates). It also explains a 
range of empirical findings about human behaviour, including memory 
distortions and curriculum effects in learning.

Learning to remember
The efficient allocation of memory resources necessitates the con-
struction and continual updating of a generative model of the environ-
ment based on observations, which we posit to be the role of semantic 
memory. Owing to the unknown causal structure of the environment, 
the hypothesis space available for such a model is vast and difficult to 
navigate, making approximations necessary. An often-used method for 
approximate structure learning is to track a selected set of hypotheses 
instead of the full distribution, known as Monte Carlo sampling49–52. 
Converging evidence from multiple learning paradigms suggests that 
the brain might also be limited to tracking a restricted set or even a 

single structural hypothesis49,53–55. A proposal has likened this learning 
process to the metaphor of Neurath’s ship53, originally introduced in 
the philosophy of science56,57 to illustrate the gradual and continuous 
development of scientific theories. The Neurath’s ship metaphor likens 
theorists to sailors attempting to reconstruct a ship while sailing on it, 
gradually replacing pieces of the ship but never wholly starting afresh 
(given that then the ship would sink).

Applied to the brain, the ship in the metaphor represents an indi-
vidual’s evolving understanding of the structure of the world in their 
semantic memory. In our proposal, semantic memory maintains a 
dynamic and evolving structural hypothesis that informs perception 
and decision-making. Neurath’s metaphor underscores the locality of 
the changes made to the ship, reflecting the idea that updates to the 
brain’s model of the world are not wholesale replacements but rather 
incremental modifications. Local changes to the model structure 
can therefore be made without compromising its ability to function 
effectively within its environment (Fig. 4a).

According to our compression perspective, the ship represents 
a single structural hypothesis in semantic memory, determining how 
new experiences are interpreted and therefore what information is 

Box 2 | Structure learning and Neurath’s ship
 

Structure learning refers to a class of learning problems in which 
competing models differ not only in the precise numerical values of 
model parameters (parameter estimation), but also in the number of 
parameters, choice of variables, forms of relationships, or even the 
fundamental building blocks used to specify the model. Normative 
theories of structure learning often decompose learning problems 
into determining the high-level structure of the model (the structural 
hypothesis) and fine-tuning the parameters while keeping the 
structure fixed141,142. Some approaches further distinguish between 
structure and form, where form refers to the general class of graph 
(such as tree or grid) and structure defines the exact set of edges 
and nodes. A change in structure means a local modification (such 
as adding or removing an edge), whereas a transition in the form of 
the model is a rare but fundamental shift, such as a child deciding 
to organize animal species into a tree structure rather than separate 
clusters47. For simplicity, we use ‘structure learning’ here in the 
broader sense, encompassing both structure and form.

Two properties of structure learning make it fundamentally more 
challenging than parameter estimation. First, structure-learning 
problems are often defined by specifying primitive components 
along with rules for their composition (for instance, causal graphs 
are constructed from nodes and directed edges). These composition 
rules are typically open-ended, enabling arbitrarily complex 
structures to be ‘grown’ over the course of learning143. Although 
compositionality enables such models to construct genuinely 
novel explanations, it also results in inconceivably vast hypothesis 
spaces144,145. Second, navigating hypothesis spaces is quite difficult. 
To illustrate, imagine a ‘learning landscape’, with the horizon spanned 
by possible configurations of the model, and the height of the terrain 
defined by the goodness of fit for that configuration (as in Fig. 3c). 
In parameter estimation, this landscape is typically smooth and 
continuous, with small changes in parameters resulting in small 
changes in model predictions. However, in structure learning, the 
possible configurations are typically discrete, and neighbouring 

points can sometimes correspond to dramatically different 
predictions, making the terrain rugged and treacherous113.

