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Abstract

We investigated how patients with Parkinson’s disease (PD) manage the explore—exploit trade-
off in a structured reward-learning task. Patients were tested either on (N=34) or off (N=34)
dopaminergic medication (levodopa), with age-matched polyneuropathy patients serving as
controls (N=35). Behaviorally, patients off medication showed marked learning and decision-
making deficits, characterized by overexploration and insufficient exploitation. To clarify the
mechanisms underlying these impairments, we applied a computational model that combines
similarity-based generalization with both random and uncertainty-directed exploration. The
modeling results showed that impairments in patients off medication resulted from reduced
generalization and increased uncertainty-directed exploration, but not greater random explo-
ration. In contrast, exploration and generalization in patients on medication were comparable
to the control group. Our findings highlight how dopamine depletion in PD impacts reward
learning under uncertainty, suggesting a key role of dopamine in exploration and generalization.

Keywords: explore-exploit trade-off, Parkinson’s disease, levodopa, dopamine, uncertainty-directed
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Parkinson’s disease (PD) involves degeneration of the dopaminergic system, which is central not
only for motor control but also for learning, decision making, and exploratory behavior [1-6].
The dopamine deficit in PD impairs several aspects of cognitive function, including the ability to
learn from feedback and adapt to changes in reward contingencies [7-9]. While simpler associative
learning mechanisms can be preserved, patients show marked deficits in tasks that require building
and using an internal model of the environment [10]. Dopaminergic medication in the form of
levodopa (L-Dopa) can alleviate these impairments to some degree, especially when learning from
reward feedback [7, 11-13].

Critically, PD also interferes with the ability to navigate the exploration—exploitation trade-off
[14-16], which requires balancing exploring promising novel options and exploiting known high-
reward options. Whether deciding between ordering your favorite dish or trying something new, or
choosing a new travel destination over a familiar favorite—the fundamental challenge is to choose
between what is known to work and discovering something even better [17-19]. Investigating how
PD influences the exploration—exploitation trade-off is therefore important from both a clinical
and theoretical perspective, as it links dopaminergic dysfunction to central mechanisms of learning
and decision making.

An essential paradigm for investigating explore—exploit problems are bandit tasks, in which
participants learn about choice options with uncertain outcomes through trial and error [20-23].
In each trial, learners must choose between the available options, balancing the exploration of new
options with the exploitation of known options. While many tasks in the literature have independent
options where the outcome of one decision does not provide information about other options [24—
28], natural environments are often characterized by structural regularities [29-31]. For instance,
spatially proximate areas often yield similar foraging outcomes [32], and if two dishes share similar
ingredients, trying one helps predict the taste of the other [33]. Such latent regularities can be
utilized to generalize beyond direct experiences and adapt exploratory decisions to environmental
structure [34].

Exploratory behavior can be decomposed into two distinct mechanisms: random exploration
that results from inherent decision noise, and uncertainty-directed exploration, which is driven
by information value [29, 35-37]. As adaptive decision-making under uncertainty requires balanc-
ing both forms of exploration, a central question is how exactly the dopaminergic system shapes
exploratory behavior. For instance, one previous study found that levodopa selectively reduced
uncertainty-directed exploration in healthy participants, while random exploration remained
largely unaffected [26]. Moreover, the influence of valence on information acquisition can be reduced
under levodopa [38]. These findings suggest that dopamine modulates the valuation processes that
govern exploratory decisions. However, the precise role of dopamine in exploratory behavior is still
poorly understood.

Goals and scope

It is well established that patients with PD exhibit pronounced deficits in reinforcement learning,
typically attributed to dopaminergic degeneration[7—13]. To better understand how dopamine and
medication specifically shape exploratory behavior in PD, we used a behavioral paradigm that
captures two critical features of real-life exploration: the abundance of choice options and the
presence of hidden structure that can be leveraged to search efficiently.

To this aim, we tested three groups: PD patients off levodopa medication, PD patients on
levodopa medication, and an unmedicated control group with polyneuropathies (peripheral nerve
damage). By combining behavioral and computational analyses we isolate deficits specific to
dopamine depletion in PD, evaluate the restorative effects of levodopa medication, and assess the
extent to which medicated patients resemble controls.
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Fig. 1 Spatially-correlated multi-armed bandit task and computational model. a. Screenshot from the experiment
where participants selected tiles (options) on a 8 x 8 grid to accumulate rewards. Each participant completed 10
rounds, where in each round a new environments was presented. The first round was a tutorial round and the last
round was a bonus round where participants made predictions for 5 randomly selected tiles after making 15 explore-
exploit choices. In each round, a new environment was used, drawn randomly from a set of 40 environments with the
same level of spatial correlation. Darker shades of red indicate higher rewards. b. Task behavior was modeled using
a Gaussian Process (GP) with Upper Confidence Bound (UCB) sampling. The GP-UCB model combines similarity-
based generalization with mechanisms for uncertainty-directed and random exploration. First, the observed data are
used to fit a Gaussian Process model, which estimates the expected rewards m(x) and associated uncertainty v(x)
for each option (tile), conditional on the observed data. The amount of generalization is determined by parameter A,
the length-scale of the RBF kernel, which in the Gaussian Process determines how quickly reward correlations decay
with spatial distance. Next, options are valued using Upper Confidence Bound (UCB) sampling, which inflates reward
expectations with an uncertainty bonus (3, representing the extent of uncertainty-directed exploration. Finally, UCB
values are passed through a softmax choice rule, with the temperature parameter 7 reflecting the degree of random
exploration. Panel b is reproduced from [37] under the terms of the Creative Commons Attribution 4.0 International
License (CC BY 4.0).

Results

We compared PD patients on and off medication and age-matched controls in their ability to
perform a spatial reward learning task (Table 1). All PD patients (N=68) regularly received
dopaminergic medication (levodopa) for symptomatic treatment and were randomly assigned to be
tested either after taking their regular dose (PD+; N=34) or in a state of dopaminergic depletion
shortly before their next dose (PD—; N=34). The control group consisted of age-matched patients
with polyneuropathies, i.e. disorders or damage of the peripheral nerves without involvement of
the central nervous system (N=35).

All three groups were of interest to our investigation. The comparison between PD— patients off
medication and the control group indicates deficits specific to PD in a state of (natural) dopamine
depletion. The comparison between PD patients off (PD—) and on medication (PD+) shows to what
degree levodopa improves performance within PD. Finally, the comparison between PD patients
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Table 1 Descriptive characteristics. Shown are means (SD); p-values pertain to x2 test for gender and one-way
ANOVAs for the other variables.

