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 A B S T R A C T

Any medical innovation must first prove its benefits with reliable evidence from clinical trials. Evidence 
is commonly expressed using two metrics, summarizing treatment benefits based on either absolute risk 
reductions (ARRs) or relative risk reductions (RRRs). Both metrics are derived from the same data, but 
they implement conceptually distinct ideas. Here, we analyze these risk reductions measures from a causal 
modeling perspective. First, we show that ARR is equivalent to Δ𝑃 , while RRR is equivalent to causal power, 
thus clarifying the implicit causal assumptions. Second, we show how this formal equivalence establishes 
a relationship with causal Bayes nets theory, offering a basis for incorporating risk reduction metrics into 
a computational modeling framework. Leveraging these analyses, we demonstrate that under dynamically 
varying baseline risks, ARRs and RRRs lead to strongly diverging predictions. Specifically, the inherent 
assumption of a linear parameterization of the underlying causal graph can lead to incorrect conclusions 
when generalizing treatment benefits (e.g, predicting the effect of a vaccine in new populations with different 
baseline risks). Our analyses highlight the shared principles underlying risk reduction metrics and measures of 
causal strength, emphasizing the potential for explicating causal structure and inference in medical research.
. Causal analysis of relative and absolute risk reductions

During the Covid-19 pandemic, the quantification of risk posed an 
mportant challenge. How dangerous was it to go to the grocery store 
n person vs. paying extra to have them delivered to your doorstep? 
ow much safer was it to go to crowded places once you had one 
r two vaccines? We all struggled with these dilemmas, while medical 
rofessions fought to communicate accurate information to the public. 
ssessing and communicating the effectiveness of vaccinations and 
reatments against Covid-19 made this challenge even more complex, 
urther complicating the public’s understanding of risk and benefits.
This struggle highlights a broader issue in public health: the quan-

ification and communication of treatment effects. Quantifying the 
ausal impact of treatments and communicating medical information 
n an effective manner remains a key challenge for public policy and 
nformed decision making (Bonner et al., 2021; Gigerenzer & Edwards, 
003; Gigerenzer et al., 2007; Woloshin et al., 2023). Two widely used 
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metrics for quantifying treatment benefits are relative risk reductions 
(RRR) and absolute risk reductions (ARR), which convey information 
about risk changes, such as the reduced risk of disease for vaccinated 
individuals or the reduced risk of recurrence for patients undergoing 
chemotherapy. These measures play a crucial role in summarizing study 
outcomes, in the communication of treatment benefits to healthcare 
professionals and the public, as well as tools for generalizing medical 
effects to new contexts and populations.

Here, we highlight central connections between risk reduction mea-
sures used in medical research and the theoretical framework of causal 
Bayes nets used to study causal learning. By analyzing ARR and RRR 
through the lens of causal modeling, we clarify the assumptions that 
each measure makes about the underlying data-generating processes, 
with different structural and inferential implications.

First, we demonstrate that ARR is mathematically equivalent to 
𝛥𝑃  (Cheng & Novick, 1992; Waldmann & Holyoak, 1992), while RRR 
ttps://doi.org/10.1016/j.jmp.2025.102942
eceived 23 October 2024; Received in revised form 17 June 2025; Accepted 14 A
vailable online 3 September 2025 
022-2496/© 2025 The Authors. Published by Elsevier Inc. This is an open access ar
ugust 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/jmp
https://www.elsevier.com/locate/jmp
https://orcid.org/0000-0002-9326-400X
mailto:bjoern.meder@hmu-potsdam.de
https://doi.org/10.1016/j.jmp.2025.102942
https://doi.org/10.1016/j.jmp.2025.102942
http://creativecommons.org/licenses/by/4.0/


B. Meder et al. Journal of Mathematical Psychology 127 (2025) 102942 
is equivalent to causal power (Cheng, 1997; Novick & Cheng, 2004), 
which are two central measures for defining causal strength. Thus, 
metrics from the causal modeling literature are incidentally used under 
different labels in medical research and risk communication, yet these 
connections are not well known (but see Sprenger, 2018; Stephan et al., 
2021).

Second, we show how this equivalence establishes connections with 
the formalism of causal Bayes nets (Pearl, 2000; Pearl & Mackenzie, 
2018; Spirtes et al., 2000), offering a basis for incorporating risk reduc-
tions into a causal modeling framework. Specifically, we formalize how 
ARR and RRR instantiate distinct parameterizations of the same causal 
structure within the framework of causal graphical models, offering a 
unified computational perspective on treatment effect measures. This 
integration reveals how the choice of a particular risk reduction mea-
sure inevitably corresponds to different assumptions about how causes 
probabilistically influence an outcome.

Third, we highlight the diverging consequences of employing either 
ARR or RRR to measure treatment effects when generalizing study 
results to scenarios with different baseline risks. These analyses offer 
a novel perspective on the normative merits of each measure (Hoe-
fer & Krauss, 2021; Jäntgen, 2023; Sprenger & Stegenga, 2017; Ste-
genga, 2015), and contribute to discussions about the consequences 
of using different metrics for quantifying and generalizing treatment 
effects (Colnet et al., 2024; Huitfeldt et al., 2018; Murad et al., 2024; 
Xiao et al., 2022).

2. From risk reductions to measures of causal strength

The purpose of risk reduction metrics is to quantitatively summarize 
treatment effects, such as the impact of a vaccine on disease cases. 
This problem is both conceptually and mathematically related to the 
problem of causal induction: How can we induce unobservable causal 
relations from observed data and quantify their strength? The nature 
of the inference mechanisms that support the development of both 
intuitive and scientific theories about the world is a key issue in 
philosophy (Cartwright, 2007), psychology (Waldmann, 2017), statis-
tics (Pearl et al., 2016), and machine learning (Schölkopf, 2022). 
Because medical interventions naturally refer to cause–effect relations, 
researchers have also emphasized the importance of causal inference 
in the medical domain (Etminan et al., 2020; Greenland et al., 1999; 
Prosperi et al., 2020; Sanchez et al., 2022; Stovitz & Shrier, 2019). 
Contributing to this growing body of work (Bareinboim & Pearl, 2016; 
Digitale et al., 2022; Kyriacou et al., 2023), we offer a causal analysis 
of risk reduction metrics, highlighting how they map onto models from 
the literature on human causal induction and clarifying the underlying 
assumptions and inferential implications.

2.1. Measuring treatment effects: Absolute and relative risk reductions

Absolute and relative risk reductions are measures for quantify-
ing changes in the risk associated with the occurrence of an adverse 
binary health outcome (e.g., disease present or absent). Applied to 
an experimental design with two groups (treatment vs. control), one 
way to quantify treatment effects is in terms of their absolute risk 
reduction (ARR): the arithmetic difference of the probability of the 
adverse outcome under the treatment (e.g., vaccine) vs. the control 
group (e.g., placebo): 
𝐴𝑅𝑅 = 𝑃 (event|control) − 𝑃 (event|treatment) (1)

In applied settings, these probabilities and their difference are typically 
expressed as percentages. Consider the Covid-19 pandemic, where dif-
ferent vaccines were evaluated in randomized controlled trials (e.g., 
Baden et al., 2021; Polack et al., 2020; Voysey et al., 2021). For 
instance, in the BNT162b2 (Pfizer-BioNTech) trial, 162 out of 18,325 
people (0.88%) in the placebo group developed symptomatic Covid-19, 
2 
Table 1
Data from the BNT162b2 vaccine trial against Covid-19 (Polack et al., 2020). 
Shown are registered (symptomatic) Covid-19 cases in the vaccine and placebo 
group. Computed are the probability of Covid-19 in each group, absolute risk 
reduction (ARR), and relative risk reduction (RRR).
 Covid-19 No Covid-19 P(Covid-19) ARR RRR 
 Control: Placebo 162 18,163 0.88% 0.84% 95% 
 Treatment: Vaccine 8 18,190 0.04%  

compared to 8 out of 18,198 people (0.04%) in the vaccine group (Po-
lack et al., 2020). The absolute risk reduction is the difference between 
these event rates: 0.88%–0.04% = 0.84 percentage points (Table  1). This 
measure provides a quantitative estimate of the vaccine’s ability to 
reduce disease cases.

