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Abstract
Any new medical innovation must first prove its benefits with reliable evi-
dence from clinical trials. Evidence is commonly expressed using two met-
rics, summarizing treatment benefits based on either absolute risk reductions
(ARRs) or relative risk reductions (RRRs). While both metrics are derived
from the same data (e.g., observed frequencies of a disease in a treatment
and control group), they implement conceptually and causally distinct ideas.
Here, we analyze these risk reductions measures from a causal modeling per-
spective, revealing an isomorphic relationship to central measure of causal
strength and causal Bayes nets. First, we show that ARR is equivalent to
∆P , while RRR is equivalent to causal power, thus clarifying the implicit
causal assumptions. Second, we show how this formal equivalence establishes
a relationship with causal Bayes nets theory, offering a basis for incorporat-
ing risk reduction metrics into a computational causal modeling framework.
Drawing on these analyses, we demonstrate that under dynamically varying
baseline risks, ARRs are inadequate when generalizing treatment effects to
novel contexts. Specifically, the inherent assumption of a linear parameter-
ization of the underlying causal graph leads to incorrect conclusions when
generalizing to baseline risks differing from those from which the original
effect was obtained. For instance, generalizing the effect of a vaccine to new
contexts with different baseline risks (e.g., from one population to another).
Our analyses highlight the shared principles underlying risk reduction met-
rics and measures of causal strength, emphasizing the potential for explicat-
ing causal structure and inference in medical research.

Keywords: causal models, relative risk reduction, absolute risk reduction,
causal power, causal Bayes net, causal modeling, risk communication, coun-
terfactuals
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During the Covid-19 pandemic, the quantification of risk posed an important chal-
lenge. How dangerous was it to go to the grocery store in person vs. paying extra to have
them delivered to your doorstep? How much safer was it to go to crowded places once
you had one or two vaccines? We all struggled with these dilemmas, while medical profes-
sions fought to communicate the most accurate information to the public. Assessing and
communicating the effectiveness of vaccinations and treatments against Covid-19 made this
challenge even more complex, further complicating the public’s understanding of risk and
benefits.

This struggle highlights a broader issue in public health: the quantification and
communication of treatment effects. Quantifying the causal impact of treatments and com-
municating medical information in an effective manner remains a key challenge for public
policy and informed decision making (Bonner et al., 2021). Two widely used metrics for
quantifying treatment benefits are relative and absolute risk reductions, which convey infor-
mation about risk changes, such as the reduced risk of disease for vaccinated individuals or
the reduced risk of recurrence for patients undergoing chemotherapy. These measures play
a crucial role in summarizing study outcomes, in the communication of treatment benefits
to healthcare professionals and the public, as well as tools for generalizing medical effects
to new contexts and populations.

Mathematically, absolute and relative risk reductions are calculated from the same
information, such as the frequency of an undesirable outcome in a randomized control
trial (RCT). Absolute risk reductions (ARRs) correspond to the arithmetic difference in
event rates between a treatment and a control group, quantifying the size of the effect and
providing an estimate of how likely an individual will benefit from a treatment. Relative risk
reductions (RRRs) correspond to a normalized difference in event rates, where the reduced
risk in the treatment group is expressed relative to the event rate in the control group.
While derived from the same data, psychologically the two formats can yield diverging
evaluations in both lay people and health care professionals (Akl et al., 2011; Bobbio et al.,
1994; Covey, 2007; Marcatto et al., 2013; Perneger & Agoritsas, 2011). These discrepancies
have sparked debates on the relative merits of each metric, leading to recommendations
for reporting both quantities when communicating treatment benefits and harms (Higgins
et al., 2023; Moher et al., 2010).

Here, we highlight central connections between the risk reduction measures used in
medical research on the one hand, and causal learning theory and the framework of causal
Bayes nets theory on the other hand. First, we demonstrate that absolute and relative risk
reductions are mathematically equivalent to two prominent measures of causal strength,
namely the ∆P model (Cheng & Novick, 1992; Waldmann & Holyoak, 1992) and the
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causal power model (Cheng, 1997; Novick & Cheng, 2004). Thus, measures from the causal
modeling literature are incidentally used under different labels in medical research and risk
communication, yet these connections are not well known (but see Sprenger, 2018). Second,
we show how this equivalence establishes connections with the formalism of causal Bayes
nets (Glymour, 2003; Pearl, 2000; Pearl & Mackenzie, 2018; Spirtes et al., 2000), offering a
basis for incorporating risk reductions into a causal modeling framework. This integration
reveals how the choice of a particular risk reduction measure inevitably corresponds to
different assumptions about how causes probabilistically influence an undesirable outcome.
Third, we highlight the diverging consequences of employing either absolute or relative
risk reductions to measure treatment effects when generalizing study results to scenarios
with different baseline risks, demonstrating the limitations of absolute risk measures for
counterfactual causal inference.