PD-— PD+ Control P
N 34 34 35
Gender (% Female) 15 (44%) 18 (53%) 21 (60%) 0.4
Age (years) 67.0 (6.5) 64.3 (6.2) 65.5 (7.0) 0.2
Depression (BDI-II) 8.6 (4.1) 8.6 (3.6) 8.5 (3.4) >0.9
Cognitive functioning (MMSE) 28.8 (0.8) 29.1 (0.8) 28.8 (0.9) 0.3
PD severity (HY) 1.9 (0.7) 1.9 (0.6) 0.9
Levodopa EDD (mg/day) 809.0 (230.8) 894.0 (441.7) 0.6
Time since medication (min) 248.5 (32.7) 104.4 (59.2) <0.001

Note. BDI-IT = Beck Depression Inventory II [39]; HY = Hoehn-Yahr scale [40]; MMSE = Mini-Mental
State Examination [41]; Levodopa EDD = Levodopa equivalent daily dose, calculated according to [42],
for patients who consented to the access of their medical records (14 PD— and 12 PD+ patients).

on medication (PD+) and controls clarifies to what degree compensatory effects of levodopa align
PD behavior to the control group.

Behavioral Results

Participants accumulated rewards by selecting tiles (options) on a 8 x 8 grid where the reward for
each tile was drawn from a Gaussian distribution (Fig. 1). The spatial correlation between tiles
could be used to optimize search behavior and efficiently navigate the exploration-exploitation
trade-off. We analyzed behavior in terms of performance, temporal dynamics of exploration
behavior, and spatial trajectories of search, based on eight rounds of 25 trials per participant.

Impaired reward learning in PD patients off medication

Hierarchical regression analyses revealed an effect of group on obtained rewards, but no effects of
game round, PD severity, depressive symptoms, or cognitive functioning (SI; Tables S1 - S3). These
variables were therefore not considered in subsequent analyses.

Fig. 2a shows the average reward across all trials. PD+ patients on medication achieved sub-
stantially higher rewards than PD— patients off medication (¢(66) = 5.9, p < .001, d = 1.4,
BF > 100), indicating a strong beneficial effect of levodopa. Controls achieved slightly higher
rewards than PD+ (¢(67) = 2.6, p = .01, d = 0.6, BF = 4.5) and were much better than PD—
patients (¢(67) = 7.5, p < .001, d = 1.8, BF > 100).

The stark performance disadvantage for PD— gradually developed across trials (Fig. 2b). While
controls and PD+ showed relatively steep learning curves, the learning slope of PD— patients was
barely positive, suggesting a substantial deficit in managing the exploration-exploitation trade-off.

Levodopa mitigates deficits in exploration and exploitation

We next analyzed the trade-off between exploration and exploitation. Fig. 2c shows that differences
in reward accumulation are driven by learners’ ability to adequately balance exploration (selecting
novel options) and exploitation (re-clicking tiles). PD+ patients exploited substantially more than
PD— patients (3% vs. 16%,t(66) = 5.0, p < .001, d = 1.2, BF > 100). Controls exploited even
more than PD+ patients, although this effect was weaker (16% vs. 26%,t(67) = 2.6, p = .01,
d=0.6, BF =4.3).

Mirroring the reward learning curves, controls and PD+ patients shifted more efficiently from
exploring novel options to exploiting known options over time (Fig. 2d). Controls began exploiting
earlier in the round and exhibited a stronger overall tendency toward exploitation compared to
PD+ patients, explaining their relative performance advantage. In stark contrast, PD— patients
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Fig. 2 Behavioral Results. a. Obtained rewards by group. Each dot is one participants’ mean reward across all
rounds and trials. Across all figures, box plots indicate the median (horizontal bar) the interquartile range (box)
and the mean (white diamond). Whiskers extend from the box to 1.5 X interquartile range. The black and dotted
horizontal line indicates random performance. b. Learning curves, showing obtained mean reward for each trial,
averaged across rounds. Error bars for learning curves indicated 95% CI. c.. Mean proportions of exploitation
decisions, aggregated over trials and rounds. Each dot is one participant. An exploitative choice is defined as as
re-clicking a previously revealed tile. d. Mean proportion of exploitation decisions per trial, averaged over rounds.
e. Manhattan distance among consecutive clicks. A repeat click has a distance of zero (marked by a black outline);
clicks on neighboring tiles have a distance of 1, and distances >1 correspond to clicks further away from the previous
click. The right-most panel shows the distribution of distances for a random learner that selects in each trial with
uniform probability among all options. f. Predictions of a Bayesian hierarchical regression with search distance as
a function of reward on the previous trial. Dots are the empirical mean distances for each reward value, averaged
over participants, trials, and rounds.

predominantly engaged in exploration and showed only a weak tendency toward exploitation as
the search horizon approached its end.

Consistent with these observations, nearly all controls (94%) and PD+ patients (88%) made
at least one exploit choice, whereas only 65% of PD— patients did. Among participants who
engaged in each choice type, PD+ patients obtained higher rewards than PD— patients during
both exploration (¢(50) = 2.5, p = .016, d = 0.7, BF = 3.3) and exploitation (¢£(50) = 3.6, p < .001,
d = 1.0, BF = 38). Thus, when they exploited and explored, PD+ patients on medication showed
higher efficiency in both behaviors. Similarly, controls earned higher rewards than PD— patients
during exploration (¢(53) = 3.0, p = .004, d = 0.8, BF' = 10) and exploitation (¢(53) = 3.9,



p < .001, d = 1.1, BF = 83). Controls and PD+ patients did not differ (both p > .27), indicating
that the efficiency of exploration and exploitation was largely restored by levodopa medication.

Levodopa restores reward sensitivity during exploration

We analyzed the spatial trajectory of individuals’ search processes by quantifying step-by-step
distances and testing how obtained rewards shaped subsequent choices. Fig. 2e shows the distribu-
tion of distances among consecutive clicks, illustrating how participants explored the space. In all
groups, the most frequent choice was to click on a directly neighboring tile (distance=1), indicating
a localized search strategy. This locality bias was strongest in PD— patients off medication, who
most frequently selected directly neighboring tiles. Across all choices, controls had lower search
distances than both patients off medication (¢(67) = —2.6, p = .011, d = 0.6, BF = 4.2) and on
medication (¢(67) = —2.3, p = .023, d = 0.6, BF = 2.4). The mean distance of the two PD groups
did not differ (p > .7), but the distributions indicate different underlying strategies: fewer repeats
(distance 0) but more near choices (distance 1) in PD— patients, balancing out against PD-+
patients who made more exploit choices but clicked less often on directly neighboring tiles. Simu-
lations of a random learner show a very different pattern compared to human behavior (Fig. 2e,
right panel), indicating that all groups deviated substantially from purely random choice behavior.