Another way of expressing treatment effects is the relative risk reduc-
tion (RRR). The RRR normalizes the arithmetic difference (i.e., ARR) on 
the probability of the disease in the control group: 

𝑅𝑅𝑅 =
𝑃 (event|control) − 𝑃 (event|treatment)

𝑃 (event|control) (2)

In the BNT162b2 trial, expressed as percentage, the RRR is 95%, as 
it reduces the number of infections from 162 cases in the placebo group 
to 8 cases in the vaccine group. Risk reductions and treatment benefits 
are frequently expressed in such relative terms. For instance, in vaccine 
epidemiology the efficacy of a vaccine is commonly defined as the RRR 
estimated from a randomized placebo-controlled study (Greenwood & 
Yule, 1915; Tentori et al., 2021; Weinberg & Szilagyi, 2010).

While ARRs and RRRs are calculated from the same data, their 
values can vary greatly. For instance, a 50% RRR could correspond 
to an ARR of 30% if the event rate decreases from 60% to 30%. But, 
it could also correspond to an absolute decrease of 1%, if the event 
rate decreases from 2% to 1%. The former would indicate a substantial 
effect, while the latter might be negligible in practice because the 
absolute risk of experiencing the undesirable event is low even without 
the treatment. This distinction highlights the importance of absolute 
measures and baseline risks in decision-making, as emphasized in the 
medical decision-making literature (Bodemer et al., 2014; Gigerenzer 
et al., 2007; Jäntgen, 2023; Natter & Berry, 2005; Sheridan et al., 2003; 
Sprenger & Stegenga, 2017). Conversely, the same ARR can imply very 
different RRRs, depending on the baseline risk (e.g., Bruynesteyn et al., 
2004).

Because RRRs are typically numerically larger than ARRs, especially 
when the baseline risk is low, they may create a disproportionate 
impression of the treatment benefits, which has lead several researchers 
to argue that RRRs can be misleading when communicating health 
information (Ancker et al., 2006; Gigerenzer & Edwards, 2003; Gigeren-
zer et al., 2007; Hembroff et al., 2004; Madrigal et al., 2024; Schwartz 
et al., 1997; Sprenger & Stegenga, 2017). Guidelines for reporting 
treatment effects in RCTs and systematic reviews therefore recommend 
communicating both ARRs and RRRs (Guyatt, Oxman, Akl et al., 2011; 
Guyatt, Oxman, Kunz et al., 2011; Higgins et al., 2023; Moher et al., 
2010), reflecting ongoing debates about the relative merits of each 
measure, such as their stability (portability) across studies and popu-
lations (Deeks, 2002; Doi et al., 2022; Furukawa et al., 2002; Murad 
et al., 2024; Schmid et al., 1998; Xiao et al., 2022). Parallel concerns 
have been raised in philosophy of science, where several authors have 
advanced normative arguments in favor of absolute measures (Colnet 
et al., 2024; Jäntgen, 2023; Sprenger & Stegenga, 2017; Stegenga, 
2015). These debates about effect measures reflect a foundational 
issue central to many disciplines: how to appropriately quantify causal 
influence.

2.2. Measuring causal strength: 𝛥p and causal power

ARR and RRR represent two distinct ways of expressing the impact 
of a treatment on an outcome. Many other fields have engaged in 
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similar debates about how to quantify and interpret causal relation-
ships, leading to different proposals on measuring causal strength. 
Two central metrics for quantifying causal relations are 𝛥𝑃  and causal 
power. Applied to assessing the strength of a causal relation between a 
candidate cause 𝐶 and an effect 𝐸, 𝛥𝑃  formalizes causal strength as the 
difference of the likelihood of the effect given the presence and absence 
of the cause, respectively: 
𝛥𝑃 = 𝑃 (𝑒|𝑐) − 𝑃 (𝑒|¬𝑐) (3)

where 𝑃 (𝑒|𝑐) is the probability of the effect given that the cause is 
present, and 𝑃 (𝑒|¬𝑐) is the probability of the effect given that the 
cause is absent. If the cause increases the likelihood of the effect, 
𝛥𝑃  is positive (e.g., smoking increases the likelihood of lung cancer). 
Conversely, if the cause decreases the likelihood of the effect, 𝛥𝑃  is 
negative (e.g., a vaccination decreases the probability of disease). If 
the presence of the putative cause does not change the likelihood of 
the effect, 𝛥𝑃  is zero (i.e., an ineffective treatment).

Causal power (Cheng, 1997; Glymour, 2003; Novick & Cheng, 2004), 
denoted as 𝑞𝑐 , provides an alternative measure of causal strength 
corresponding to the probability that 𝐶 generates or prevents 𝐸 in the 
absence of alternative influences on the effect. Typically, this quantity 
does not coincide with the probability of the effect in the presence of 𝐶, 
because this empirical probability also includes the influence of other 
(unobserved) causes. For preventive causes (𝛥𝑃 < 0; see Appendix  A.3 
for the generative case), causal power is defined as: 

𝑞𝑐 =
𝑃 (𝑒|𝑐) − 𝑃 (𝑒|¬𝑐)

𝑃 (𝑒|¬𝑐)
= −𝛥𝑃

𝑃 (𝑒|¬𝑐)
(4)

Because causal power denotes a theoretical probability — that is, the 
probability that a cause would generate or prevent the effect in the 
absence of other influencing factors — it is always strictly non-negative 
and ranges between 0 and 1. Like 𝛥𝑃 , causal power is zero if the 
cause neither reduces nor raises the probability of the effect. For other 
scenarios, the two measures usually give different values (see Appendix 
A.1).

2.3. Equivalence of measures of causal strength and risk reductions

Measures of risk reduction and measures of causal strength have 
been proposed in different fields, with distinct problems and applica-
tions in mind. In the medical literature, risk reductions are used to 
measure treatment benefits. In the cognitive science and causal mod-
eling literature, measures of causal strength quantify the magnitude of 
causal relations and provide normative benchmarks for human causal 
learning (Buehner et al., 2003; Griffiths & Tenenbaum, 2005; Lober & 
Shanks, 2000; Meder et al., 2014; Waldmann & Holyoak, 1992). The 
terminology differs across fields, even though the employed measures 
are formally equivalent.

In medical research, common terms include ‘‘treatment and control 
group’’ ‘‘event rates‘‘, ‘‘baseline risk’’, and ‘‘efficacy’’ of treatments. Con-
versely, the causal modeling literature uses the generic terms ‘‘cause’’ 
and ‘‘effect’’ to refer to different conditions and explain how people 
infer causal relations from observed frequencies, with recurring debates 
on how the ‘‘strength’’ of the relations can be expressed formally.

Despite these differences in nomenclature, the mapping of concepts 
is straightforward, especially in experimental designs. The treatment 
group corresponds to instances in which the candidate cause 𝐶 is 
present (e.g., vaccine), whereas the control group corresponds to in-
stances in which the candidate cause is absent (e.g., placebo). The 
effect 𝐸 is the undesirable event (e.g., disease) that the treatment is 
supposed to prevent. Accordingly, the definition of ARR aligns with the 
𝛥𝑃  measure (Eqs.  (1) and (3)): 
𝐴𝑅𝑅 = 𝑃 (event|control) − 𝑃 (event|treatment)

= 𝑃 (𝑒|¬𝑐) − 𝑃 (𝑒|𝑐) (5)
= |𝛥𝑃 |

3 
In the causal literature, 𝛥𝑃  is consistently defined as 𝑃 (𝑒|𝑐)−𝑃 (𝑒|¬𝑐), 
yielding negative values for 𝛥𝑃  in case of a preventive cause that 
reduces the likelihood of the effect, and positive values for generative 
causes that increase the likelihood of the effect. By contrast, in the med-
ical literature, both reductions and increases are commonly expressed 
as non-negative numbers (often percentages), with the direction indi-
cated by the verbal label: 𝑃 (𝑒|𝑐) < 𝑃 (𝑒|¬𝑐) indicates a risk reduction, 
and 𝑃 (𝑒|𝑐) > 𝑃 (𝑒|¬𝑐) signifies a risk increase. Otherwise, however, the 
metrics are defined identically.