The Neurath’s ship analogy was originally proposed in the context 
of difficulties encountered in revising scientific theories. However, 
these difficulties mirror those encountered during learning, making 
the Neurath’s ship analogy applicable to this context as well53. The 
iterative rebuilding of Neurath’s ship can be precisely formalized 
as a specific type of approximate structure learning within the 
framework of hierarchical Bayesian inference. The Bayesian solution 
for uncertainty involves keeping track of all possibilities, summarizing 
them in the posterior distribution. Ideally, hierarchical Bayesian 
inference prescribes computing the posterior distribution over all 
structural hypotheses, updating them in parallel with incoming 
observations. In practice, Monte Carlo approximations are usually 
used, in which on the highest levels of the hierarchy, only a restricted 
set of hypotheses are tracked (or even just a single one). Maintaining 
the posteriors over parameters for this restricted set is much less 
resource-intensive than maintaining the full set. In this class of Monte 
Carlo algorithms, the process for updating the model structure is 
encoded in the proposal distribution, which specifies what alternative 
hypotheses can be considered in a single update for each hypothesis. 
Following Neurath’s ship, this proposal distribution favours local 
changes, for example, allowing the addition or removal of only a 
single causal edge.

Causal learning is a prototypical example of structure learning53. 
However, structure-learning problems are ubiquitous in natural 
environments, encompassing contextual learning50, the identification 
of underlying structural forms within data47, and learning visual111,146,147 
or abstract concepts61,64,110,112,113,145,148. Structure learning has also 
been implicated in event segmentation101–105, in which the temporal 
structure of visual or auditory information stream needs to be 
discovered84,85,149. At the most general level, the composable building 
blocks for theories can define components of a programming 
language, making learning akin to program induction110–113.
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retained. In an experimental setting, a participant forms this structural 
hypothesis on the basis of earlier observations. If they succeed in dis-
covering the correct structure, then further congruent observations 
can be integrated quickly and efficiently46,58,59, with semantic memory 
determining which aspects of the observations are safe to discard. 
However, an incorrect structural hypothesis can lead to two key failure 
modes in learning: first, it can compromise the interpretation of future 
observations, leading to erroneous parameter updates. Second, even if 
the participant realises that their hypothesis is flawed, alternatives are 
evaluated on the basis of past data, which were compressed on the basis 
of an incorrect hypothesis. Consequently, supporting evidence for the 
correct structure might have been mistaken for noise and systemati-
cally discarded, leaving the learner stranded in a dead-end hypothesis. 
This entanglement of learning and compression in the Neurath’s ship 
approximation leads to a distinct sensitivity to the order in which 
stimuli are encountered, generally referred to as curriculum effects. 
These effects include primacy effects in which stimuli experienced 
early in an experiment determine the influence of what is experienced 
laterl39,60,61 Such effects have been observed in human behaviour using 
tasks such as reward learning62,63 and causal learning64,65.

These human learning patterns diverge from the learning dynam-
ics that are characteristic of alternative accounts of semantic learn-
ing using artificial neural networks. Artificial neural networks also 
display robust curriculum effects, but often in an opposite pattern to 
what humans tend to exhibit. For instance, in one study humans and 
artificial neural networks were given the same context-dependent 
decision-making task62 (Fig. 4b). When artificial neural networks were 
presented with different tasks or learning contexts in a blocked man-
ner, the different blocks tended to overwrite one another and result in 
poor performance, a well studied phenomenon known as ‘catastrophic 
forgetting’66,67. But when the training data were interleaved, artificial 
neural networks could learn reliably68. In contrast to artificial neural 
networks, humans performed better in blocked settings and were 
hindered by interleaved curricula, with a stronger effect as the complex-
ity of the task was increased (more features for each context). Other 
empirical studies have also found similar effects of blocked curricula 
leading to better performance for humans in tasks with structural 
uncertainty63,65,69. We note that some studies on human learning have 
also found benefits to interleaved curricula in different settings, espe-
cially when generalization between stimuli was beneficial to the per-
formance of the task70, or in discrimination tasks where the immediate 
juxtaposition of exemplars from different classes seems to highlight 
the differences between them71–73.

Complementary learning systems theory37,41, one of the most 
influential proposals for why an episodic memory system is required, 
was concerned with exactly the challenge of mitigating catastrophic 
forgetting. Complementary learning systems theory views the acqui-
sition of the semantic model as the gradual updating of an artificial 
neural network, integrating information across multiple experiences 
over time. According to this view, the utility of episodic memory is that 
interleaving older episodes with current observations protects older 
knowledge from being overwritten.