To better understand when participants chose to search locally versus farther away, we next
examined how search distances depended on the reward obtained from the previous choice (Fig. 2f).
If a large reward was obtained, learners should search more locally; if a low reward was obtained,
learners should search farther away. This behavior was observed in both controls and PD patients
on medication, showing how they leveraged the structure of the environment to guide their search
process. In contrast, the exploration strategy for PD patients off medication was largely insensitive
to reward magnitude, indicating a deficit in goal-directed exploration based on the structural
regularities of the environment.

The Gaussian Process Upper Confidence Bound (GP-UCB) model
captures key behavioral aspects of exploration and generalization

The behavioral analyses showed that individuals in a dopamine-depleted state exhibit a severe
deficit in balancing exploration and exploitation. By contrast, the behavior of patients on medica-
tion was markedly improved and largely resembled controls. The increased exploration in patients
off medication could reflect more random choice behavior, an increased emphasis on uncertainty-
directed exploration, or a deficit in utilizing the structural regularities of the grid (i.e., impaired
generalization).

To disentangle these mechanisms, we used the Gaussian Process Upper Confidence Bound (GP-
UCB) model (Fig. 1b; see Methods for formal specification). The model integrates similarity-based
generalization with two distinct exploration mechanisms: uncertainty-directed exploration, which
seeks to reduce uncertainty about rewards, and random exploration, which adds stochastic noise
without being directed towards a particular goal [29, 34]. These processes are captured by three key
parameters: the generalization parameter A\ (Eq. 2), which determines how strongly rewards are
generalized across options; the uncertainty bonus 5 (Eq. 6), which governs the degree of uncertainty-
directed exploration by determining the value given to uncertainty; and the temperature parameter
7 (Eq. 7) which captures random exploration.

In previous studies using the same experimental paradigm, the GP-UCB model provided the
best account of exploratory behavior in healthy participants [29, 35-37, 43, 44]. Importantly, by
decomposing exploration into generalization (\), uncertainty-driven exploration (/3), and random
exploration (7), the model allows us to identify which mechanisms are altered by PD and med-
ication. . In doing so, it directly connects to prior findings that levodopa impairs discrimination
learning while sparing generalization in PD [45], that levodopa reduces directed exploration in
healthy participants [26], and that PD disrupts the overall exploration-exploitation balance [14—16].
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Fig. 3 Computational modeling results. a) Hierarchical Bayesian model comparison based on the protected
exceedance probability (pxp) estimating which model is more frequent in the population. In each group, the GP-UCB
model was the most likely model. b) Each participant was assigned to the model that best described their behavior
(highest R? or, equivalently, lowest cross-validated log loss). In each group, the GP-UCB model accounted for the
highest proportion of learners. ¢) Estimates for the generalization parameter A, the uncertainty-directed exploration
parameter 3, and the random exploration parameter 7. The red dashed line in the A plot denotes the true amount
of spatial correlation (A = 1). d) Performance landscape of the GP-UCB model across different amounts of random
exploration 7 and uncertainty-directed exploration 8. The amount of generalization was fixed to A = 1, the true
amount of correlation in the environment, and 8 and 7 were varied, with 1000 simulated learners per parameter
combination. Each dot shows one participant; the larger markers indicate the group median.

All components of the GP-UCB model are critical to explain behavior

To assess the contribution of each model component (generalization, uncertainty-directed explo-
ration, and random exploration), we compared the predictive accuracy of the GP-UCB model to
variants where we lesion away each component (Methods).

The A lesion model removes the ability to learn about the spatial regularities on the grid and
thus to generalize. Instead, it is assumed that all options are learned independently (i.e., Bayesian
Mean Tracker, BMT; Eqs. 9-11). The 8 lesion model disregards uncertainty and values options
solely based on their reward expectations, corresponding to a mean greedy sampling strategy (i.e.,
£ = 0 in Eq. 6). Finally, the 7 lesion model replaces the softmax choice function (Eq. 7) with
an e-greedy policy (Eq. 12) as an alternative mechanism for random exploration, which samples
uniformly from all options with fixed probability €, otherwise selecting the option with the highest
UCB value.



The predictive accuracy of models was assessed through leave-one-round-out cross-validation,
where predictive performance was quantified by the predicted choice probabilities and log loss across
all out-of-sample predictions. For group-level model selection we computed protected exceedance
probabilities (pxp), which quantify the probability that a given model is more frequent in the pop-
ulation than all competing models [46]. Across all three groups, the GP-UCB model outperformed
all lesioned models, suggesting it as the as the most frequent population model (Fig. 3a).

Additionally, we used a pseudo-R? measure (Eq. 13) to quantify predictive accuracy, where
R? = 0 corresponds to the accuracy at chance level and R? = 1 corresponds to perfect accuracy.
Across groups and in line with the pxp analysis, the GP-UCB model outperformed each of the
lesioned models (t-tests; all p < .01, all BF > 12; Table S5). In each group, the GP-UCB model
was also the most predictive (highest R?) model for the majority of participants (Fig. 3b).

Overall, these results show that all three components of the GP-UCB model are critical for
predicting behavior, aligning with findings from previous studies covering a broad age range in
non-clinical populations [29, 35-37, 43].

Levodopa selectively alters uncertainty-directed but not random exploration
in PD

The parameters of the GP-UCB model captures distinct facets of learning and exploration.. The
parameter \ of the learning model reflects how strongly a learner generalizes, the uncertainty bonus
[ tracks the level of uncertainty-directed exploration, and the temperature parameter 7 indicates
the amount of random exploration (Fig. 3c).

Compared to controls, PD— patients had a significantly reduced generalization parameter A,
indicating a deficit in learning and utilizing the spatial regularities of the grid (U = 832, p = .004,
rr = .28, BF = 6.0). PD+ patients tended to generalize more than PD— patients and less than
controls, but the differences were not statistically significant.

The size of the uncertainty bonus markedly differed between groups, with PD— patients showing
the highest levels and substantial variability compared to the other groups (Fig. 3b). Both PD+
patients (U = 271, p < .001, r, = —.38, BF' = 19) and controls (U = 224, p < .001, r, = —.44,
BF > 100) had lower uncertainty bonuses than patients off medication. PD+ patients and controls
did not differ.