From Risk Reductions to Measures of Causal Strength

The purpose of risk reductions metrics is to quantitatively summarize treatment
effects, such as the impact of a vaccine on disease cases. This problem is both conceptu-
ally and mathematically related to the problem of causal induction: How can we induce
unobservable causal relations from observed data and quantify their strength? The nature
of the inference mechanisms that support the development of both intuitive and scien-
tific theories about the world is a key issue in philosophy (Cartwright, 2007), psychology
(Waldmann, 2017), statistics (Pearl et al., 2016), and machine learning (Schölkopf, 2022).
Because medical interventions naturally refer to cause-effect relations, researchers have also
emphasized the importance of causal inference in the medical domain (Bareinboim & Pearl,
2016; Etminan et al., 2020; Greenland et al., 1999; Prosperi et al., 2020; Sanchez et al.,
2022; Stovitz & Shrier, 2019). At the same time, explicit specification and consideration of
causal structure is rare, despite the potential of recent advancements for clinical research.
For instance, causal modeling techniques provide a calculus for expressing the key difference
between observational and interventional probabilities, thereby supporting the development
of interventional clinical predictive models and the calculation of counterfactuals (Prosperi
et al., 2020; Sanchez et al., 2022).

Here, we offer a causal analysis of risk reduction metrics, showing that measures
from the causal modeling literature are commonly applied under different labels in both
medical research and risk communication. Our analyses clarify the implicit assumptions
arising from the alignment between risk reduction formats and metrics of causal strength.
They also reveal the limitations of using ARRs to predict a treatment’s effect in scenarios
where the baseline risk differs from that used for the initial estimation.

Measuring treatment effects: Absolute and relative risk reductions

Absolute and relative risk reductions are measures for quantifying changes in the risk
associated with the occurrence of an adverse binary health outcome (e.g., disease present
or absent). Applied to an experimental design with two groups (treatment vs. control),
the ARR of a treatment corresponds to the arithmetic difference of the probability of the
adverse outcome under the treatment (e.g., vaccine) compared to the control group (e.g.,
placebo):
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ARR = P (event|control) − P (event|treatment) (1)

In applied settings, these probabilities and their difference are typically expressed as per-
centages. Consider the Covid-19 pandemic, where different vaccines were evaluated in ran-
domized controlled trials (e.g., Baden et al., 2021; Polack et al., 2020; Voysey et al., 2021).
For instance, in the BNT162b2 (Pfizer-BioNTech) phase 3 trial, 162 out of 18,325 people
(0.88%) in the placebo group developed symptomatic Covid-19, compared to 8 out of 18,198
people (0.04%) in the vaccine group (Polack et al., 2020). The absolute risk reduction is
the difference between these event rates, which is 0.88% − 0.04% = 0.84 percentage points
(Table 1). This measure provides a quantitative estimate of the vaccine’s ability to reduce
disease cases.

Another way of expressing treatment benefits is the relative risk reduction (RRR).
The RRR normalizes the arithmetic difference (i.e., ARR) on the probability of the disease
in the control group:

RRR = P (event|control) − P (event|treatment)
P (event|control) (2)

Given the observed frequencies in the BNT162b2 trial, the RRR is 95%, as it reduces the
number of infections from 162 cases in the placebo group to 8 cases in the vaccine group.
Risk reductions and treatment benefits are frequently expressed in such relative terms. For
instance, in vaccine epidemiology the efficacy of a vaccine is commonly defined as the RRR
estimated from a randomized placebo-controlled study (Greenwood & Yule, 1915; Tentori
et al., 2021; Weinberg & Szilagyi, 2010).

Table 1

Data from the BNT162b2 vaccine trial against Covid-19 (Polack et al., 2020). Shown are
registered (symptomatic) Covid-19 cases in the vaccine and placebo group. Computed are
the probability of the event (Covid-19) in each group, absolute risk reduction (ARR), and
relative risk reduction (RRR).