Analogously, RRR is mathematically equivalent to causal power in 
preventive scenarios (Eq. (2) and (4)): 

𝑅𝑅𝑅 =
𝑃 (event|control) − 𝑃 (event|treatment)

𝑃 (event|control)

=
𝑃 (𝑒|¬𝑐) − 𝑃 (𝑒|𝑐)

𝑃 (𝑒|¬𝑐)

=
|𝛥𝑃 |

𝑃 (𝑒|¬𝑐)

= 𝑞𝑐

(6)

Thus, while each field employs these measures for distinct purposes, 
using unique labels and terminology, they are mathematically identical. 
Of course, formal equivalence does not imply that all risk reductions 
are causal. In experimental studies, randomization establishes indepen-
dence of the cause from other factors influencing the effect, whereas 
non-experimental studies are more susceptible to confounding and 
other sources of bias. Accordingly, whether a causal interpretation is 
warranted depends not on the chosen measure, but on the conditions 
under which it was derived.

Finally, interpreting ARR and RRR as measures of causal strength 
through their equivalence to 𝛥𝑃  and causal power entails a focus on 
average effects across groups. This interpretation is consistent with 
medical research, where risk reduction measures quantify group-level 
effects based on observed event frequencies, as well as psychological 
research, where 𝛥𝑃  and causal power are used as normative or de-
scriptive models of how people infer general causal tendencies from 
summary data or frequency information (Buehner et al., 2003; Grif-
fiths & Tenenbaum, 2005; Meder et al., 2014). This interpretation is 
also consistent with the causal Bayes net framework adopted in the 
following section, where causal relations are defined over probability 
distributions and interventional quantities are typically interpreted as 
population-level expectations (Pearl, 2000).

3. Counterfactual inference through causal modeling

What are the implications of the equivalence between measures 
of causal strength on the one hand, and measures of risk reductions 
on the other hand? Besides highlighting fundamental parallels in the 
metrics used in different disciplines, the equivalence provides pathways 
for applying causal modeling techniques to make predictions for novel 
contexts. For instance, during the Covid-19 pandemic, human challenge 
trials (Adams-Phipps et al., 2023) deliberately exposed healthy volun-
teers to the virus (Killingley et al., 2022), representing the extreme of 
maximal exposure to the pathogen. In contrast, diseases like smallpox, 
declared eradicated in 1980 (Smith & McFadden, 2002), exemplify the 
other extreme—contexts with effectively zero baseline risk. These two 
situations represent the endpoints of a spectrum with varying baseline 
risk, with some medical problems characterized by fairly stable baseline 
risks (e.g., hypertension or type 2 diabetes) and others, like Covid-
19, being characterized by high volatility, with baseline risk strongly 
varying across time, populations, geography, and personal behavior.

How can we formally model different scenarios and derive empir-
ically testable predictions if the baseline risk in the novel context is 
different from the one in which the treatment effect was assessed? We 
address this question using causal Bayes nets theory, a computational 
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Fig. 1. Basic causal model with a candidate cause 𝐶, an effect 𝐸, and 
the composite of unmeasured background causes 𝐴. Nodes represent domain 
variables and directed edges denote causal relations. Parameters 𝑏𝑐 , 𝑤𝑎, and 
𝑤𝑐 quantify the strength of the relations.

framework that combines graphical causal models and probability cal-
culus to represent generative causal models. The formalism supports 
counterfactual generalizations in a systematic way, even when the 
baseline risk varies. We utilize the framework to reinterpret absolute 
and relative risk reductions as distinct parameterizations of a causal 
graph, illustrating how they can lead to diverging conclusions when 
generalizing treatment effects.

3.1. Causal Bayes nets: Strength and structure

Causal Bayes nets theory provides a formal approach for represent-
ing causal relations and modeling probabilistic inferences across causal 
networks (Pearl, 2000; Pearl et al., 2016; Pearl & Mackenzie, 2018; 
Spirtes et al., 2000). This approach combines qualitative assumptions 
about the causal structure of the domain with quantitative estimates 
specifying the magnitude of the causal relations.

Importantly, the causal Bayes nets framework also offers a causal re-
interpretation of relative and absolute risk reductions, explicating their 
diverging implications when employed to predict treatment outcomes 
across varying baseline risks. To illustrate, we use the vaccine trial 
data (Table  1). Fig.  1 shows the basic causal model for representing 
situations involving a single binary cause 𝐶 and a single binary effect 
𝐸, both of which can be present or absent (Griffiths & Tenenbaum, 
2005; Meder et al., 2014). The arrow connecting 𝐶 and 𝐸 represents 
the presumed causal dependency — the ability of the vaccine to reduce 
the probability of disease. In addition, the model contains a node 𝐴
representing the (unobserved) background causes that generate the 
effect, that is, different ways of contracting Covid-19. (For mathemat-
ical convenience, 𝐴 is assumed to be constantly present; Griffiths and 
Tenenbaum (2005).)

The graphical model is complemented by a set of parameters, 𝑏𝑐 , 
𝑤𝑎, and 𝑤𝑐 . Parameter 𝑏𝑐 denotes the marginal probability of cause 
𝐶. In an RCT with two conditions, 𝑏𝑐 will usually be about 0.5, as 
half of the people are randomly assigned to each condition. In other 
settings, like non-experimental epidemiological studies, this parameter 
could vary strongly and would typically be estimated from data. Pa-
rameter 𝑤𝑎 represents the strength of the background cause 𝐴, which 
captures exogenous influences not explicitly represented in the model. 
An estimate for this influence is provided by the likelihood of the effect 
in the absence of the cause, 𝑃 (𝑒|¬𝑐) — the baseline risk. For instance, 
in the BNT162b2 trial, 162 out of 18,325 participants in the placebo 
group developed Covid, hence 𝑤𝑎 = 0.0088 (0.88%; Table  1). This value 
reflects the comparably low rate of Covid cases in this particular study. 
But, of course, over the course of a pandemic, this probability typically 
fluctuates significantly across time and populations.

Particularly relevant for the present analysis is the parameter 𝑤𝑐 , 
which denotes the strength of cause 𝐶 — the ability of the vaccine 
4 
to reduce disease cases. While 𝑏𝑐 and 𝑤𝑎 correspond to marginal or 
conditional probabilities estimated from observable frequencies, 𝑤𝑐 is 
a parameter reflecting causal strength. Formally, both 𝛥𝑃  and causal 
power provide maximum-likelihood estimates for 𝑤𝑐 in the causal 
graph in Fig.  1, but under distinct assumptions about how 𝐶 and 
𝐴 influence the probability of 𝐸 (Glymour, 2003; Griffiths & Tenen-
baum, 2005). Specifically, 𝛥𝑃  corresponds to the assumption of a 
linear-additive combination, whereas causal power assumes indepen-
dent causal influences following a noisy-OR rule (for generative causes) 
or a noisy-AND-NOT integration rule (for preventive causes) (Pearl, 
1988; Yuille & Lu, 2007). Thus, each measure reflects different theo-
retical assumptions about how causes interact to produce or prevent 
effects. Because ARR and RRR are equivalent to 𝛥𝑃  and causal power, 
respectively, it follows that they also provide maximum-likelihood 
estimates for the causal influence of 𝐶.