We did not observe mean differences in the temperature parameter 7 (all p > .46) among groups,
indicating comparable average levels of random exploration across groups. However, variability
was markedly higher in the PD— group than in PD+ patients and controls, similar to the pattern
observed for the uncertainty bonus .

Together, these analyses suggest that the effects of dopaminergic medication are specifically
reflected in the degree of uncertainty-directed exploration, with levodopa regulating the “explo-
ration bonus” to levels comparable to those observed in controls without PD. This aligns with
findings from a restless bandit paradigm with healthy volunteers, where levodopa reduced the
amount of directed exploration, while random exploration remained unaffected by medication.|[26]

Controls and PD patients on medication balance directed and undirected
exploration better than PD patients off medication

To evaluate how well different parameter settings balance exploration and exploitation, we
conducted simulations with the GP-UCB model. In these simulations, we set the amount of gen-
eralization to A = 1, matching the true smoothness of the reward function in the environments,
and systematically varied the amount of random exploration (7) and the size of the uncertainty
bonus () to simulate the performance of the GP-UCB model under different levels of directed
and random exploration. Figure 3d depicts the resulting performance landscape together with the
inferred parameters of all participants. Compared to PD— patients off medication, the parameter
estimates for PD+ patients on medication and controls cluster more closely around the optimal



region. Particularly the inflated exploration bonus S places PD— patients in regions yielding low
performance.

Discussion

We investigated reward learning and exploratory behavior of PD patients on medication (PD+),
PD patients off medication (PD—) and controls in a structured reward-learning task with a large
decision space. Because rewards were spatially correlated, learners had to learn and leverage hidden
structure to generalize to novel options, which placed specific demands on goal-directed explo-
ration. PD— patients struggled to exploit known high-value options and showed little sensitivity to
previous rewards during exploration. A computational model separating random from uncertainty-
directed exploration revealed that PD— patients tended towards excessive uncertainty-directed
exploration, suggesting impaired regulation of exploratory behavior in a dopamine-depleted state.
The performance deficits align with prior evidence of impaired reward learning in PD [7, 8, 11—
14, 47-49], although in our task the impairments were more severe. This suggests that structured
tasks that require learning about latent regularities are particularly affected in PD, highlighting
their potential diagnostic value.

On medication, PD patients largely resembled controls, showing how dopaminergic medica-
tion regulates the balance between exploration and exploitation. The restorative effect of levodopa
suggests that the observed deficits were specifically caused by dopamine depletion and not other
mechanisms underlying PD such as a loss of noradrenergic neurons or neuroinflammatory pro-
cesses. Notably, while other pharmacological studies in PD [7, 13, 49] also show beneficial effects
of levodopa, the improvements in the present study were much stronger.

Behaviorally, the performance deficits of PD— patients result from too much exploration and
too little exploitation, consistent with findings in PD patients with apathy [14]. Notably, failures to
exploit in our task cannot be attributed to working memory, as previous rewards remained visible.
The computational analyses provided additional insight, as goal-directed exploration in the present
task reflects two factors: utilizing the spatial correlation in the environment and the consideration
of uncertainty in the valuation of choice options. While random exploration was comparable across
groups, both generalization and uncertainty-directed exploration were impaired in PD— patients.

First, deficits in generalization were evident in how PD— patients adjusted their search distances
based on the reward magnitude of the preceding choice. Leveraging the spatial correlation of
rewards should promote local search after high rewards and more distant search after low rewards.
Yet, PD— showed only minimal adaption to this structure, which, computationally, resulted in
the reduced A parameter. These results are consistent with a general executive planning deficit
in PD [50], and with impairments in model-based learning [10]. Second, we observed a strong
increase in the valuation of uncertainty, such that PD— patients placed an overly strong emphasis
on uncertainty-directed exploration. The observed increase in uncertainty-guided exploration may
seem surprising, as dopamine is often linked to novelty seeking [51]. However, our findings align with
recent findings that levodopa in healthy participants attenuated uncertainty-directed exploration
in a restless bandit task [26], and that in monkeys a pharmacological inhibition of the dopamine
transporter increased their preference for novel options[52]. This combination of lowered reward
sensitivity and heightened exploration resembles mechanisms discussed in addiction, where low
tonic dopamine is argued to drive drug-seeking to offset reduced reward sensitivity (the dopamine
hypothesis of drug addiction [53]). Analogously, low tonic dopamine in PD may diminish the salience
of known rewards and induce a tendency towards exploring novel or uncertain options. This parallel
suggests that a dopamine-depleted state can drive maladaptive shifts in behavioral strategies across
distinct clinical conditions.

Our study design differed from previous work in two relevant aspects. First, instead of a healthy
control group, we included patients with polyneuropathies. While this control group is not expected
to exhibit specific deficits in reward learning or exploration, it limits our ability to conclude that
levodopa fully restores performance to the level of healthy individuals. At the same time, an



advantage of our non-healthy control group is that group differences are less likely to be attributable
to nonspecific effects of “having a disease”. Importantly, all three groups in our study were closely
matched on age, gender, depressive symptoms, and also in basic cognitive functioning, which did
not differ between PD patients tested on and off medication Second, our withdrawal period in
the PD— group was shorter than in most previous studies, which often employ a full overnight
withdrawal (e.g., [54, 55]). This limitation arose from the outpatient setting, where minimizing
disruption to the patients’ regular treatment was a priority. Nevertheless, the robust behavioral
effects observed suggest that the shorter withdrawal period did not substantially impact our results.

Conclusion

In sum, our results point to a crucial role of dopamine in the regulation of goal-directed exploration.
Conversely, the loss of such regulatory dopaminergic function in PD may account for the marked
deficits in reward learning, set shifting [56] and other instrumental activities of daily living that
require intact exploratory behavior, such as shopping, transportation, and money management [57—
60]. Dopaminergic medication might be an effective therapy in PD to mitigate these impairments,
helping patients to navigate the ubiquitous explore-exploit trade-offs they encounter in their daily
lives.