From the perspective of online structure learning, blocked data is 
ideal because consecutive trials from a single context enable the learner 
to focus on a subset of the complete structure39,61,65, creating a more 
manageable hypothesis space to be searched. Once the structure has 
been discovered, semantic memory can be used to efficiently compress 
further observations from the same context, enabling the learner to 
fine-tune the parameters. This situation is similar to the coffee example 

described above. By contrast, with interleaved training, the initial 
hypothesis space to be considered is much larger, making it difficult 
to form an initial hypothesis. Furthermore, without the interpretative 
structure provided by an effective hypothesis, the useful informa-
tion in the observations cannot be selectively retained, preventing 
the accumulation of evidence for the correct structure. One possible 
outcome of this situation is that certain learners might fail to retain 
the context accurately or arrive at an overly simplified structure that 
merges the contexts together. In complementary learning systems, 
semantic memory relies on interleaved training, with episodic memory 
mitigating the adverse effects of blocking. By contrast, our approach 
suggests that semantic memory learns most effectively under blocked 
training, whereas episodic memory is essential for counteracting the 
failure modes caused by interleaved training.

A more direct connection between curriculum dependence in 
human learning and the problem of structure discovery was established 
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probabilistic generative model over experiences. b, Semantic memory facilitates 
the efficient compression of episodic memories by providing the statistical model 
required for compression. c, The iterative refinement of the model through learning 
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format in episodic memory, to preserve them for later re-evaluation if the current 
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in a study that used blocked curricula and manipulated the contents 
of the blocks64. Participants learned a causal relationship between 
the features of a ‘magic egg’ and the length of a ‘stick’ (Fig. 4c). Under 
the ‘construct’ curriculum, the first block contained only examples 
with one feature present (either stripes or spots), whereas the second 
block introduced the second feature. By contrast, the ‘deconstruct’ 
curriculum presented both features in the first block (a more challeng-
ing structure inference problem). Participants were allowed to revisit 
previous examples within the same block, mitigating the demands on 
their memory. More participants discovered the correct structure — 
here conceptualized as a program74,75 — under the construct curriculum 
than under the deconstruct curriculum. In the construct curriculum, 
a correct partial rule (incorporating only one feature) could be easily 
inferred from the first block and then extended to incorporate the 
second feature. By contrast, the reversed order in the deconstruct 
curriculum made the initial hypothesis space much more complex. 

Although the simpler second block allowed a substantial proportion 
of participants to identify the correct structural primitive (the rule that 
the number of stripes has a multiplicative effect on the length of the 
stick), they were unable to retrospectively apply this knowledge to the 
observations from the first block, consistent with the hypothesis that 
they were unable to effectively compress its information content owing 
to the lack of a suitable interpretative structure.

In summary, we argue that efficient compression requires the 
brain to iteratively construct a generative model of the environment 
in semantic memory while simultaneously applying the same model to 
compress observations. We propose that the brain relies on an approxi-
mate solution to this problem of online structure learning, which leads 
to a characteristic path-dependence in learning: the ability to compress 
is critically reliant on the success of structure discovery. The resulting 
curriculum effects align with empirical data, but contrast with the 
dynamics observed in artificial neural networks. A key insight of our 
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framework is that online structure learning via approximate inference 
implies a trade-off between efficient compression and robust structure 
learning. Efficient compression involves using semantic memory to 
discard irrelevant information, whereas learning the underlying struc-
ture requires seemingly irrelevant aspects of experience to be retained 
in episodic memory in order to evaluate alternative hypotheses. Next, 
we focus on this latter component of our proposed framework, explor-
ing how episodic memory can support the acquisition of semantic 
knowledge.

Remembering to learn
In this section, we explore the use of memory to create rich reconstruc-
tions of prior experience, including idiosyncratic and potentially irrel-
evant details. Our framework is based on the insight that to mitigate 
the failure modes of semantic learning that occur when the current 
structural hypothesis is flawed, the only generally applicable method 
is to retain information that might seem irrelevant in the context of the 
current hypothesis but is relevant for evaluating potential alternatives. 
Thus, the ability to remember is crucial to ensure that future learning 
remains possible.