Using 𝛥𝑃  and, equivalently, ARR as an estimate for 𝑤𝑐 corresponds 
to the assumption that the probability of 𝐸 is a linear combination 
of 𝐶 and 𝐴, such that the cause decreases the baseline risk by a 
constant amount. Accordingly, the probability of 𝐸 in the presence of 
𝐶 (e.g., probability of disease in vaccinated people) is given by 
𝑃 (𝑒|𝑐, 𝑎;𝑤𝑎, 𝑤𝑐 ) = 𝑎 ⋅𝑤𝑎 + 𝑐 ⋅𝑤𝑐

= 𝑎 ⋅𝑤𝑎 + 𝑐 ⋅ 𝛥𝑃

= 𝑎 ⋅𝑤𝑎 + 𝑐 ⋅ 𝐴𝑅𝑅

(7)

where 𝑎, 𝑐 ∈ {0, 1} denote the presence and absence of candidate 
cause 𝐶 and background cause 𝐴, while 𝑤𝑎 and 𝑤𝑐 denote their causal 
influence. According to this linear parameterization, if 𝐶 is present the 
probability of effect 𝐸 occurring is an additive function of 𝑤𝑎 and 𝑤𝑐 , 
and reduces to 𝑤𝑎 if 𝐶 is absent. In other words, the probability of the 
effect (e.g., Covid-19) is determined by subtracting a fixed amount from 
the baseline risk.

In contrast, using causal power 𝑞𝑐 and, equivalently, RRR as an 
estimate for 𝑤𝑐 corresponds to a different parameterization of the 
graphical model. This approach represents a different structural as-
sumption about how the treatment influences the outcome. Rather 
than subtracting a fixed amount from the baseline risk, as in the 
linear-additive model, this parameterization assumes that the treatment 
reduces the effectiveness of the background cause 𝐴 proportionally. 
Mathematically, this corresponds to a noisy-AND-NOT model, a proba-
bilistic generalization of a logical rule in which effect 𝐸 occurs if 𝐴 is 
active and 𝐶 fails to prevent it (e.g., a vaccine failing to prevent disease 
upon exposure). Conceptually, this parameterization aligns with the 
interpretation of RRR as a proportional reduction in risk, and belongs 
to a broader class of probabilistic functions that capture graded causal 
influence and interactions in the causal Bayes nets framework (Griffiths 
& Tenenbaum, 2005; Novick & Cheng, 2004; Yuille & Lu, 2007). Under 
this assumption, the conditional probability of the effect given the 
cause is given by 
𝑃 (𝑒|𝑐, 𝑎;𝑤𝑎, 𝑤𝑐 ) = 𝑎 ⋅𝑤𝑎(1 − 𝑐 ⋅𝑤𝑐 )

= 𝑎 ⋅𝑤𝑎(1 − 𝑐 ⋅ 𝑞𝑐 )

= 𝑎 ⋅𝑤𝑎(1 − 𝑐 ⋅ 𝑅𝑅𝑅)

(8)

which reflects that 𝐶 probabilistically inhibits the ability of 𝐴 to 
produce the effect, and reduces to 𝑤𝑎 for the probability of 𝐸 when 
𝐶 is absent.

Regardless of whether a linear or noisy-logical parameterization 
of the graph is chosen, the causal-based factorization of the joint 
probability distribution 𝑃 (𝐶,𝐸) recovers the empirical probabilities. 
For instance, in the BNT162b2 trial, 8 out of 18,198 people in the 
vaccine group developed Covid-19 (Table  1), thus 𝑃 (disease|vaccine) =
𝑃 (𝑒|𝑐) = 0.0004. This probability remains consistent whether computed 
directly from the empirical data or derived from the parameterized 
causal model. Specifically, it remains unchanged when using 𝛥𝑃  (abso-
lute risk reduction) or causal power (relative risk reduction) to estimate 
𝑤𝑐 in Eqs. (7) and (8), respectively (see Appendix  A.2 for a numerical 
example).
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Fig. 2. Counterfactual predictions under varying baseline risks. Top row: Data from three randomized control trials of Covid-19 vaccines (Baden et al., 2021; 
Polack et al., 2020; Voysey et al., 2021). Middle row: Corresponding probabilities of Covid given vaccine and placebo, and entailed relative (RRR) and absolute 
risk reduction (ARR). Bottom row: Predicted probability of disease under varying new baseline risks, calculated from a causal model with the treatment effect 
quantified using the ARR (𝛥𝑃 ) or RRR (causal power) (Eqs.  (7) and (8)).
To summarize, given the mathematical equivalence of ARR to 𝛥𝑃
on one hand, and RRR to causal power on the other, this implies that 
both risk measures are maximum-likelihood estimates for the causal 
strength parameter 𝑤𝑐 of the graph show in Fig.  1, but under differ-
ent parameterizations. Thus, when viewed through a causal modeling 
lens, selecting either of these metrics to quantify treatment effects 
incidentally entails the adoption of distinct assumptions on how causes 
influence the effect. Importantly, while both parameterizations accu-
rately capture empirical probabilities, they imply strongly diverging 
predictions for counterfactual inferences about scenarios with baseline 
risks different from the one under which the treatment effect was 
originally estimated.

3.2. Generalizing causal strength and treatment effects to new contexts

The parameterized graph defines a generative model that supports 
causal inferences in a principled way, including predictions about the 
effects of interventions, that is, reasoning about scenarios for which no 
data is (yet) available. Formally, such counterfactuals can be calculated 
by adjusting the model’s parameters to reflect a specific context of 
interest and deriving the desired probability distribution. For example, 
the parameterized causal model in Fig.  1 supports estimating a vac-
cine’s effect in populations where the baseline risks differs from the 
original trial. This can be modeled by adjusting the strength of the 
background cause, 𝑤𝑎, to the desired level and deriving the conditional 
probability distribution of effect 𝐸 given the presence and absence of 
the cause (i.e., predicted disease cases with and without vaccine). For 
instance, a human challenge trial (Adams-Phipps et al., 2023) where 
all subjects are exposed to the pathogen could be modeled by setting 
𝑤𝑎 = 1. Conversely, a context with a virus-free population, akin to 
the conditions following smallpox eradication in the 1970s would be 
simulated by letting 𝑤𝑎 = 0. These scenarios represent the two extremes 
of a spectrum ranging from a theoretical baseline risk of 0% to 100%.

To derive counterfactual predictions, such as the probability of 
disease under different baseline risks (i.e., different values of 𝑤 ), the 
𝑎
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strength 𝑤𝑐 of cause 𝐶 also needs to be quantified. As noted, both 𝛥𝑃
and causal power provide estimates for 𝑤𝑐 , but since they instantiate 
different assumptions of how 𝐴 and 𝐶 interact to generate 𝐸, they 
can yield strongly diverging predictions. In the case of the BNT162b2 
vaccine trial (Table  1), the RRR (equivalent to causal power) was 
approximately 95%, while the ARR (corresponding to 𝛥𝑃 ) was around 
0.84%. These estimates were obtained under a specific baseline risk 
(e.g., in the BNT162b2 trial the baseline risk, as estimated from the 
control group cases, was 0.88%; Table  1).

However, baseline risks can vary substantially across individuals, 
populations, and contexts — especially, but not exclusively, in the case 
of rapidly evolving conditions like a pandemic. Consider the scenario 
where the vaccine is administered to another group of people under 
conditions where the baseline risk is, say, 10% (e.g., healthcare profes-
sionals with greater exposure). Given the original trial, how many cases 
of disease should we expect? For instance, if we had 1000 healthcare 
professionals and a 10% baseline risk of getting infected, we would 
expect about 100 to get infected without vaccines. But what if they 
were vaccinated? Answering this question requires a causal inference 
— we need to generalize the original treatment effect to a new context 
with a different baseline risk.