Methods

Sample and study design

We tested N=66 adult participants with Parkinson’s disease (PD) who regularly receive levodopa
(levodopa) for symptomatic treatment. Participants were recruited and tested at a neurologist’s
outpatient practice; sessions lasted 30-45 minutes. Eligible individuals diagnosed with PD were
evaluated based on the Hoehn-Yahr scores recorded in their patient files. The scale assesses disease
severity and motor impairments based on a score from 1 to 5, with higher scores indicating greater
severity [40]. Recruitment was limited to individuals with scores between 1 and 3, and patients
who did not receive antipsychotic medication (except for one patient who received a small dose of
25 mg clozapine to counteract delusional side effects of levodopa).

The study was approved by the Institutional Review Board of the Health and Medical Uni-
versity, Potsdam, Germany. All procedures were carried out in accordance with the Declaration
of Helsinki and applicable institutional and national guidelines and regulations. All participants
provided written informed consent.

PD patients were randomly assigned to two conditions: testing on medication (PD+) and off
medication (PD—). In the PD+ group (N=33), patients’ scheduled levodopa dose was administered
at least 30 minutes before the start of the experiment. One patient was treated with continuous
subcutaneous infusion pump and was therefore assigned to the PD+ group. In the PD— group
(N=33), participants were tested immediately before their next scheduled dose, when dopaminergic
stimulation from medication was presumably minimal. In sum, the PD+ “on medication” group
was tested just after taking levodopa and patients in the PD— “off medication” group were tested
just before their next scheduled dose. The behavioral data of one patient in the PD— group was
lost due to a computer crash and excluded from the analysisnature maental

The control group (N=35) was recruited in the same practice and consisted of individuals of
similar age diagnosed with polyneuropathies, a condition affecting the peripheral nervous system
that can lead to physical symptoms such as pain, sensory loss, or motor weakness. However, unlike
Parkinson’s disease, polyneuropathies typically do not involve central dopaminergic dysfunction or
cognitive impairment.
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Clinical assessment

We employed standardized measures assessing Parkinson’s disease severity, basic cognitive function,
and depressive symptoms. PD severity was evaluated using the Hoehn-Yahr scale as documented
in patients’ most recent clinical records, which rates motor impairments such as postural insta-
bility and gait difficulties [40]. Basic cognitive function was assessed through the Mini-Mental
State Examination (MMSE) [41]. The test comprises 30 questions pertaining to different domains,
including memory (e.g., recalling three objects), temporal and spatial orientation (e.g., date and
location), and arithmetic ability. Finally, all participants answered the German version of the
Beck Depression Inventory II, a self-report inventory measuring depressive symptoms [39, 61]. No
differences on any of these measures was found (Table 1).

Behavioral experiment

Participants performed a reward-based decision-making task based on a spatially-correlated multi-
armed bandit task (Fig.la). Participants completed 10 rounds of the task, each featuring a new
environment with the same level of spatial correlation. At the start of each round, one tile was
randomly revealed, and participants sequentially sampled 25 tiles. On each trial, they could choose
to either click a new tile (explore) or re-click a previously selected tile (exploit). Selections were
made by selecting the tile on the computer screen using a mouse, upon which they received a reward
in the range [0,50]. Re-clicked tiles showed small variations in reward due to normally distributed
noise. Rewards were shown numerically together with a corresponding color, with darker shades of
red indicating higher rewards.

The environment in each round was sampled from a pool of 40 distinct environments, which
were generated using a radial basis function kernel with length-scale parameter A = 1, creating
a bivariate reward function on the grid that maps each tile location to a specific reward value.
These reward functions gradually varied across the grid, creating environments with spatially-
correlated rewards (Fig.1la, right panel). Expressed as a Pearson correlation, the rewards of directly
neighboring options correlated at approximately r =~ 0.6, decreasing exponentially with spatial
distance.

In each of 10 rounds, participants had 25 choices to accumulate rewards. The first round
served as a tutorial to familiarize participants with the task, goal, spatial correlation of rewards,
possibility of re-clicking tiles and the length of the search horizon. Before the actual task started,
each participant had to pass an instruction check with questions pertaining to the instructed goal,
that points could be collected both by revealing new tiles and by re-clicking previously revealed
tiles, and that points tended to cluster. Data from the tutorial round was excluded from the
analyses. The 10th and final round was a bonus round where, after 15 choices, participants were
asked to predict rewards for five unrevealed options. Data from this round were also excluded from
the main analysis and analyzed separately (SI).

Data analysis

Neither round number (2-9) nor any clinical markers of PD (depressive symptoms, cognitive screen-
ing, PD severity) affected performance (Tables S1 - S3). Therefore, these variables were not further
considered in the analyses. Data analysis comprised group comparisons, hierarchical regression and
correlation analyses. We report frequentist statistics as well as Bayes factors (BFs) to quantify
the relative evidence of the alternative hypothesis (H;) over the null hypothesis (Hp) (see SI for
details). To analyze the effect of previous reward on search distance we performed a Bayesian hier-
archical regression, including fixed effects for reward, group and the interaction reward x group,
as well as subject-wise random intercepts.
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Computational modeling
Gaussian Process Upper Confidence Bound Sampling (GP-UCB) model

The GP-UCB model combines a Bayesian framework for value generalization (GP) with a combina-
tion of uncertainty-directed and random exploration (UCB). As such, it provides a comprehensive
computational framework for exploratory behavior and how this behavior is shaped by mental
health conditions and medication.

Gaussian Process generalization. To model how participants generalize observed rewards
across the two-dimensional grid, we use Gaussian Process (GP) regression [62]. A GP is a Bayesian
non-parametric model of function learning that has been used as a psychological model of human
generalization [34] across spatial [29, 37], abstract [43], social [32, 44], and graph-structured domains
[63], predicting both choices and judgments about reward expectations and confidence. Formally,
a GP defines a probability distribution over functions mapping inputs to outputs f : X — Y. In
our case, these functions map grid locations x € X' to scalar reward observations y € Y, with the
prior distribution taking the form of a multivariate Gaussian:

[~ GP(m(x), k(x,x")). (1)

The GP is fully specified by prior mean function m(x) defining the prior expectations of each input,
and a kernel (covariance) k(x,x’) encoding how strongly rewards at two locations are expected to
covary as a function of their distance (see Eq. 2). Without loss of generality, we set the prior mean
to zero [62] and use the common radial basis function (RBF) kernel:

k(x,x') = exp <”x2_;2‘|2> . (2)

Here, x and x’ are the coordinates of two tiles on the grid, and X is the length-scale parameter,
which governs the amount of generalization (i.e., the smoothness of the function). Higher values of
A imply smoother functions, leading to stronger expectations regarding reward correlations. Lower
values of A entail rougher functions, i.e. less correlation among similar options. In our analyses, we
treat A as a free parameter representing the extent to which learners generalize rewards as function
of spatial proximity.