Covid-19 No Covid-19 P(Event) ARR RRR
Control: Placebo 162 18,163 0.88% 0.84% 95%
Treatment: Vaccine 8 18,190 0.04%

While ARRs and RRRs are calculated from the same data, their values can vary
greatly. For instance, a 50% RRR could correspond to an ARR of 30% if the event rate
decreases from 60% to 30%. But, it could also correspond to an absolute decrease of 1%,
if the event rate decreases from 2% to 1%. The former would indicate a substantial effect,
while the latter might be negligible in practice because the absolute risk of experiencing the
undesirable event is low even without the treatment. Thus, a given relative reduction can
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correspond to widely varying absolute reductions, with these differences crucially depending
on the baseline risk.

This discrepancy can have profound implications for communicating medical infor-
mation to policy makers, healthcare professionals, and laypeople. For instance, RRRs tend
to yield more positive assessments of treatment benefits through healthcare professionals
and laypeople than when the same effects are expressed as ARRs (Akl et al., 2011; Covey,
2007; Forrow et al., 1992; Malenka et al., 1993). Several researchers have therefore argued
that only reporting RRRs can be misleading when communicating health information to
practitioners and the general public (Ancker et al., 2006; Gigerenzer & Edwards, 2003;
Gigerenzer et al., 2007; Hembroff et al., 2004; Sprenger & Stegenga, 2017). For instance,
during the Covid-19 pandemic some researchers criticized the communication of vaccine
efficacy as a RRR (e.g., “the vaccine has a 95% efficacy”, reflecting a 95% relative reduc-
tion in disease cases compared to the placebo group). They argue that ARRs are more
sensitive to the baseline risk and can more readily illustrate how many people need to be
vaccinated to prevent one additional case of the disease, and that RRRS are more likely
to lead to misinterpretations because people would confuse the underlying reference groups
and to whom the risk reduction applies (Brown, 2022; Marabotti, 2022; Olliaro et al., 2021).
Similar arguments have been proposed in other domains, such as consumer psychology and
advertising (Madrigal et al., 2024) and philosophy of science (Sprenger & Stegenga, 2017;
Stegenga, 2015). To offer a balanced view, guidelines for reporting treatment effects in
RCTs and systematic reviews recommend to communicate both ARRs and RRRs (Higgins
et al., 2023; Moher et al., 2010; Working Group GPGI, 2016).

Measuring causal strength: ∆P and causal power

Two common metrics for quantifying the strength of a causal relation are ∆P and
causal power. In psychology, the ∆P model was originally proposed in the context of
evaluating the statistical contingency between two events (Jenkins & Ward, 1965), such
as the dependency between responses and outcomes. Variants of the model have been
proposed in causal learning theory (Cheng & Novick, 1990, 1992; Waldmann & Holyoak,
1992), psychophysics (Allan et al., 2008), philosophy of science (Carnap, 1962; Crupi &
Tentori, 2014), and decision science (Nelson et al., 2022; Wu et al., 2017). The ∆P rule
is also closely related to the influential Rescorla-Wagner model of classical conditioning
(Danks, 2003; Rescorla & Wagner, 1972).

Applied to assessing the strength of a causal relation between a candidate cause C
and an effect E, ∆P formalizes causal strength as the difference of the likelihood of the
effect given the presence and absence of the cause, respectively:

∆P = P (e|c) − P (e|¬c) (3)

where P (e|c) is the probability of the effect given that the cause is present, and P (e|¬c) is
the probability of the effect given that the cause is absent. Typically, these probabilities are
estimated from the relative frequency of events where effect E occurs in the presence and
absence of C. If the cause increases the likelihood of the effect, ∆P is positive (e.g., smoking
increases the likelihood of lung cancer). Conversely, if the cause decreases the likelihood of
the effect, ∆P is negative (e.g., a vaccination decreases the probability of disease). If the
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presence of the putative cause does not change the likelihood of the effect, ∆P is zero (i.e.,
an ineffective treatment).

Causal power (Cheng, 1997; Glymour, 2003; Novick & Cheng, 2004), denoted as qc,
provides an alternative measure of causal strength corresponding to the probability that C
generates or prevents E in the absence of alternative influences on the effect. Typically,
this quantity does not coincide with the probability of the effect in the presence of C,
because this empirical probability also includes the influence of other (unobserved) causes.
For preventive causes (∆P < 0), causal power is defined as

qc = P (e|c) − P (e|¬c)
P (e|¬c) = −∆P

P (e|¬c) (4)

Because causal power denotes a theoretical probability — the probability of generating or
preventing the effect if no other causes were present — it is always strictly non-negative
and ranges between 0 and 1. Like ∆P , causal power is zero if the cause neither reduces
nor raises the probability of the effect. For other scenarios, the two measures usually give
different values (see section A1 in the Appendix). In preventive scenarios where the cause
reduces the probability of the effect (negative ∆P ), a power of 1 results if the effect never
occurs in the presence of the cause, regardless of the level of the baseline probability.