If we used the ARR, which assumes that the baseline risk is de-
creased by a constant amount, the vaccine would be expected to 
decrease the number of disease cases by only 0.84 percentage points, 
resulting in around 92 cases (9.16%; Eq. (7)). In stark contrast, when 
using a RRR we would predict a 95% reduction from the new baseline, 
yielding an expected 5 disease cases among the vaccinated people 
(0.5%; Eq. (8)).1 In these scenarios, where RRR correctly captures 

1 Note that in practice, we would not expect these exact numbers, due to 
uncertainty about the statistical estimates and other sources of noise. These 
considerations, while important in practical applications, are omitted here as 
they do not touch upon the conceptual argument.
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Fig. 3. Divergence of 𝛥𝑃  and causal power 𝑞𝑐 when generalizing treatment effects to new baseline risks. Top row: Three different scenarios, where the baseline risk 
(probability of effect in the absence of the preventive cause) is rather low (left), intermediate (middle), or high (right). Middle row: Corresponding probabilities 
and values of 𝛥𝑃  (ARR) and causal power (RRR). Bottom row: Predicted probability of the effect given the cause under new baseline probabilities, calculated 
from a causal model where the causal strength of 𝐶 is quantified using 𝛥𝑃  or causal power 𝑞𝑐 (Eqs.  (7) and (8)). The red dot indicates the combination of 𝑃 (𝑒|𝑐)
and 𝑃 (𝑒|¬𝑐) from which the strength of 𝐶 was originally estimated. Shaded area indicate negative predicted probabilities.
the preventive power of the vaccines, ARR strongly underestimates its 
causal impact in terms of reducing disease cases in novel settings.

This divergence between the two measures only becomes larger if 
the baseline risk further increases. For instance, if the baseline risk in a 
human challenge study was 100%, using ARR as a measure of vaccine 
efficacy would predict 99.16% disease cases, whereas a RRR predicts 
5% cases. Fig.  2 illustrates this divergence across varying baseline risks, 
showing the predicted probability of disease for three vaccines against 
Covid-19, using the absolute or relative risk reduction obtained in the 
corresponding clinical trials (Baden et al., 2021; Polack et al., 2020; 
Voysey et al., 2021) as causal strength estimates.

Another problem with using ARR (or equivalently, 𝛥𝑃 ) to quantify 
treatment efficacy is illustrated by cases in which the baseline risk is 
extremely low or effectively zero, as seen in scenarios like the erad-
ication of smallpox. In such circumstances, the probability of disease 
under the linear parameterization inherent in the 𝛥𝑃  model (Eq. (7)) 
erroneously yields a negative probability (Feynman, 1987), although by 
definition probabilities are limited to the interval [0,1]. Generally, this 
happens if the baseline risk in the novel context is below the estimate 
of the absolute reduction. To avoid such cases and to ensure a proper 
probability distribution, it is necessary to manually constrain the sum 
of 𝑤𝑐 and 𝑤𝑎 to the interval [0, 1]. In contrast, the functional form 
inherent in RRR (and equivalently, in the causal power model) correctly 
indicates that the probability of the effect is zero. Generally, using 
causal power and Eq.  (8) always yields a valid probability. Thus, from 
a normative perspective causal power and RRRs are better-behaved 
measures than the 𝛥𝑃  model and ARRs when making predictions for 
scenarios with varying baseline risks.

Does using ARR and the 𝛥𝑃  model always lead to an underestima-
tion of the treatment effect under a new baseline risk, compared to 
using RRR? The answer is no. In fact, we can precisely characterize the 
circumstances under which 𝛥𝑃  and, equivalently, an ARR, yields lower, 
higher, or equal probabilities compared to using causal power. Fig.  3 
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illustrates the diverging implications for three hypothetical scenarios. 
In each case, the strength of 𝐶 is estimated under a specific baseline 
risk (i.e., probability of the effect in the absence of the cause), and then 
used to make inferences about the likelihood of the effect in situations 
with new baseline probabilities. The figure highlights several important 
points.

First, there is always a cross-over of the predicted 𝑃 (𝑒|𝑐) based 
on 𝛥𝑃  vs. causal power. Specifically, the predictions intersect (red 
dot in Fig.  3) at the originally observed 𝑃 (𝑒|𝑐) and 𝑃 (𝑒|¬𝑐). This is 
necessarily the case because if the new baseline probability is identical 
to the original one, both metrics should yield the same 𝑃 (𝑒|𝑐) — 
namely recover the original probability (Appendix  A.2). Second, left 
of this point (i.e., when then new baseline probability is lower than the 
original one), the predicted probability of the effect given the cause 
based on 𝛥𝑃  is lower than the probability predicted by causal power. 
In this case, 𝛥𝑃  and ARR overestimate the treatment effect, relative to 
using RRR. Moreover, negative probabilities will result when the new 
baseline probability is lower than 𝛥𝑃 . Third, right of this point, when 
the new baseline probability is higher than the one under which the 
strength of 𝐶 was estimated, the predicted probability of the effect 
given the cause based on 𝛥𝑃  is higher than the probability predicted by 
causal power. In this case, using 𝛥𝑃  (ARR) underestimates the treatment 
effect, relative to using RRR.

These analyses demonstrate the application of causal modeling tech-
niques to formally represent and assess hypothetical scenarios through 
parameter adjustments in the corresponding causal graph. Note that 
our analyses and predictions based on Eqs.  (7) and (8) assume that the 
treatment effect, quantified using either the ARR or the RRR, remains 
constant when generalizing to new contexts. While such stability may 
not always hold empirically (e.g., the efficacy of a vaccine may vary 
across age groups), our analyses highlight the implications of applying 
each metric under the assumption that they are stable across contexts. 
Additionally, the results emphasize that generalizing causal effects to 
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different baseline risks requires careful consideration of the underlying 
causal mechanisms and how they influence the probability of the 
outcome. For the vaccine example, we adopted the standard medical 
assumption that RRRs capture the preventive power, mathematically 
aligning with a noisy-NOT-AND parameterization where the cause 
probabilistically blocks the effect. Under this assumption, ARRs do 
not adequately generalize due to their assumption of a constant linear 
decrease in risk.

However, we emphasize that this need not be universally true. 
Whether ARR, RRR, or any other effect measure provides a more ap-
propriate basis for generalization critically depends on the underlying 
causal structure of the system and involved mechanisms. In domains 
where treatment effects are better characterized by linear-additive 
shifts in outcome probability (e.g., Bruynesteyn et al., 2004), ARR (𝛥𝑃 ) 
may provide a more appropriate basis for generalization. On this view, 
generalizability, i.e.transportability, is not an intrinsic property of the 
measure alone (Colnet et al., 2024), but fundamentally depends on 
how well the measure’s mathematical assumptions align with the causal 
mechanisms and biological processes at play.

4. Conclusions

We have integrated concepts from three distinct fields: (i) health 
and medical research, which seeks to quantify and generalize treatment 
effects, (ii) risk communication, which is concerned with the under-
standing of health information in patients and health professionals, and 
(iii) cognitive psychology, which investigates how people infer causal 
relations from covariation data. Conceptually, our analyses provide a 
theoretical foundation for interpreting risk reduction measures through 
the lens of causal inference, making causal considerations explicit that 
are otherwise left implicit. From an applied standpoint, the findings 
demonstrate how the causal Bayes nets framework can be leveraged 
to clarify the diverging implications of using ARR and RRR when 
generalizing treatment effects to contexts with varying baseline risks.

Notably, there are further relations between probabilistic theo-
ries of causality proposed in philosophy and psychology, and metrics 
routinely applied in medical research and practice (Sprenger, 2018; 
Stephan et al., 2021). Variants of the 𝛥𝑃  model have also featured 
prominently in philosophy of science and confirmation theory (Crupi 
& Tentori, 2014; Tentori et al., 2007) and models of the value of 
information (Nelson, 2005; Nelson et al., 2022; Wu et al., 2017). These 
relationships provide further traction for theory integration across dis-
ciplinary boundaries, while also highlighting differences among con-
cepts, such as disparities between the definition of generative causal 
power and relative risk increases (see Appendix  A.3 for details). They 
also point to further normative distinctions, as absolute measures have 
been argued to better support rational decision-making than relative 
measures (Colnet et al., 2024; Jäntgen, 2023; Sprenger & Stegenga, 
2017; Stegenga, 2015). Our analyses contribute to these debates by 
specifying the structural assumptions underlying each measure and by 
offering a formal framework that helps to clarify when and why each 
measure is appropriate to use. This perspective also connects to recent 
work by Colnet et al. (2024) who examine the generalizability of a 
broader set of causal effect measures using the potential outcomes 
framework (Imbens & Rubin, 2015), with a focus on covariate shifts 
and treatment effects that vary across subgroups. Notably, their work 
highlights conditions under which linear metrics like ARR may be 
advantageous, providing complementary insights into when and why 
different effect measures support valid generalization.