To compute posterior predictions for any target location x,, we condition the model on a set
of observations D; = {X;,y,} of choices X; = [x1,...x¢] and corresponding reward observations
vt = [y1,...,y:] at time ¢. This posterior also takes the form of a multivariate Gaussian:

f(x) [ e~ N(m(x4]Dy), v(x4]Dr)), 3)
which is entirely defined by a posterior mean m(x,|D;) and a posterior variance v(x4|D;). These
are computed as:

—1
m(x.|Dy) = ki [Kx,x + Uf[] Vi (4)
~1
v(%,|Dy) = k(x4,%0) — k] [Kx,x +02I] k. (5)
Here, k, = [k(x1,X4), ..., k(X¢,%4)] is the vector of kernel similarities between past observations

and the target location, K x, x is a matrix of pairwise kernel similarities between all past observa-
tions in Xy, I is a t x t identity matrix, and o is the observation noise capturing the stochasticity of
reward observations and is fixed to the true reward variability of each arm of the bandit o2 = .0001.

Upper Confidence Bound (UCB) sampling. UCB sampling considers both reward estimates
and their uncertainty when valuing options. Formally, this is done by adding an uncertainty bonus
to the expected rewards of each option:
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UCB(x) = m(x|D:) + B/ v(x4|Dy) (6)
where the expected reward of an option m(x|D;) captures its exploitation value, and the scaled
uncertainty51/v(X.|D;) captures its exploration value, with 8 modulating how much exploration
is promoted relative to exploitation.

Importantly, balancing rewards and uncertainty requires an appropriate value for §. If 8 is too
small, the learner fails to explore promising but uncertain options, leading to a disproportionate
focus on exploitation. Conversely, if 8 is too large, the uncertainty bonus overrules any reward
differences, making all options appear equally attractive and leading to overexploration.

Softmax choice rule. The final step of the model is to translate UCB values into choice proba-
bilities, describing how likely an agent will select each of the 64 options. This is implemented using
a softmax function:

exp(UCB(x)/7)

32751 exp(UCB(x;)/7)

The amount of randomness in the choice probabilities is governed by the temperature parameter .
Higher values of 7 make the choice probabilities more uniform, such that the choice behavior is less
influenced by options” UCB values and more random. Lower value of 7 imply that the learner is
more sensitive to options’ UCB values, making them increasingly likely to be selected. In the limits,
if 7 — 0, choice behavior reduces to a greedy mean policy that always selects the option with the
highest value (pure exploitation), and if 7 — oo all options are chose with equal probability (pure
exploration). Here, we treat the temperature parameter 7 as a computational marker of a learner’s
tendency to explore randomly, i.e., in an undirected fashion through inherent decision noise.

(7)

p(x) =

Lesioned models

To establish that all components of the GP-UCB model are required to explain behavior, we
implemented three lesion variants of the model [37]

The A lesion model removes the ability to generalize, such that options’ rewards are learned
independently via a Bayesian Mean Tracker (BMT). The BMT is a Kalman filter with time-
invariant rewards [64, 65], and as such, can be interpreted as Bayesian variant [66] of the classic
Rescorla-Wagner [67] or Q-learning models [68]. Intuitively, reward estimates are updated as a
function of prediction error, where the learning rate is dynamically defined based on the degree of
uncertainty of the model.

Like the GP, the BMT also assumes a Gaussian prior distribution of reward expectations, but
does so independently for each option x:

p(To(X)) ~ N(mo(X)WO(X)), (8)

where mo(x) = 0 as in the GP, and we set vg(x) = 5 following [37].

The BMT then computes a posterior distribution of the expected reward for each option, also
in the form of a Gaussian, but where the posterior mean m;(x) and posterior variance v¢(x) are
defined independently for each option and computed by the following updates:

mi41(x) = my(x) + 6¢(x)Ge(x) (yt(x) —my (X)) 9)
e1(x) = ve(x) (1 = 8¢(x) G (%)) (10)

Both updates use 0;(x) = 1 if option x was chosen on trial ¢, and d;(x) = 0 otherwise. Thus, the
posterior mean and variance are only updated for the chosen option. The update of the mean is
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based on the prediction error y;(x) — m;(x) between observed and anticipated reward, while the
magnitude of the update is based on the Kalman gain G;(x):

Gi(x) = vt(l;:)(j)Qf’ (11)

analogous to the learning rate of the Rescorla-Wagner or Q-learning models. Here, the Kalman
gain is dynamically defined as a ratio of variance terms, where vy(x) is the posterior variance
estimate and 0?2 is the error variance, which we treat as a free parameter and can be interpreted
as an inverse sensitivity parameter. Smaller values of 62 thus result in larger updates of the mean.
The S lesion model evaluates options solely based on their expected rewards, corresponding to a
mean-greedy (MG) sampling strategy, and is implemented by setting the uncertainty bonus to 8 = 0
(Eq. 6). Effectively, this equates the value of options with their posterior mean MG(x) = m(x|D;).
The 7 lesion model replaces the softmax choice function (Eq. 7) with an e-greedy policy as
an alternative mechanism for random exploration. Under this policy, with probability € a random

option is selected and with probability 1 — €, the option with the highest UCB value is chosen:
p(x) = {arg max UCB(x), W%th probab%l%ty 1—e¢ (12)

1/64, with probability e

with the parameter e estimated individually for each participant.

Model cross-validation

Models’ predictive accuracy was assessed using leave-one-round-out cross-validation based on
maximum likelihood estimation [69], with parameter bounds set to the range [exp(—5), exp(4)].
Specifically, we iteratively held out one round from the task, fitted each model to the remaining
seven rounds, and then tested its ability to predict participants’ choices on the 25 trials of the
holdout round. Predictive accuracy was quantified as the sum of negative log-likelihoods across all
out-of-sample predictions. Individual parameter estimates for participants are based on averaging
over the cross-validated maximum likelihood estimates.

The negative log-likelihoods served as the model evidence for the hierarchical Bayesian model
selection based on protected exceedance probabilities ([46] (Fig.3a), and for quantifying predictive
accuracy using a pseudo-R? measure, where the summed log loss of each model is compared to
a random baseline model. Accordingly, R? = 0 corresponds to chance performance and R? = 1
corresponds to theoretically perfect predictions:

2 _ 1— log‘c(Mk) (13)
IOg E(Mrand)

For participant classification (Fig. 3b) we compared the models within each participant and
chose the model with the highest R? (or, equivalently, lowest log loss). In a supplementary analysis,
we performed a model comparison on the group level likewise using the R? measure. Consistent
with both hierarchical Bayesian model selection and participant classification, the GP-UCB model
achieved the highest R? in each group (Table S5 and Fig. S5 in the SI).