Equivalence of measures of causal strength and risk reductions

Measures of risk reduction and measures of causal strength have been proposed in
different fields, with distinct problems and applications in mind. In the medical litera-
ture, risk reductions are used to measure treatment benefits. In the cognitive science and
causal modeling literature, measures of causal strength quantify the magnitude of causal
relations and provide normative benchmarks for human causal learning (Buehner et al.,
2003; Griffiths & Tenenbaum, 2005; Lober & Shanks, 2000; Meder et al., 2014; Waldmann
& Holyoak, 1992). The terminology differs across fields, even though the employed mea-
sures are formally equivalent. In medical research, common terms include “treatment and
control group” “event rates“, “baseline risk”, and “efficacy” of treatments. Conversely, the
causal modeling literature uses the generic terms “cause” and “effect” to refer to different
conditions and explain how people infer causal relations from observed frequencies, with
recurring debates on how the “strength” of the relations can be expressed formally.

Despite these differences in nomenclature, the mapping of concepts is straightfor-
ward, especially in experimental designs. The treatment group corresponds to instances
in which the candidate cause C is present (e.g., vaccine), whereas the control group corre-
sponds to instances in which the candidate cause is absent (e.g., placebo). The effect E is
the undesirable event (e.g., disease) that the treatment is supposed to prevent. Accordingly,
the definition of ARR aligns with the ∆P measure (Equations 1 and 3):

ARR = P (event|control) − P (event|treatment)

= P (e|¬c) − P (e|c)

= |∆P |

(5)
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Notably, in the causal literature, ∆P is consistently defined as P (e|c) − P (e|¬c), yielding
negative values for ∆P in case of a preventive cause that reduces the likelihood of the
effect, and positive values for generative causes that increase the likelihood of the effect. By
contrast, in the medical literature, both reductions and increases are commonly expressed
as non-negative numbers (often percentages), with the direction indicated by the verbal
label: P (e|c) < P (e|¬c) indicates a risk reduction, and P (e|c) > P (e|¬c) signifies a risk
increase. Otherwise, however, the metrics are defined identically.

Analogously, RRR is mathematically equivalent to causal power in preventive sce-
narios (Eq. 2 and 4):

RRR = P (event|control) − P (event|treatment)
P (event|control)

= P (e|¬c) − P (e|c)
P (e|¬c)

= |∆P |
P (e|¬c)

= qc

(6)

Since causal power represents a theoretical probability – the likelihood of generating or
preventing the effect in the absence of other causes – it is always strictly non-negative,
ranging from 0 to 1.

Thus, while each field employs these measures for distinct purposes, using unique
labels and terminology, they are mathematically identical. Of course, formal equivalence
does not imply that all risk reductions are causal. Causal interpretations of risk reductions
are often justified, for example when risk reductions are used to quantify treatment effects
in RCTs (e.g. vaccine efficacy). However, since the probabilities used to compute risk re-
ductions can be calculated over arbitrary sets of events, additional criteria must be met
to justify a causal interpretation, such as the independence of the candidate cause from
other factors influencing the effect (Cheng, 1997). In experimental studies, randomization
establishes this independence. Accordingly, risk reductions derived from experimental data
justify a causal interpretation, consistent with the normative constraints imposed in the
causal learning literature to infer causation from statistical regularities (Cheng, 1997; Gly-
mour, 2003; Pearl, 2000). The situation is more complicated with non-experimental data,
since confounding variables can introduce additional causal influences. Thus, while risk
reductions and measures of causal strength can be computed over arbitrary sets of events,
whether a causal interpretation is warranted depends on additional criteria.1