In our coffee-making example, the omission of water temperature 
from the set of relevant variables meant that it was unclear how to 
update the model after an unexpectedly poor outcome. If that episode 
were encoded in episodic memory, it might include details that are 
irrelevant in the context of the current structural hypothesis, such 
as the water being drawn from a cold tap. A subsequent episode in 
which the water comes from a preheated kettle and produces a much 
better-tasting result could retrospectively reveal that water tempera-
ture is a relevant contextual variable. More generally, we posit that 
learners preserve experiences in a detail-rich and relatively unrefined 
format, which enables them to make greater overhauls to model struc-
ture. Extending the Neurath’s ship metaphor from the last section, we 
refer to this aspect of memory as an ‘episodic life raft’ (Fig. 5a).

The results of a simple category-learning task demonstrate the 
value of an episodic life raft39. In this study, artificial learners had to 
iteratively learn categories through sequential observations, akin 
to discovering the species of unknown animals on the basis solely of 
their visible features (unsupervised clustering, Fig. 5a). In this context, 
structure learning requires the learner to determine the number of 
categories, whereas parameter estimation requires the feature dis-
tributions to be refined for each category (Fig. 5b). The study found 
that a semantic-only learner, who uses the Neurath’s ship approxima-
tion to iteratively update the structure estimate and parameters of its 
semantic model but retains no explicit representation of individual 
episodes, often failed at the structure-learning task. Specifically, the 
semantic-only learner tended to systematically underestimate the 
number of categories, unless the observations were carefully ordered 
(using a blocked curricula). However, a learner with semantic and 
episodic memory, even with severely limited episodic capacity, had 
greatly improved structure learning (Fig. 5c). The learner’s episodic 
memory stored a small subset of past experiences that could be 
replayed when considering alternative structures, augmenting the 
information contained in the parameters of the current hypothesis. 
This replay process can be viewed as an analogue to replay for memory 
consolidation76, in which episodic memories are integrated with the 
knowledge  maintained in semantic memory.

Although an episodic life raft is clearly advantageous for structure 
learning, episodic memory is a costly memory format. The cost of 
episodic memory stems from the very source of its utility: retaining 

idiosyncratic details is expensive. This trade-off between the cost of 
memory and the benefit to learning raises the question of where to 
allocate scarce resources and which episodes to prioritize remember-
ing. To answer this question, we first consider a simplified context in 
which the only storage limitation is on the number of episodes that can 
be stored, but each episode can be recalled perfectly.

Consistent with the reasoning that episodic memory needs to be 
applied selectively because of its cost, simulated learners with limited 
episodic memory capacity performed better in online structure learn-
ing when they selectively prioritized experiences with high Bayesian 
surprise77–79, compared to learners that applied the same capacity 
indiscriminately39 (Fig. 5c). This approach is similar to earlier proposals 
in category learning that added exceptions to general rules, sharing 
the need to store anomalous events80,81. An advantage of Bayesian 
surprise is that it distinguishes between mere noise and surprise that 
warrants model change77,82, although alternative formalizations of 
surprise or novelty could be explored in the future83. Surprise can also 
signal environmental change and underlie the detection of new types 
of event, thus contributing to event segmentation84,85.

The idea that incongruent and novel information is selectively 
prioritized in memory has a long history in psychology45 and is sup-
ported by extensive empirical findings42–44,46,86. Similarly, in neuro-
science, the idea that the hippocampal formation (associated with 
episodic memory) retains novel information has been extensively 
explored46, particularly in the context of experience replay and memory 
consolidation38,41,87,88.

The question of how episodes should be prioritized is typically 
referred to as prioritized replay41,88,89. However, because constraints on 
memory resources are not a primary concern in these approaches, pri-
oritization refers not to which episodes should be retained, but to how 
frequently they should be replayed. (We note that in the limit, lowering 
the probability of replaying an episode corresponds to discarding it.) 
Prioritizing episodes according to their associated reward prediction 
error has been instrumental in machine learning advances such as 
achieving human-level performance in Atari games via reinforcement 
learning89–91. Consistent with the idea of prioritizing novel information, 
it has been argued that the utility of retaining episodes in the reinforce-
ment learning setting is greatest in the early stages of encountering a 
novel environment, before a sufficiently accurate semantic model can 
be established35,92,93. However, this argument emphasizes the direct 
utility of episodes for decision-making, instead of their potential role 
in supporting the construction of a semantic model.