Model simulations

To evaluate the performance of the GP-UCB model under different parameter settings we con-
ducted computer simulations (Figure 3d). Specifically, we fixed the amount of generalization to
A = 1, corresponding to the true smoothness of the reward function in the used environments,
and then varied the size of the uncertainty bonus () and the amount of random exploration (1)
over logarithmically spaced grids. Both parameters were sampled at 200 values between exp(—>5)
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(= 0.0067) and exp(4) (= 54.6), resulting in a total of 40,000 unique (7, B) combinations. For
each parameter combination we simulated 1000 learners searching for rewards using the GP-UCB
model, where environments were sampled (with replacement) from the set of 40 environments used

in the behavioral study.
In addition, we ran simulations with A = 0.5, which is closer to the mean group estimates; these

simulations yielded comparable results (Figure S6).
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Supplementary information. Supplementary information (SI) accompanies this manuscript
and includes additional analyses, figures and tables referenced in the main text.
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Supplementary information

Statistical analyses

Statistical analyses were performed using R [70]. We report both frequentist and Bayesian statistics,
using Bayes factors (BF') to quantify the relative evidence of the data in favor of the alternative
hypothesis (Hy) over the null (Hp). All data and code required for reproducing the statistical
analyses and figures are available at https://github.com/charleywu/gridsearch_parkinsons.

For parametric group comparisons, we report paired or independent two-tailed Student’s t-
tests. For non-parametric comparisons we used the Mann-Whitney U test or Wilcoxon signed-rank
test. Bayes factors for the ¢-tests were computed with the R package BayesFactor [71], using its
default settings. Bayes factors for rank tests were computed following [72]. Bayesian regressions
were performed using the brms package [73].

Linear correlations were assessed using Pearson’s r, with the Bayes factors computed with the
BayesFactor package [71], using its default settings. Bayes factors for rank correlations quantified
with Kendall’s 7 were computed using an implementation from [74].

Supplementary behavioral results
No performance differences in relation to round number or clinical indicators

We conducted hierarchical Bayesian regression analyses to examine whether performance differed
across task rounds or as a function of clinical indicators.

First, we analyzed participants’ mean reward per round as function of round number and
group using a hierarchical linear regression. Group, round, and their interaction were specified
as population-level (“fixed”) effects, with group-level (random) intercepts for participants. This
analysis showed only a difference between groups, but no performance differences across rounds
(Table S1 and Figure S1).

Mean reward by rounds and group
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Fig. S1 Reward as a function of rounds. Each line is the population-level effect of a hierarchical Bayesian regression.
Large markers show the group means in each round, small dots show individual participants.

Second, we ran a hierarchical Bayesian regression with reward per trial as dependent variable
and group, BDI score, and MMSE score as population-level (“fixed”) effects, and random intercepts
for participants. This analysis also yielded only a substantial population-level effect of group,
whereas the influence of both BDI and MMSE was minimal, with posterior estimates close to zero
and the 95% HDI including zero (Table S2).

Finally, we ran a hierarchical Bayesian regression for PD patients only, with reward per trial as
dependent variable and group, BDI, MMSE, and Hoehn-Yahr score as population-level predictors;
and random intercepts for participants. Again, the analysis only yielded an influence of group, i.e.
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Table S1 Bayesian linear multilevel regression: mean reward over rounds as a
function of group.

Estimate 95% HDI

Population-level effects

Intercept 0.53 [0.49, 0.57]
Round 0.002 [—0.004, 0.008]
Group PD+ 0.08 [0.02, 0.13]
Group Control 0.14 [0.08, 0.18]
Round x Group PD+ 0.000004  [-0.008, 0.008]
Round x Group Control -0.003 [-0.01, 0.01]
Group-level effects

o 0.11 [0.11, 0.12]
Observations 808

N (participants) 101

Note: Estimates are posterior means with 95% highest density intervals
(HDI). Patients on medication (PD+) and controls are compared against
PD— patients off medication. o denotes the residual standard deviation.

Table S2 Bayesian linear multilevel regression: reward as a function of group,
BDI, and MMSE.

Estimate 95% HDI

Population-level effects

Intercept 0.11 [-0.37, 0.57]
Group PD+ 0.07 [0.04, 0.10]
Group Control 0.12 [0.09, 0.15]
BDI 0.0002 [-0.003, 0.004]
MMSE 0.02 [-0.001, 0.03]

Group-level effects

o 0.25 [0.24, 0.25]
Observations 20000
N (participants) 100

Note: Estimates are posterior means with 95% highest density intervals
(HDI). Patients on medication (PD+) and controls are compared against
PD— patients off medication. o denotes the residual standard deviation. BDI
and MMSE were entered as continuous predictors. One participant in the
control group had a missing MMSE score and was therefore excluded from
the analysis.

being tested on or off medication (Table S2). The coefficients for all clinical measures were very
small, with all posterior means < 0.01 and their HDIs including zero.

In sum, in none of the analyses round number or clinical variables were related to performance.
We therefore averaged rewards across rounds and did not further include the clinical indicators in
the analyses.

Bonus round: Reward predictions, confidence, and choices

The 10th and last round of the task as a “bonus round” in which participants first made 15
search decisions as in the previous rounds and then predicted the rewards for 5 randomly chosen,
previously unobserved tiles. For each tile, they also indicated how confident they were in their
prediction (0-10). Subsequently, they chose one of the five tiles and continued the round as usual
until the search horizon was exhausted.

Prediction errors were measured as the absolute difference between a participant’s predictions
and the mean of the true underlying Gaussian distribution. For each participant, we computed the
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Table S3 Bayesian linear multilevel regression including only patients with
PD: reward as a function of group, BDI, MMSE, and Hoehn—Yahr score.