1Formally, to mark the distinction between observational and interventional probabilities, one can use
Pearl’s (2000) do-operator (Lagnado & Sloman, 2004; Meder et al., 2008; Waldmann & Hagmayer, 2005).
In this case, the observational probability P (e|c) denotes that the presence of candidate cause C has merely
been observed, whereas P (e|do c) represents explicitly that the presence of the candidate cause was set by
means of intervention, rendering it independent of other events. Throughout this paper, our focus lies on
interventional scenarios, hence the quantities entering the computations are interventional probabilities (as
for instance resulting from experimental designs like randomized control trials). For the sake of simplicity,
we omit the do-operator notation, but it is important to keep this constraint in mind as it is a common
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Counterfactual inference through causal modeling

What are the implications of the equivalence between measures of causal strength
on the one hand, and measures of risk reductions on the other hand? Besides highlighting
fundamental parallels in the metrics used in different disciplines, our integration provide
pathways for applying causal modeling techniques to make predictions for novel contexts.
For instance, against the backdrop of the Covid-19 pandemic, healthy volunteers were de-
liberately exposed to a strand of the SARS-CoV-2 virus (Killingley et al., 2022), a so-called
human challenge trial (Adams-Phipps et al., 2023). While ethically controversial, such stud-
ies are scientifically valuable because they assess the impact of a treatment under the most
extreme condition: maximal exposure to the pathogen. This is a very different situation
from standard clinical trials, where participants are naturally exposed to the risk, which
typically corresponds to much smaller event rates (e.g., Table 1). Conversely, there are
situations where the baseline risk is effectively zero, such as smallpox, which was declared
eradicated by the World Health Organization (WHO) in 1980 following global vaccina-
tion efforts (Smith & McFadden, 2002). These two situations represent the endpoints of a
spectrum where the baseline risk for an undesirable event ranges from 0 to 100%. Some
medical problems are characterized by fairly stable baseline risks (e.g., hypertension or
type 2 diabetes), whereas other health issues like the Covid pandemic were characterized
by high volatility, with baseline risk strongly varying across time, populations, geography,
and personal behavior.

How can we formally model different scenarios and derive empirically testable pre-
dictions if the baseline risk in the novel context is different from the one in which the
treatment effect was assessed? We address this question using causal Bayes nets theory, a
general modeling framework that combines graphical causal models and probability calculus
(Pearl, 2000; Pearl & Mackenzie, 2018; Spirtes et al., 2000). An important advantage of
representing causal relations such as treatment effects as generative causal models is that
the formalism supports counterfactual generalizations in a systematic way, an important
issue in many applied domains including healthcare (Hernán et al., 2019; Prosperi et al.,
2020). Here, we utilize the framework to reinterpret absolute and relative risk reductions
from a causal modeling perspective, illustrating how these metrics can lead to very different
conclusions when generalizing treatment effects to novel contexts.

Causal Bayes nets: Strength and structure

Causal Bayes nets theory provides a formal approach for representing causal re-
lations and modeling probabilistic inferences across causal networks (Danks, 2014; Pearl,
2000; Pearl & Mackenzie, 2018; Pearl et al., 2016; Spirtes et al., 2000). This approach com-
bines qualitative assumptions about the causal structure of the domain with quantitative
estimates specifying the magnitude of the causal relations. By explicating the latent causal
dependencies and providing a calculus for distinguishing between observational and inter-
ventional probabilities, the framework supports the learning of complex causal structures
from data and estimation of causal effects from observational data (Hernán et al., 2019;
Meder et al., 2008, 2009; Pearl, 2000; Prosperi et al., 2020). It also provides mechanisms
to evaluate the generalizability of causal effects identified in experimental studies to other

prerequisite for a causal interpretation of risk reductions.
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populations where only observational studies can be conducted (i.e., the transportability
problem; Pearl & Bareinboim, 2014).

We leverage this framework to highlight how the choice of a particular risk reduction
metric leads to very different conclusions when generalizing the causal impact of a treatment
to new contexts, such as making predictions for the efficacy of a vaccine in a population
characterized by a different baseline risk of infection. We first provide an analysis of risk
reduction metrics from the perspective of causal Bayesian networks and how they instantiate
distinct assumptions about how causes interact in producing or preventing an effect. We
then illustrate how these considerations are not purely technical issues but, in fact, have
significant practical implications in applied domains such as health care, where outcomes are
often influenced by multiple factors working in combination, and generalization of treatment
effects is paramount.
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supports intervention modeling and estimation of causal e�ects from observational data
(Hernán et al., 2019; Meder et al., 2008, 2009; Pearl, 2000; Prosperi et al., 2020). It also
provides mechanisms to evaluate the generalizability of causal e�ects identified in exper-
imental studies to other populations where only observational studies can be conducted
(Pearl & Bareinboim, 2014).
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Figure 1

Basic causal model with a candidate cause C, an e�ect E, and the composite of unmeasured
background causes A. Nodes represent domain variables and directed edges denote causal
relations. Parameters wb, wa, and wc quantify the strength of the relations.