The analyses also hold specific implications for the different fields 
and central debates that have engaged them. First, our analyses un-
derscore the potential of real-world data for the theoretical and ex-
perimental analysis of human causal induction (Bramley et al., 2017; 
Gerstenberg et al., 2021; Goddu & Gopnik, 2024; Griffiths & Tenen-
baum, 2009; Holyoak & Cheng, 2011; Meder et al., 2014; Waldmann, 
2017). Psychologists have focused on the inference processes that 
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transform raw data (i.e., described or experienced frequencies) into 
estimates of causal strength, with recurring debates about the norma-
tive and descriptive validity of different metrics (Cheng, 1997; Ghomi 
& Stegenga, 2022; Griffiths & Tenenbaum, 2005; Hoefer & Krauss, 
2021; Holyoak & Cheng, 2011; Lober & Shanks, 2000; Meder et al., 
2014; Sprenger, 2018; Sprenger & Stegenga, 2017; Stegenga, 2015). 
Typically, causal learning experiments present participants with styl-
ized scenarios akin to real-world experiments (e.g., hypothetical study 
data on the joint occurrences of a virus and disease cases), typically 
with equal base rates for the presence and absence of the candidate 
cause (Buehner et al., 2003; Griffiths & Tenenbaum, 2005; Meder et al., 
2014). While this design facilitates the assessment of the relevant prob-
abilities assumed to enter the computations, it also incurs a mismatch 
with real-world environments characterized by low probability events, 
such as the comparably low exposure rate to a pathogen like the 
Coronavirus. To enhance ecological validity, empirical studies could 
use real-world data from medical studies (e.g., vaccine trials) as stimuli, 
where base rates are typically much lower and therefore ARR (𝛥𝑃 )
and RRR (causal power) strongly diverge. Participants could then be 
prompted to make inferences about contexts with varying baseline 
risks, where different models imply distinct predictions. Such exper-
iments would provide additional insights into how people generalize 
their rich causal knowledge to novel situations to inform their judgment 
and decision making processes.

Second, our analyses contribute to a causal inference perspective 
on medical problems. Causal modeling techniques support the explicit 
specification of causal structure, which despite recent advances in 
formal methodology remains rare in clinical research. Here, we an-
alyzed common measures of risk reduction from a causal inference 
perspective, highlighting that in contexts where baseline risks vary 
across populations and time, ARRs and RRR make strongly diverg-
ing predictions. These analyses make explicit the causal assumptions 
underlying different measures and emphasize that their utility for 
generalization depends on the alignment between those assumptions 
and the causal mechanisms linking treatment and outcome. By offering 
a unified account of ARRs and RRRs in the language of graphical causal 
models, our findings complement empirical analyses on the stability of 
different metrics (Deeks, 2002; Doi et al., 2022; Furukawa et al., 2002; 
Murad et al., 2024; Schmid et al., 1998; Xiao et al., 2022), and clarify 
the structural conditions under which a given measure should be stable 
(portable) across contexts.

Third, the analyses contribute to the ongoing debate on the interpre-
tation of ARRs and RRRs in health communication. A central concern 
in this discourse is how laypeople (Carling et al., 2009; Hembroff et al., 
2004) and healthcare professionals (Akl et al., 2011; Bucher et al., 
1994; Marcatto et al., 2013) interpret and respond to treatment benefits 
expressed in relative or absolute terms. We argue that both absolute and 
relative risk reductions in isolation are inadequate for communicating 
medical risks and supporting individual decision-making. For instance, 
while both measures quantify the causal impact of a treatment by a 
single number derived from the likelihood of an outcome in one group 
compared to another, research shows that laypeople actually prefer 
having two numbers: one indicating how many people are likely to de-
velop a disease with treatment and another without treatment (Carling 
et al., 2009; Trevena et al., 2006). Thus, instead of being presented with 
a single summary number, people often find it more helpful to see the 
actual risks in both the treatment and control group — a preference 
that most scientists would arguably share. Moreover, informed health 
decisions also require consideration of additional elements, including 
the magnitude of the baseline risk (Bodemer et al., 2014; Marcatto 
et al., 2013; Natter & Berry, 2005; Sheridan et al., 2003), heterogeneity 
of treatment effects across subpopulations (Bruynesteyn et al., 2004; 
Kent et al., 2010), the applicability of summary findings to individual 
patients (Kent & Hayward, 2007; Rothwell, 1995), as well as the quality 
of evidence on which estimates and recommendations are based (Guy-
att, Oxman, Akl et al., 2011; Guyatt, Oxman, Kunz et al., 2011; Higgins 
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Fig. A.4. 𝛥𝑃  and causal power as a function of the probability of the effect in the presence and absence of the candidate cause, 𝑃 (𝑒|𝑐) and 𝑃 (𝑒|¬𝑐). 𝛥𝑃  is always 
in the range [−1, 1], whereas causal power is strictly non-negative in the range [0, 1].
et al., 2023; Moher et al., 2010). Accordingly, standards of evidence-
based health communication consider a broader array of factors to 
support informed and shared decision-making (Bonner et al., 2021; 
Gigerenzer et al., 2007; Woloshin et al., 2023). Promising pathways 
include so-called Fact Boxes (McDowell et al., 2019, 2016; Schwartz 
& Woloshin, 2013) that summarize the best available evidence on the 
benefits and harms associated with medical interventions, as well as 
carefully designed visual information (Woloshin et al., 2023). Thus, 
while our analyses demonstrate that relative reductions provide a more 
accurate assessment of treatment effects when generalizing to varying 
levels of baseline risk, effective risk communication requires a more 
comprehensive approach than providing healthcare professionals and 
the general public with a single number (or two).
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Appendix

A.1. 𝛥P and causal power: Differences in model behavior

Analogously to absolute and relative risk reductions, 𝛥𝑃  and causal 
power can yield very different values when applied to the same data 
(Fig.  A.4). Consider a disease with a baseline risk of 𝑃 (𝑒|¬𝑐) = 0.00002, 
i.e. 2 in 100,000 people have the disease. Assume a vaccine reduces 
this baseline risk to 1 in 100,000, such that 𝑃 (𝑒|𝑐) = 0.00001. In this 
case, 𝛥𝑃 = 0.00001, but causal power 𝑞𝑐 = 0.5, as the vaccine reduces 
the number of cases by 50%.

Generally, the same level of 𝛥𝑃  can entail different levels of causal 
power, depending on the probability of the effect in the absence of 
the cause (i.e., 𝑃 (𝑒|¬𝑐); or the baseline risk). Conversely, low values 
of 𝛥𝑃  can imply maximum values of causal power, namely in those 
cases where the adverse event never occurs in the presence of the cause 
(i.e., 𝑃 (𝑒|𝑐) = 0). In this case, while the level of 𝛥𝑃  depends on and in 
fact is equal to the baseline risk 𝑃 (𝑒|¬𝑐), causal power is always 1 as 
the presence of the cause eliminates the presence of the effect (e.g., if 
a vaccine provides perfect protection against a disease).
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A.2. Causal inference with graphical models: Numerical example

To provide a numerical example for modeling causal inference with 
the graph shown in Fig.  1, we use the data from the BioNTech SARS-
CoV-2 vaccine trial (Polack et al., 2020, Table  1). First, we show how 
the parameterized causal model recovers the empirical probabilities. 
Then, we demonstrate how it can be used to generalize to different 
baseline risks.