Estimate 95% HDI

Population-level effects

Intercept 0.31 [-0.22, 0.85]
Group PD+ 0.07 [0.05, 0.10]
BDI 0.002 [-0.001, 0.006]
MMSE 0.007 [-0.01, 0.03]
Hoehn—Yahr 0.006 [-0.01, 0.03]
Group-level effects

o 0.24 [0.24, 0.25]
Observations 12200

N (participants) 66

Note: Estimates are posterior means with 95% highest density intervals
(HDI). Patients on medication (PD+) are compared against PD— patients
off medication. o denotes the residual standard deviation. BDI, MMSE, and
Hoehn—Yahr scores were entered as continuous predictors.

mean absolute error by averaging over the five predictions. All three groups had lower prediction
error than a random baseline (Figure S2; all p < .001). Controls had lower prediction error than
PD— patients off medication (¢(67) = —2.7, p = .009, d = 0.6, BF = 5.0). PD+ patients where
slightly worse than controls and slightly better than PD— patients, but did not differ from either
group (both p > .19).

Across all participants and judgments, there was no relation between participants’ prediction
error and confidence in their judgments (r = —.05). A Bayesian hierarchical regression ()Table S4
with confidence and group as population-level (“fixed”) effects, and subject-wise random intercept
showed only weak and inconsistent relationships across groups (Figure S3). The control group
showed a weak negative relation (i.e., higher confidence was associated with lower prediction error),
the PD+ group a weak positive trend (i.e., lower confidence was associated with higher prediction
error), and the PD— group showed no association.

Table S4 Bayesian multilevel regression: prediction error as a function of
group, confidence, and their interaction.

Estimate 95% HDI

Population-level effects

Intercept 0.180 [0.151, 0.209]
Confidence -0.002 [-0.008, 0.004]
Group PD+ -0.039 [-0.085, 0.008]
Group Control -0.001 [-0.052, 0.048]
Confidence x Group PD+ 0.005 [-0.004, 0.014]
Confidence x Group Control -0.007 [-0.018, 0.002]
Group-level effects

o 0.115 (0.107, 0.122]
Observations 515

N (participants) 103

Note: Estimates are posterior means with 95% highest density intervals
(HDI). o denotes the residual standard deviation. The model includes inter-
actions between group and confidence (howSecure).

After making reward predictions for the five tiles, participants could choose one of them and
then continued the round as usual. (Figure S4) compares the predicted rewards for chosen and
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Fig. S2 Prediction error between participants’ estimates and the true underlying expected rewards in the bonus
round. For reference, the dashed line represents the expected error for a randomly choosing learner.

Confidence and prediction error

@ PD-
0.6 @ PD+
@ Control
5 .
w
c 0.4
Qo o* <
o ’ N
o : : o
3 . '
a
0.2
0.0
0 1 2 3 4 5 6 7 8 9 10
Confidence

Fig. S3 Predictions of a Bayesian hierarchical regression with prediction error as a function of confidence and
group. Large dots show posterior means, with error bars denoting 95% credible intervals. Small dots show observed
individual data points.

unchosen tiles, where the predicted reward for unchosen tiles is based on averaging across all four
tiles that were not chosen. In the control group, predicted rewards for chosen tiles were higher
than for unchosen tiles (¢(34) = 2.9, p = .007, d = 0.6, BF = 6.1), as well as in PD+ patients
(t(33) = 2.1, p = .047, d = 0.3, BF = 1.2). No difference was obtained for PD— patients off
medication (p > .8). In none of the groups average confidence differed between chosen and unchosen
tiles (all p > .3).
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Fig. S4 Participants’ reward predictions for chosen versus not chosen options in the bonus round. Small dots show
individual data points.

Model comparison: GP-UCB vs. lesioned models
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Fig. S5 Predictive model accuracy. Small dots show individual data points.

Supplementary computational modeling results

Model comparison: All components of the GP-UCB model are critical to
explain behavior

The predictive accuracy of the computational models was evaluated through leave-one-round-out
cross-validation using maximum likelihood estimation [69]. Predictive accuracy was quantified as
the sum of negative log-likelihoods across all out-of-sample predictions.

In addition to the hierarchical Bayesian model selection (Fig. 3a) and individual participant
classification (Fig. 3b), we also compared the predictive accuracy R? across models and groups. In
each group, the GP-UCB model achieved the highest predictive accuracy compared to the three
lesioned models (Fig. S5). Table S5 shows the results of ¢-tests comparing the mean R? of the GP-
UCB model to each lesioned model, showing that the GP-UCB model consistently outperformed
all lesioned variants across groups.

Simulated performance of the GP-UCB model

To evaluate how well different parameter settings balance exploration and exploitation, we con-
ducted simulations with the GP-UCB model. Figure 3d in the main text shows participant
parameters in relation to the performance landscape with the length-scale parameter of the RBF
kernel (Eq. 2) set to A = 1, the true amount of spatial correlation in the used environments.

We additionally conducted simulations with A = 0.5, which is closer to the mean group estimates
of A\, Mpp_ = 0.53, Mppy = 0.56, Mcontrol = 0.64. Again, we systematically varied the amount of
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Group Comparison n t D d BF

PD— A lesion 34 38 p<.001 07 BF=47
PD— B lesion 34 58 p<.001 1.1 BF >100
PD— 7 lesion 34 52 p<.001 1.0 BF >100
PD+ A lesion 34 34 p=.002 04 BF=18
PD+ B lesion 34 38 p<.001 04 BF=58
PD+ 7 lesion 34 87 p<.001 09 BF>100
Control X lesion 35 32 p=.003 02 BF=12
Control 3 lesion 35 35 p=.001 02 BF=28
Control 7 lesion 35 79 p<.001 06 BF>100

Table S5 Pairwise comparisons of R? values between GP-UCB
model and lesioned variants across groups.

random exploration (7) and the size of the uncertainty bonus () over logarithmically spaced grids.
Both parameters were sampled at 200 values between exp(—5) (& 0.0067) and exp(4) (= 54.6),
resulting in a total of 40,000 unique (7, §) combinations. For each parameter combination we
simulated 1000 learners searching for rewards using the GP-UCB model, where environments were
sampled (with replacement) from the set of 40 environments used in the behavioral study.

Figure S6 depicts the resulting performance landscape together with participants’ parameter
estimates for $ and 7. The results are similar to performance landscape for A = 1: Parameter
values of controls and PD+ patients are closer to the optimal region compared to those of PD—
patients off medication. For the latter, especially the too high § valued shift parameter estimates
into low-reward regions of the landscape.

Model performance simulation
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Fig. S6 Performance landscape of the GP-UCB model across different amounts of random exploration 7 and
uncertainty-directed exploration 8. The amount of generalization was fixed to A=0.5 and 8 and 7 were varied, with
1000 simulated learners per parameter combination. Each dot shows one participant; the larger markers indicate
the group median.
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