Importantly, the causal Bayes nets framework also o�ers a causal re-interpretation of
relative and absolute risk reductions, explicating their diverging implications when employed
to predict treatment outcomes for novel contexts. To illustrate, we use the vaccine trial
data (Table 1). Figure 1 shows the basic causal model for representing situations involving
a single binary cause C and a single binary e�ect E, both of which can be present or absent
(Gri�ths & Tenenbaum, 2005; Meder et al., 2014). The nodes within the graph represent
the modeled variables, and the directed edges represent the causal relations connecting
the variables. This model is appropriate for the case considered here, which focuses on
the relation between a vaccine for SARS-CoV-2 (cause C) and Covid-19 (e�ect E), where
randomization renders A and C independent. The arrow connecting C and E represents the
presumed causal dependency – the ability of the vaccine to reduce the probability of disease.
In addition, the model contains a node A representing the (unobserved) background causes
that generate the e�ect, that is, di�erent ways of contracting Covid-19.

The graphical model is complemented by a set of parameters, bc, wc, and wa, typi-
cally estimated from data. Parameter bc denotes the marginal probability of cause C. In an
RCT with two conditions, bc will usually be about 0.5, as half of the people are randomly
assigned to each condition. In other settings, like non-experimental epidemiological studies,
this parameter could vary strongly and would typcially be estimated from data. Parameter
wa represents the strength of the background cause A. An estimate for this influence is
provided by the likelihood of the e�ect in the absence of the cause, P (e|¬c) — the baseline
risk. For instance, in the BNT162b2 trial, 162 out of 18,325 participants in the placebo
group developed Covid, hence wa = 0.0088 (0.88%; Table 1). This value reflects the com-
parably low rate of Covid cases in this particular study. But, of course, over the course of
a pandemic, this probability typically fluctuates significantly across time and populations.

Particularly relevant for the present analysis is the parameter wc, which denotes the
strength of cause C –– the ability of the vaccine to reduce disease cases. Formally, both

Figure 1

Basic causal model with a candidate cause C, an effect E, and the composite of unmeasured
background causes A. Nodes represent domain variables and directed edges denote causal
relations. Parameters bc, wa, and wc quantify the strength of the relations.

To illustrate the applicability of the causal Bayes nets framework to medical re-
search, we use the vaccine trial data (Table 1). Figure 1 shows the basic causal model for
representing situations involving a single binary cause C and a single binary effect E, both
of which can be present or absent (Griffiths & Tenenbaum, 2005; Meder et al., 2014). The
nodes within the graph represent the modeled variables, and the directed edges represent
the causal relations connecting the variables. This model is appropriate for the case con-
sidered here, which focuses on the relation between a vaccine for SARS-CoV-2 (cause C)
and Covid-19 (effect E), where randomization renders A and C independent. The arrow
connecting C and E represents the presumed causal dependency – the ability of the vaccine
to reduce the probability of disease. In addition, the model contains a node A representing
the (unobserved) background causes that generate the effect, that is, different ways of con-
tracting Covid-19. (For mathematical convenience, A is assumed to be constantly present;
Griffiths and Tenenbaum, 2005.)

The graphical model is complemented by a set of parameters, bc, wc, and wa, typi-
cally estimated from data. Parameter bc denotes the marginal probability of cause C. In an
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RCT with two conditions, bc will usually be about 0.5, as half of the people are randomly
assigned to each condition. In other settings, like non-experimental epidemiological studies,
this parameter could vary strongly and would typically be estimated from data. Parameter
wa represents the strength of the background cause A, which captures exogenous influences
not explicitly represented in the model. An estimate for this influence is provided by the
likelihood of the effect in the absence of the cause, P (e|¬c) — the baseline risk. For instance,
in the BNT162b2 trial, 162 out of 18,325 participants in the placebo group developed Covid,
hence wa = 0.0088 (0.88%; Table 1). This value reflects the comparably low rate of Covid
cases in this particular study. But, of course, over the course of a pandemic, this probability
typically fluctuates significantly across time and populations.

