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Abstract
Animal work has shown that neural representations of a
spatial cognitive map are affected by reward. Here we
ask how non-spatial cognitive maps in humans are af-
fected by reward. Sixteen participants performed two ses-
sions of a perceptual discrimination task, before and af-
ter extensive reward learning. To identify changes in per-
ceptual cognitive maps post reward learning we used a
computational approach of participants behavior inspired
by Maximum Likelihood Difference Scaling models. This
showed that reward learning increased the spacing be-
tween stimuli in the rewarding area, akin to increased per-
ceptual discrimination. These results indicate that reward
affects non-spatial cognitive maps and suggest accompa-
nying neural changes.
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Introduction
Animals and humans maintain a cognitive map of the environ-
ment through a set of medio-temporal and medio-prefrontal
representations, including hippocampal place cells and en-
torhinal grid cells (O’Keefe & Dostrovsky, 1971; Moser, Kropff,
& Moser, 2008; Doeller, Barry, & Burgess, 2010). Collectively,
these cell types are seen as a coordinate system for spatial
as well as non-spatial navigation (Constantinescu, O’Reilly, &
Behrens, 2016; Kaplan, Schuck, & Doeller, 2017; Sharpe et
al., 2019; Theves, Fernandez, & Doeller, 2019).

Animal studies have found that activity of place and grid
cells might adapt to changes in the environment and be in-
fluenced by reward locations. Place cells can conditionally
respond only in a certain context, a larger number of place
cells represent areas around reward versus non-reward lo-
cations, and grid cells change in firing rate and location too
(Moita, Rosis, Zhou, LeDoux, & Blair, 2003; Dupret, O’neill,
Pleydell-Bouverie, & Csicsvari, 2010; Boccara, Nardin, Stella,
O’Neill, & Csicsvari, 2019; Sosa & Giocomo, 2021). Here we
ask whether such changes occur in humans performing a non-
spatial task, and how they affect behavior.

The goal of our study was therefore to investigate how re-
ward learning morphs abstract cognitive maps by measuring
perceived similarities of non-spatial stimuli.

Methods
Participants (N = 16) performed four sessions across two
days. The 1st session consisted of a perceptual discrimina-
tion task (PRE-session, Fig. 1a). On each trial, first a target
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Figure 1: Task design. a) Perceptual discrimination task (1st
and 4th sessions). On each trial, participants selected which
of two reference trees (A, B) was more similar to a target tree
(T). b) We hypothesize an underlying cognitive map, where
each tree can be mapped by the number of leaves (x-axis)
and number of fruits (y-axis). c) In the 2nd and 3rd sessions
participants learned to associate a specific region (marked as
R in b) in the perceptual space with reward through trial and
error in a two forced choice task. They were asked to select
one of two trees, and received feedback in the form of reward.

tree was presented, followed by two reference trees, and par-
ticipants judged which of the two reference trees was more
similar to the previously presented target. Trees were char-
acterized by their number of leaves and fruits, such that each
tree can be conceptualized as a particular point in a leaf/fruit
space (Fig. 1b). Afterwards, participants performed two ses-
sions where they learned through trial and error in a two forced
choice task to associate a specific location in the perceptual
space with reward, i.e. some fruit/leaf proportions were re-
warded while others were not (akin to introducing a reward to
a location in the cognitive map, Fig. 1c). Participants were
exposed equally to the entire map during reward learning,
preventing over-exposure to the rewarding area. In the fi-
nal POST session, participants repeated the initial discrimina-
tion task. Our main question is thus how the reward learning
changed behavior in the POST compared to the PRE session.
We acquired fMRI during all sessions.

Results
We fitted perceptual models to participants’ choices to capture
the subjective perceptual distance between trees, separately
for the PRE and POST sessions. Specifically, we fitted a lo-
gistic regression in a two-step manner. Inspired by Maximum
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Figure 2: Behavioral results, N=16 a) Construction of the cognitive map based on participants’ choices in the PRE (blue) and
POST (orange) sessions. Gray arrows indicate the change between sessions and rewarded area is marked with R. b) Averaged
translation function across participants, separate for leaves (green, x axis in the 2D cognitive map) and fruits (purple, y axis in
the 2D cognitive map) for PRE-session (solid line) compared to POST (dashed line). The x-axis represents the objective space
(the true number of leaves/fruits) and the y-axis the subjective space (the perceived distance). Red vertical lines indicate the
location of the most rewarding tree on each axis in the 2nd and 3rd sessions. c) The slope of the translation function in panel b.
Areas with higher slope indicate increased subjective distance since a change in objective distance results in a bigger change
in subjective distance. d) Comparing the slope of the subjective distance between PRE and POST sessions taken from panel c
reveals an increase in slope for each axis, specifically in the most rewarding area.

Likelihood Difference Scaling (MLDS; Knoblauch & Maloney,
2008), we utilized translation functions using four free pa-
rameters to capture the subjective perceptual distances sepa-
rately for each axis:

fx =
1

1+ e−p1(x−p2)
, fy =

1
1+ e−p3(y−p4)

, (1)

where p1,p2 govern the subject-specific transformation of per-
ceptual distances for leaves (x-axis), while p3,p4 is for fruits
(y-axis).