The first step is to estimate parameters 𝑤𝑎 and 𝑤𝑐 from the ob-
served frequencies (The base rate of the cause, 𝑏𝑐 , can be estimated 
analogously, but is not relevant for the present purposes.) If we use 
maximum-likelihood point estimates derived from the observed fre-
quencies for estimating 𝑤𝑎 and 𝑤𝑐 , the conditional probability of the 
effect given the cause computed via Eqs.  (7) and (8) corresponds 
exactly to the empirical probability (i.e., proportion of observed disease 
cases in the vaccine group). We do not consider alternative approaches 
based on Bayesian methods (for details, see Griffiths & Tenenbaum, 
2005; Lu et al., 2008; Meder et al., 2014) here for the sake of sim-
plicity. While Bayesian methods involve more intricate mathematical 
computations, the conceptual implications do not change.

In the BNT162b2 trial, 8 out of 18,198 people in the vaccine group 
developed Covid-19 (Table  1). Hence, 𝑃 (disease|vaccine) = 𝑃 (𝑒|𝑐) =
8∕181988 = 0.0004. This probability remains consistent when com-
puting 𝑃 (𝑒|𝑐) from the parameterized causal model according to Eq. 
(7) and using 𝛥𝑃  (absolute risk reduction) as an estimate for 𝑤𝑐 , or 
when using Eq.  (8) and using causal power (relative risk reduction) 
as an estimate for 𝑤𝑐 . An estimate for the strength of the background 
cause, or baseline risk, is provided by the number of disease cases in 
the placebo group, where 162 out of 18,325 participants developed 
Covid-19 (Table  1). Thus, 𝑤𝑎 =

162
18,325 = 0.0088.

For estimating causal strength, represented by 𝑤𝑐 , we can either use 
𝛥𝑃 , which is equal to an absolute risk reduction, or causal power, which 
corresponds to a relative risk reduction. First, we compute 𝛥𝑃 : 
𝛥𝑃 = 𝑃 (𝑒|𝑐) − 𝑃 (𝑒|¬𝑐)

= 8
18198

− 162
18325

= 0.0004 − 0.0088

= −0.0084

(A.1)

Next, we use Eq.  (7) to compute the conditional probability of the effect 
given the cause, that is, the probability of Covid-19 given vaccination: 
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𝑃 (𝑒|𝑐, 𝑎;𝑤𝑎, 𝑤𝑐 ) = 𝑎 ⋅𝑤𝑎 + 𝑐 ⋅𝑤𝑐

= 𝑎 ⋅𝑤𝑎 + 𝑐 ⋅ 𝛥𝑃

= 𝑎 ⋅𝑤𝑎 + 𝑐 ⋅ 𝐴𝑅𝑅

= 0.0088 − 0.0084

= 0.0004

(A.2)

This probability is identical to the probability obtained from the ob-
served frequencies as computed above.

Next, we show that the same probability obtains when using causal 
power 𝑞𝑐 instead of 𝛥𝑃  as estimate for 𝑤𝑐 (Eq.  (4)), and compute the 
probability of the effect given the cause according to Eq.  (8). Using 
causal power as estimate for 𝑤𝑐 corresponds to an alternative parame-
terization of the graph, instantiating a probabilistic generalization of 
logical functions (Pearl, 1988; Yuille & Lu, 2007). Incidentally, this 
aligns with using a relative risk reduction as a measure of vaccine 
efficacy. First, we compute the causal power of the vaccine according 
to the observed data (Table  1): 

𝑞𝑐 =
𝑃 (𝑒|𝑐) − 𝑃 (𝑒|¬𝑐)

𝑃 (𝑒|¬𝑐)

= −𝛥𝑃
𝑃 (𝑒|¬𝑐)

= 0.0084
0.0088

= 0.95

(A.3)

Now we can compute the probability of the effect (Covid-19) given 
the cause (vaccine) in accordance with Eq.  (8): 
𝑃 (𝑒|𝑐, 𝑎;𝑤𝑎, 𝑤𝑐 ) = 𝑎 ⋅𝑤𝑎(1 − 𝑐 ⋅𝑤𝑐 )

= 𝑎 ⋅𝑤𝑎(1 − 𝑐 ⋅ 𝑞𝑐 )

= 𝑎 ⋅𝑤𝑎(1 − 𝑐 ⋅ 𝑅𝑅𝑅)

= 0.0088(1 − 0.95)

= 0.0004

(A.4)

Again, this yields the same probability as calculated directly from the 
empirical frequencies.

These calculations illustrate how one can perform probabilistic 
causal inferences with a parameterized causal model. For the present 
purpose, we have used maximum-likelihood estimates for the graph’s 
parameters that are directly derived from the empirical data. Accord-
ingly, the recalculated probability of effect given cause corresponds 
exactly to the empirical proportion, both under a linear-additive pa-
rameterization based on 𝛥𝑃  and a noisy-logical parameterization based 
on causal power.

This approach corresponds to a causality-based factorization of the 
joint probability distribution over 𝐶 and 𝐸, which enables inferences 
about scenarios that differ from the observed data. In particular, we 
can perform counterfactual reasoning by making inferences about novel 
situations for which no data is (yet) available. For instance, we might be 
interested in making predictions about the expected number of disease 
cases under a baseline risk different from the one under which the 
treatment effect was estimated (e.g., for a group of health professionals 
who have a much higher risk of being exposed to the virus). This 
inference can be modeled by setting the parameter 𝑤𝑎 to the desired 
baseline risk, where a baseline risk of 1% would correspond to 𝑤𝑎 =
0.01, a baseline risk of 30% would correspond to 𝑤𝑎 = 0.3, etc.

Importantly, in this case it does matter whether a linear or noisy-
logical parameterization of the graph is adopted, hence whether an 
absolute or relative risk reduction is used to quantify vaccine efficacy. 
9 
An absolute risk reduction amounts to a linear-additive parameteriza-
tion; accordingly, the predicted probability of the effect given the cause 
when the baseline risk is 30% (i.e., 𝑤𝑎 = 0.3) would be 
𝑃 (𝑒|𝑐, 𝑎;𝑤𝑎, 𝑤𝑐 ) = 𝑎 ⋅𝑤𝑎 + 𝑐 ⋅𝑤𝑐

= 𝑎 ⋅𝑤𝑎 + 𝑐 ⋅ 𝛥𝑃

= 𝑎 ⋅𝑤𝑎 + 𝑐 ⋅ 𝐴𝑅𝑅

= 0.3 − 0.0084

= 0.2916

(A.5)

Thus, when making a generalization using an absolute risk reduction, 
the inherent linearity assumption yields an (erroneous) estimate of 
about 29%.

In stark contrast, using a relative risk reduction yields a very differ-
ent estimate, which aligns with the assumption that the vaccine should 
prevent the disease in 95% of the cases: 
𝑃 (𝑒|𝑐, 𝑎;𝑤𝑎, 𝑤𝑐 ) = 𝑎 ⋅𝑤𝑎(1 − 𝑐 ⋅𝑤𝑐 )

= 𝑎 ⋅𝑤𝑎(1 − 𝑐 ⋅ 𝑞𝑐 )

= 𝑎 ⋅𝑤𝑎(1 − 𝑐 ⋅ 𝑅𝑅𝑅)

= 0.3(1 − 0.95)

= 0.015

(A.6)

For instance, if we had 1000 health care professionals with a 30% 
base line risk, without vaccination we would expect about 300 to get 
infected. If they were vaccinated, we would expect that 95% of these 
cases would be prevented, leaving 15 expected disease cases among the 
vaccinated people.

A.3. Relative risk increases and generative causal power

Analogously to absolute and relative risk reductions, the medical lit-
erature uses quantitative estimates to assess increases in health-related 
risks, such as the increased risk of skin cancer from repeated sunlight 
exposure or the increased risk of lung cancer for smokers. Experimental 
study designs that regularly examine potentially beneficial interven-
tions for risk reduction also reveal risk increases for adverse events due 
to the interventions (e.g. allergic responses to medications). Similar to 
the preventive case there are fundamental mathematical relationships 
among the concepts used in the medical and causal modeling literature.