We now turn to more realistic scenarios in which memory 
resources are more limited and episodes cannot be recalled per-
fectly. The rate–distortion theory perspective suggests that memory 
resources can be decreased if episodes are compressed lossily, with 
missing details filled in by a generative model that is maintained in 
semantic memory (Box 1). Generative replay — replaying what are 
essentially compressed episodes during the training of artificial 
neural networks — has been shown to place much lower demands on 
memory resources compared to exact replay (replaying episodes 
without any loss of detail) while still protecting against catastrophic 
forgetting94,95.

Although compressing episodes using semantic memory enables 
substantial savings in memory resources relative to the verbatim stor-
age required for exact replay95, it seems to be directly at odds with our 
proposed role for episodic memory. If episodes are stored to preserve 
seemingly irrelevant details for later reinterpretation in case the cur-
rent model is incorrect, it is unclear how the current model can be relied 
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upon to compress these experiences. A key insight of rate–distortion 
theory might be crucial in resolving this tension: episodes can be 
compressed at varying levels of detail, reflecting different trade-offs 
between allocated resources (rate) and distortion. Rather than a binary 
choice between storing an exact copy of an event in episodic memory 
or merely updating the model’s parameters, this structure suggests 
the possibility of a variable-rate encoding, with a continuum of choices 
regarding the desired fidelity of the reconstruction.

We propose that variable-rate encoding of sensory experience 
underlies the brain’s ability to balance the competing goals of con-
serving resources and maintaining robustness to novelty (Box 3). Spe-
cifically, we suggest that the rate of encoding — or equivalently, the 

desired accuracy of recall — should be determined by a measure of sur-
prise or novelty associated with each observation (Fig. 5d). Under this 
approach, most experiences would leave a trace in episodic memory, 
but well predicted episodes would be stored in a highly compressed 
form and surprising ones would be less compressed. The high compres-
sion of well predicted episodes would make them prone to increasing 
degrees of gist-like distortion, as demonstrated in previous work on 
human memory11,12. However, when semantic memory has lower con-
fidence in its interpretation, owing either to violated predictions or 
novel situations, additional memory resources could be allocated to 
encode an episode with less compression and therefore result in more 
accurate recall of episodic details. This mechanism could prioritize 
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hypotheses about the number of classes can be compatible with the data but 
the space of possible hypotheses needs to be navigated on the basis of a single 
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an episodic memory that retains raw past experiences either selectively  
(dark yellow) or non-selectively (light yellow) according to the degree of surprise 
under the current hypothesis. d, Variable-rate encoding entails increasing the 
resources dedicated to encoding surprising experiences to make recall more 
accurate for these episodes than for predicted episodes. Using surprise to 
define the rate of encoding couples the priority of an episode to the level of 
detail generated by the model. e, Variable-rate encoding for the coffee example: 
prioritized replay modulates which episodes (rows) are stored and replayed, 
whereas generative replay modulates which variables (columns) are encoded. 
Variable-rate encoding combines these approaches, enabling more variable 
values to be accurately recovered from surprising than from predicted episodes. 
Part b adapted with permission from ref. 125, Elsevier. Part c is adapted from 
ref. 39, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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information in episodes in a graded fashion and explain why surprising 
experiences are often recalled with more episodic detail than expected 
ones42–44,46,78,86.

Altogether, our proposal provides a computational account of 
memory distortions through the interaction between episodic and 
semantic memory. However, the impact of variable-rate compression 

on episodic memory’s ability to prevent structure-learning failures 
remains theoretically unexplored and awaits empirical validation.