We then fitted a logistic regression to model participants’
choices as a function of the transformed distance D:

log(
PA

PB
) = β0 +β1D, (2)

where D represents the euclidean distance of tree A to the
target minus the euclidean distance of tree B to the target,
such that higher D indicates that the distance from B to T is
greater than A to T. In other words, D captures evidence for
selecting tree A, because it is more similar to the target. Note
that the locations used to compute D are the fitted locations
from Eq. 1.

Our main question was whether PRE vs POST changes in
participants’ cognitive maps indicate a morph around the lo-
cation of the reward. Since the reward was located in the bot-
tom right corner, we expected that the fitted translation func-
tions indicated a greater slope in the same area. In line with
this idea, we found that the model derived translation func-
tions revealed that trees in the POST-session increased their
distances in the area of the previously experienced reward
(Fig. 2a). Further investigation of the translation functions con-
firmed that the increase in perceived distances appeared on

both axes, as expected (Fig. 2b-d). Note that half the partici-
pants had the rewarding region in the top left region, and re-
sults were flipped accordingly for better visualization of group
effects.

Specifically, based on the fitted parameters, we extracted
the translation function of each subject and each session for
each axes which indicates the transformation from objective
difference in leaves and fruits to the subjective, perceived, dif-
ference. We averaged the translation functions across all sub-
jects, separated for session and axis (Fig. 2b) and examined
the slope of the function (Fig. 2c). Because of the nature of
the translation function, higher slope indicates that a change
in the objective distance results in a higher change in per-
ceived distances. Inspection of the change in slope from PRE
to POST session revealed an increase in slope (i.e. increase
in percieved distances) for each axis, specifically in the area
that was previously rewarded (Fig. 2c, most rewarded area
marked by dashed red line). We formally tested this change
in slope and found that the slope difference of POST minus
PRE, averaged for both axes, was significantly greater than 0
(t15 = 2.04, p = .029).

Conclusions

Our result show that reward learning increased the spacing
between stimuli in the rewarding area. This suggests that the
underlying neural representation of the cognitive map might
change as well, akin to the findings from animal literature on
the influence of reward on representations during spatial nav-
igation.
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Research (BMBF): Tübingen AI Center, FKZ: 01IS18039A
and funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy–EXC2064/1–390727645. CFD’s research is sup-
ported by the Max Planck Society, the European Research
Council (ERC-CoG GEOCOG 724836), the Kavli Foundation,
the Jebsen Foundation, Helse Midt Norge and The Research
Council of Norway (223262/F50; 197467/F50). We thank
Gregor Caregnato for help with participant recruitment, Lydia
Brundisch, Neele Elbersgerd, Sonali Beckmann and Nadine
Taube for help with data acquisition and the Neurocode lab for
support and contributions throughout this project.

References

Boccara, C. N., Nardin, M., Stella, F., O’Neill, J., & Csicsvari,
J. (2019). The entorhinal cognitive map is attracted to goals.
Science, 363(6434), 1443–1447.

Constantinescu, A. O., O’Reilly, J. X., & Behrens, T. E. (2016).
Organizing conceptual knowledge in humans with a gridlike
code. Science, 352(6292), 1464–1468.

Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for
grid cells in a human memory network. Nature, 463(7281),
657–661.

Dupret, D., O’neill, J., Pleydell-Bouverie, B., & Csicsvari, J.
(2010). The reorganization and reactivation of hippocampal
maps predict spatial memory performance. Nature neuro-
science, 13(8), 995–1002.

Kaplan, R., Schuck, N. W., & Doeller, C. F. (2017). The role of
mental maps in decision-making. Trends in Neurosciences,
40(5), 256–259.

Knoblauch, K., & Maloney, L. T. (2008). Mlds: Maximum likeli-
hood difference scaling in r. Journal of Statistical Software,
25, 1–26.

Moita, M. A., Rosis, S., Zhou, Y., LeDoux, J. E., & Blair, H. T.
(2003). Hippocampal place cells acquire location-specific
responses to the conditioned stimulus during auditory fear
conditioning. Neuron, 37 (3), 485–497.

Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place cells, grid
cells, and the brain’s spatial representation system. Annu.
Rev. Neurosci., 31, 69–89.

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a
spatial map: preliminary evidence from unit activity in the
freely-moving rat. Brain research.

Sharpe, M. J., Stalnaker, T., Schuck, N. W., Killcross, S.,
Schoenbaum, G., & Niv, Y. (2019). An integrated model of
action selection: distinct modes of cortical control of striatal
decision making. Annual review of psychology , 70, 53–76.

Sosa, M., & Giocomo, L. M. (2021). Navigating for reward.
Nature Reviews Neuroscience, 22(8), 472–487.

Theves, S., Fernandez, G., & Doeller, C. F. (2019). The hip-
pocampus encodes distances in multidimensional feature
space. Current Biology , 29(7), 1226–1231.