Particularly relevant for the present analysis is the parameter wc, which denotes the
strength of cause C — the ability of the vaccine to reduce disease cases. Formally, both
∆P and causal power provide maximum-likelihood estimates for wc in the causal graph in
Figure 1, but under distinct assumptions about how C and A influence the probability of E
(Glymour, 2003; Griffiths & Tenenbaum, 2005). Because ARR and RRR are equivalent to
∆P and causal power, respectively, it follows that they also provide maximimum-likelihood
estimates for the causal influence of C.

Using ∆P and, equivalently, ARR as an estimate for wc corresponds to the assump-
tion that the probability of E is a linear combination of C and A, such that the cause
decreases the baseline risk by a constant amount. Accordingly, the probability of E in the
presence of C (e.g., probability of disease in vaccinated people) is given by

P (e|c, a; wa, wc) = a · wa + c · wc

= a · wa + c · ∆P

= a · wa + c · ARR

(7)

where a, c ∈ {0, 1} denote the presence and absence of candidate cause C and background
cause A, while wa and wc denote their causal influence. According to this linear parame-
terization, if C is present the probability of effect E occurring is an additive function of wa

and wc, and reduces to wa if C is absent. In other words, the probability of the effect (e.g.,
Covid-19) is determined by subtracting a fixed amount from the baseline risk. However, to
ensure a valid probability distribution, it is necessary to externally constrain wa + wc to
the range of 0 to 1, thereby introducing a dependency of parameters. As we will demon-
strate later, the functional form and implied interdependence in the combination of causal
influences has profound implications for counterfactual inferences that go beyond a mere
summary of the observed data (e.g., treatment effect in a given study).

In contrast, using causal power qc and, equivalently, RRR as an estimate for wc

offers a more expressive parameterization for graphical models. This approach to causal
inference is enabled by a probabilistic generalization of logical functions(Pearl, 1988; Yuille
& Lu, 2007). This parameterization specifies how probabilistic influences combine, assuming
that causes operate independently in their likelihood of generating or preventing the effect,
where causal power qc serves as estimate for wc. Importantly, as we demonstrate below, this
parameterization enables sound causal counterfactual inferences about novel situations, in
contrast to the linear integration assumed under ARR.
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In the preventive case, this approach generalizes the logical rule that effect E will
occur if A occurs and C does not, such that the causal influence of these factors can be
probabilistic (noisy-AND-NOT). Under this assumption, the conditional probability of the
effect given the cause is present is given by

P (e|c, a; wa, wc) = a · wa(1 − c · wc)
= a · wa(1 − c · qc)
= a · wa(1 − c · RRR)

(8)

which reduces to wa for the probability of E when candidate cause C is absent. Impor-
tantly, this parameterization ensures a valid probability distribution without the necessity
to externally constrain the parameter values of wa and wc.

Regardless of whether a linear or noisy-logical parameterization of the graph is
chosen, the causal-based factorization of the joint probability distribution P (C, E) recovers
the empirical probabilities. For instance, in the BNT162b2 trial, 8 out of 18,198 people in
the vaccine group developed Covid-19 (Table 1), thus P (disease|vaccine) = P (e|c) = 0.0004.
This probability remains consistent whether computed directly from the empirical data or
derived from the parameterized causal model. Specifically, it remains unchanged when
using ∆P (absolute risk reduction) or causal power (relative risk reduction) to estimate wc

in Equations 7 and 8, respectively (see Appendix A2 for a numerical example).
The implications of choosing between a linear or noisy-logical parameterization may

not be immediately obvious, but in fact the practical implications and downstream ad-
vantages are significant. In particular, while both parameterizations accurately capture
empirical probabilities, they imply strongly diverging predictions for counterfactual infer-
ences, where the goal is to infer what would happen in scenarios that differ from the one
under which the treatment effects were estimated. We investigate these implications in the
next section.

To summarize, causal Bayes nets are a modeling framework for causal inference,
combining graphical causal models with parameters that quantify the strength of the rela-
tions. Different measures of causal strength can be used as estimates for the causal influence
of a candidate cause, each reflecting different assumptions about how the causes interact
to bring about an effect. Given the mathematical equivalence of ARR to ∆P on one hand,
and RRR to causal power on the other (Eqs. 5 and 6), this implies that both approaches
are maximum-likelihood estimates for the causal strength parameter of the graph show in
Figure 1, although under different parameterizations. Thus, when viewed through a causal
modeling lens, selecting either of these metrics to quantify treatment effects incidentally en-
tails the adoption of a specific measure of causal strength and particular assumptions on how
causes interact to generate or prevent effects, with looming consequences for generalizing
treatment effects to novel situations.