Conclusion
Human memory is prone to systematic biases and distortions, which 
are widely interpreted as reflections of both its adaptive function and 

Box 3 | Implementation of variable-rate compression in the brain
 

The idea of variable-rate encoding integrates 
both components of our proposed framework 
for the interactions of the semantic and 
episodic memory systems (Fig. 3b,c). 
Sensory experience is compressed via 
semantic memory, producing episodic 
memory traces with model-congruent 
distortions. This compression increases 
the effective capacity of episodic memory, 
but might also hinder its proposed role in 
retaining seemingly irrelevant details that 
are crucial for structure learning. The role of 
the variable-rate mechanism is to enable the 
system to selectively retain precise details 
when surprise or novelty suggests that the 
compression model might be unreliable.

Two key challenges stand out when we 
attempt to bridge the computations that 
implement variable-rate compression with 
a neural implementation in the brain. First, 
although rate–distortion theory enables 
encoding at multiple compression levels 
(Fig. 1c), each level relies on a distinct 
encoder–decoder pair optimized for a 
specific rate–distortion trade-off. This 
requirement for separate encoder–decoder 
pairs implies the maintenance of multiple 
semantic models in parallel, contradicting 
the principle behind Neurath’s ship. 
Second, rate–distortion theory provides no 
mechanism for converting from detailed 
to more-compressed memory traces after 
the initial encoding (varying resource 
constraints; Box 1).

Multiple machine learning approaches have been proposed 
to achieve variable-rate compression while avoiding multiple 
encoder–decoder pairs150–152. A promising idea for how the 
brain might implement variable-rate compression is through a 
hierarchical generative model153–156, with layers deeper in hierarchy 
corresponding to progressively stronger levels of compression 
(figure panel a). Similar to these models, the human visual cortex 
is thought to represent sensory information hierarchically: early 
layers respond to basic features such as edges, intermediate layers 
detect textures and deeper layers integrate these features into 
representations of objects and scenes157–159. Hierarchical models offer 
a straightforward way to reduce memory capacity by selectively 
discarding information over time, starting with lower-level details 
(figure panel b). An intriguing possibility is to associate certain layers 

of the cortical hierarchy with layers of variables in the generative 
model. Retaining a subset of these activations in hippocampal 
regions and reinstating them in the relevant cortical layers during 
recall has been proposed as a mechanism for memory storage  
and retrieval160. Memory resources could then be reduced by 
sequentially discarding the activations of increasingly deep layers  
in the memory trace, such that traces with more episodic details  
rely on earlier layers of the sensory hierarchy. Similar hypotheses 
have been proposed in the context of the visual hierarchy14,32,161,162, 
and behavioural evidence suggests that this framework might extend 
to other modalities as well163.

Box 3 figure part a is adapted with permission from ref. 5, Sage. 
Box 3 figure part b is adapted from the Flickr-Faces-HQ Dataset 
(FFHQ)-256 dataset (https://github.com/NVlabs/ffhq-dataset)164, 
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

a Variable-rate compression via hierarchy

b Example of hierarchical compression

High-level
features

Stimulus

L39 L33 L27 L21 L13 L10 L7 L4 L3

Sensory
features

Rate

Stimulus

D
is

to
rt

io
n

Rate

Recall

Recall

D
is

to
rt

io
n

High rate
verbatim-like

Low rate
gist-like

http://www.nature.com/nrpsychol
https://github.com/NVlabs/ffhq-dataset
https://creativecommons.org/licenses/by/4.0/


Nature Reviews Psychology

Perspective

inherent resource constraints; memory is shaped by the need to inter-
pret and learn from experience. However, this setup raises the dual chal-
lenge of retaining useful information while learning how to decide what 
is useful. We have argued that, in its current form, rate–distortion the-
ory falls short as a normative framework for human memory. Although 
approaches based on rate–distortion theory offer a normative solution 
for the first piece of the puzzle — how episodes might be compressed 
using a semantic model — they overlook how semantic knowledge is 
acquired in the first place, from the same experiences that the model 
interprets and compresses. We have highlighte how this omission 
results in qualitative discrepancies from the empirical phenomena of 
human memory and argued that addressing these phenomena requires 
us to rethink the fundamental assumptions of rate–distortion theory.