The absolute risk increase (ARI) is defined analogously to the pre-
ventive case as the arithmetic difference between the event rate in 
a control condition compared to a condition where participants have 
been exposed to the risk factor or treatment (Eq.  (1)). Thus, both 
absolute risk increases and absolute risk reductions align with the 𝛥𝑃
model, quantifying the (beneficial or harmful) change in risk as an 
absolute difference in the probability of the effect in the presence and 
absence of the cause.

In contrast, a relative risk increase (RRI) as used in the medical 
literature and generative causal power are not defined identically. The 
relative increase normalizes the absolute risk increase by the event rate 
in the control group: 

𝑅𝑅𝐼 =
𝑃 (event|treatment) − 𝑃 (event|control)

𝑃 (event|control) (A.7)

However, for generative causes (𝛥𝑃 > 0), causal power is defined 
as 

𝑞𝑐 =
𝑃 (𝑒|𝑐) − 𝑃 (𝑒|¬𝑐)

1 − 𝑃 (𝑒|¬𝑐)
= 𝛥𝑃

1 − 𝑃 (𝑒|¬𝑐)
(A.8)

where 1 − 𝑃 (𝑒|¬𝑐) serves as denominator. This normalization ensures 
that generative causal power is always in the range [0,1], whereas the 
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Fig. A.5. Generalizing generative causes to situations with a new baseline risk. Top row: Three different scenarios, where the baseline risk (i.e., probability of 
effect in the absence of the generative cause) is low (left), intermediate (middle), or high (right). Middle row: Corresponding probabilities and values of 𝛥𝑃
(ARR) and causal power (RRR). Bottom row: Predicted probability of the effect given the cause under new baseline probabilities, calculated from a causal model 
where the causal strength of 𝐶 is quantified using 𝛥𝑃  or causal power 𝑞𝑐 (Eqs.  (7) and (A.10), respectively). The red dot indicates the combination of 𝑃 (𝑒|𝑐) and 
𝑃 (𝑒|¬𝑐) from which the strength of 𝐶 was originally estimated. The shaded area indicates predicted probabilities that exceed unity.
calculation of a relative risk increase (Eq.  (A.7)) does not impose any 
such constraints, rather making the RRI a multiple of the baseline risk. 
Generative causal power is zero when the cause does not change the 
probability of the effect (i.e., 𝛥𝑃 = 0), and obtains the maximum value 
of 1 if 𝑃 (𝑒|𝑐) = 1, regardless of the value of the baseline risk, 𝑃 (𝑒|¬𝑐).

Both relative risk increases and generative causal power quantify 
increases in the probability of the effect given the cause event. How-
ever, normatively generative causal power has several advantages over 
relative risk increases as defined in the medical literature. First, gener-
ative power is constrained to the same range as relative risk reductions, 
namely [0,1] (or, when expressed as percentages, 0%–100%). This 
symmetry facilitates a causal interpretation analogously to decreases in 
risk. Second, mathematically causal power is better behaved: because 
the denominator in the definition of relative risk increases is 𝑃 (𝑒|¬𝑐), 
the measure is undefined if the effect never occurs in the absence of the 
cause (Eq.  (A.8)). To illustrate, assume 10 people eat a fish dish (cause 
𝐶) and get food poisonings afterwards (effect 𝐸), whereas 10 other 
people eat no fish and develop no food poisoning. Accordingly, 𝑃 (𝑒|𝑐) =
1 and 𝑃 (𝑒|¬𝑐) = 0. Using Eq.  (A.7) entails division by zero, leaving 
the risk increase undefined. By contrast, generative causal power is 
defined and takes value 1 (Eq.  (A.8)), suggesting that the fish caused 
the food poisoning. Third, relative increases can loom large even if the 
overall risk remains very low. For instance, a factor that increases the 
risk from 0.001% (1 in 100,000) to 0.002% (2 in 100,000) increases 
the relative risk by 100%, although the absolute risk is still fairly low. 
Causal power, being bounded between 0 and 1, does not suffer from 
this shortcoming: 

𝑞𝑐 =
𝑃 (𝑒|𝑐) − 𝑃 (𝑒|¬𝑐)

1 − 𝑃 (𝑒|¬𝑐)
= 𝛥𝑃

1 − 𝑃 (𝑒|¬𝑐)

=
(0.0002 − 0.0001)
(1 − 0.00001)

= 0.0001
(1 − 0.0001)

(A.9)
≈ 0.00001
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This low value better aligns with the intuition that the candidate cause 
has only a weak influence on the likelihood of the effect. Fourth, using 
generative causal power ensures that the estimate can be incorporated 
into a causal modeling framework and be used to represent 𝑤𝑐 , thereby 
supporting counterfactual inferences and the evaluation of hypothetical 
scenarios. Thus, from a normative perspective generative causal power 
is a better-behaved metric that relative risk increases as defined in the 
medical literature. Pragmatically though, it seems unlikely to replace 
an established measure like relative risk increase.

Like in the preventive case, using an absolute risk increase or, equiv-
alently, 𝛥𝑃 , as estimate for 𝑤𝑐 in the causal graph (Fig.  1) corresponds 
to a linear parameterization. In contrast, using generative causal power 
(but not an RRI) instantiates a so-called noisy-OR parameterization, 
which extends the logical OR by allowing the cause events 𝐴 and 𝐶
to influence 𝐸 probabilistically (Cheng, 1997; Glymour, 2003; Pearl, 
1988; Yuille & Lu, 2007). Given a noisy-OR parameterization, the 
conditional probability of the effect given the cause (e.g., probability 
of infection given vaccine) can be computed from the causal model’s 
parameters as follows: 
𝑃 (𝑒|𝑐, 𝑎;𝑤𝑐 , 𝑤𝑎) = 𝑐 ⋅𝑤𝑐 + 𝑎 ⋅𝑤𝑎 − 𝑐 ⋅𝑤𝑐𝑐 ⋅ 𝑎 ⋅𝑤𝑎 (A.10)

where 𝑎, 𝑐 ∈ {0, 1} denote the presence and absence of candidate cause 
𝐶 and background cause 𝐴, and 𝑤𝑎 and 𝑤𝑐 denote their causal strength.

Like in the preventive case, using causal power has several advan-
tages compared to using a linear parameterization where 𝛥𝑃  provides 
the estimate for 𝑤𝑐 . Fig.  A.5 illustrates this using three scenarios analo-
gous to the analysis of preventive causes and risk reductions (Fig.  3). In 
each instance, the causal impact of the cause is assessed under a specific 
baseline risk 𝑃 (𝑒|¬𝑐), and this estimate is then utilized to draw infer-
ences about the likelihood of the effect in scenarios with new baseline 
probabilities, that is, 𝑃 (𝑒|𝑐). Analogous to the preventive case, there is 
always a crossover of the predicted 𝑃 (𝑒|𝑐) based on 𝛥𝑃  versus causal 
power. The intersection is always located at values of 𝑃 (𝑒|𝑐) and 𝑃 (𝑒|¬𝑐)
that were originally used to estimate causal strength, because for this 
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particular combination both measures recover the original 𝑃 (𝑒|𝑐). To 
the left of this point, i.e., when the new baseline probability is lower
than the original one, the predicted conditional probability of the effect 
given the cause based on 𝛥𝑃  (or, equivalently, an ARR) is lower than 
the probability predicted by the causal power model. Conversely, to the 
right of this point, i.e., when the new baseline probability is higher than 
the one under which the strength of 𝐶 was estimated, the predicted 
probability of the effect given the cause based on 𝛥𝑃  is higher than the 
probability predicted by causal power. Moreover, as in the preventive 
scenarios a linear parameterization based on 𝛥𝑃  does not always yield 
valid probability estimates. Specifically, while in the preventive case 
negative probabilities result if the new baseline probability is lower 
than the (absolute) value of 𝛥𝑃 , in generative scenarios the probability 
estimates exceed unity if the baseline risk is higher than 1 − 𝛥𝑃 .
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