Thus, we have proposed a revised normative framework in which 
semantic memory tracks a limited approximation of the environmental 
structure. In this framework, the online construction and updating of 
the semantic model is analogous to how Neurath’s ship is rebuilt at sea. 
However, because interpreting observations under a single structural 
hypothesis can result in systematic loss of essential information, we 
argue for recruiting additional episodic memory resources to encode 
novel and surprising observations in a relatively uncompressed format. 
Thus, episodic memory serves as a life raft while rebuilding the ship of 
semantic memory.

Ultimately, our perspective on the interplay between episodic 
and semantic memory systems offers a parsimonious explanation 
for a wide range of phenomena in human learning and memory, while 
also providing insights into several ongoing challenges in the field. By 
accounting for the role of episodic memory in safeguarding against 
learning the wrong semantic model, we arrive at a normative expla-
nation for why surprising stimuli are often remembered with higher 
fidelity than familiar or expected stimuli. By contrast, our framework 
predicts typical rate–distortion-theory-like distortions for experiences 
that are congruent with the current structural hypothesis.

A key focus of our Perspective covers the consequences of an 
evolving semantic model for memory distortions. The standard 
rate–distortion-theory approach has served as a unifying framework 
for classical gist-based memory distortions, such as intrusions of 
semantically related items96 or label-consistent distortions in memory97 
for sketches11,14. However, if we allow the compression model to evolve 
over time, updates driven by new observations will influence the encod-
ing of subsequent ones — which is the defining property of curriculum 
effects. Conversely, updating the model after a new experience (such 
as in post-event misinformation98 or hindsight bias99) changes the 
decoder and therefore alters how past experiences are reconstructed23, 
potentially also explaining associative memory errors100.

In the study of both human and machine learning, stimuli are 
typically presented in randomized fashion, with simple or non-existent 
dependencies between trials. This presentation order has clear ben-
efits for eliminating experimental confounds. However, it stands 
in stark contrast with the rich, multi-scale sequential structure 
that characterizes natural environments. Here we have focused on 
coarse-grained structure, neglecting the temporal breadth of epi-
sodes, and consequently the issue of how to segment continuous 
sensory inputs84,85,101–105. This fine-grained temporal structure and 
its interactions with structure learning are likely to be important in a 
more nuanced understanding of curriculum effects106, and an integra-
tion of these approaches might explain a larger variety of curriculum 
effects71–73 under a unified framework. A more refined understand-
ing of path-dependencies in learning — also crucial for educational 

applications107–109 — will require improved theories about how semantic 
knowledge is represented and organized. One intriguing approach is 
to view semantic memory as a library of concepts, often formalized in 
a program-induction framework110–112, in which a goal of curriculum 
design is to induce widely applicable and composable conceptual 
modules that further learning can build on61,64,113.

Although it is absent from existing rate–distortion theory 
accounts, emotional salience is empirically one of the strongest factors 
influencing memory114–117. Our framework offers two promising ways 
in which to consider this factor. First, emotionally relevant aspects of 
experience could be prioritized by the rate–distortion-theory distor-
tion function. This prioritization aligns with how rewards have been inte-
grated with generative models in reinforcement-learning contexts118,119, 
with emotions mediating reward-related computations120. Second, 
we propose that novelty and surprise determine resource allocation 
in variable-rate encoding. Because emotional salience is indicative of 
whether the episode is expected to be retrieved in the future121, high 
salience implies an increased rate of encoding. Accordingly, traumatic 
experiences might be understood as an extreme case of encoding pri-
marily uninterpreted sensory features, which aligns with qualitative 
properties of post-traumatic stress disorder122,123. More broadly, the 
combination of Neurath’s ship with the episodic life raft might prove 
fertile ground for a deeper, computational understanding of traumatic 
events in memory and their long-term effects on development.

Although our Perspective focuses on how the combination of 
episodic and semantic memory support learning an effective model of 
the environment, these are unlikely to be the only learning systems an 
intelligent agent needs41, just as there are multiple memory systems1. 
Rate–distortion theory helps to illuminate some of these differences12, 
but additional computational considerations — such as trade-offs in 
computational cost35,61 and the path-dependent co-evolution of these 
systems124 — are also likely to have a crucial role.
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