Generalizing causal strength and treatment effects to new contexts

The parameterized graph provides a generative model that supports causal infer-
ences in a principled way, including predictions about the effects of interventions, that is,
reasoning about scenarios for which no data is (yet) available. Formally, such counterfactu-
als can be calculated by adjusting the model’s parameters to align with a specific context of
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interest and deriving the desired probability distribution. For example, the parameterized
causal model in Figure 1 supports modeling a vaccine’s impact in contexts characterized by
baseline risks different from the ones under which the treatment effect was estimated. The
scenario of interest can be simulated by adjusting the strength of the background cause, wa,
to the desired level and deriving the conditional probability distribution of effect E given
the presence and absence of the cause (i.e., predicted disease cases with and without vac-
cine). For instance, a human challenge trial (Adams-Phipps et al., 2023) where all subjects
are exposed to the pathogen could be modeled by setting wa = 1. Conversely, a context
with a virus-free population, akin to the conditions following smallpox eradication in the
1970s would be simulated by letting wa = 0. These scenarios represent the two extremes of
a spectrum ranging from a baseline risk of 0% to 100%.

To derive counterfactual predictions, such as the probability of disease under differ-
ent baseline risks (i.e., different values of wa), the strength wc of cause C also needs to be
quantified. As noted, both ∆P and causal power provide estimates for wc, but since they
instantiate different assumptions of how A and C interact to generate E, they can yield
strongly diverging predictions. In the case of the BNT162b2 vaccine trial (Table 1), the
RRR (equivalent to causal power) was approximately 95%, while the ARR (corresponding
to ∆P ) was around 0.84%. These estimates were obtained under a specific baseline risk,
which naturally varies under pandemic conditions (e.g., in the BNT162b2 trial the baseline
risk, as estimated from the control group cases, was 0.88%; Table 1).

Consider the scenario where the vaccine is administered to another group of people
under conditions where the baseline risk is, say, 10% (e.g., healthcare professionals with
greater exposure). Building upon the results from the original trial, how many cases of
disease should we expect? For instance, if we had 1000 healthcare professionals and a 10%
baseline risk of getting infected, we would expect about 100 to get infected without vaccines.
But what if they were vaccinated? To answer this question, we need a quantitative estimate
of the original treatment effect. If we used the ARR, which assumes that the baseline risk
is decreased by a constant amount, the vaccine would be expected to decrease the number
of disease cases by only 0.84 percentage points, resulting in around 92 cases (9.16%; Eq. 7).

In stark contrast, when using a RRR we would correctly2 predict a 95% reduction
from the new baseline, yielding an expected 5 disease cases among the vaccinated people
(0.5%; Eq. 8). In these scenarios, ARR strongly underestimates the causal impact of the
vaccine in terms of its power to prevent disease cases in novel settings.

This divergence between the two measures only becomes larger if the baseline risk
further increases. For instance, if the baseline risk in a human challenge study was 100%,
using ARR as a measure of vaccine efficacy would predict 99.16% disease cases, whereas a
RRR predicts 5% cases. Figure 2 illustrates this divergence across varying baseline risks,
showing the predicted probability of disease for three vaccines against Covid-19, using the
absolute or relative risk reduction obtained in the corresponding clinical trials (Baden et
al., 2021; Polack et al., 2020; Voysey et al., 2021) as causal strength estimates. These
considerations illustrate that a linear parameterization, as inherent in ARR and the ∆P
model, does not support adequate counterfactual inference. By contrast, RRR and causal

2Note that in practice, we wouldn’t expect these exact numbers, due to uncertainty about the statistical
estimates and other sources of noise. These considerations, while important in practical applications, are
omitted here as they do not touch upon the conceptual argument.
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power do support an appropriate evaluation of such scenarios.

Figure 2

Analysis of counterfactual scenarios where the baseline risk of the disease differs from the
risk under which the treatment effect was obtained. The top row shows the observed cases
from three randomized control trials conducted to estimate the efficacy of different vaccines
against Covid-19 (Baden et al., 2021; Polack et al., 2020; Voysey et al., 2021). The middle
row shows the corresponding probabilities of the disease given vaccine and placebo, and the
entailed relative risk reduction (RRR) and absolute risk reduction (ARR). The bottom row
plots the predicted probability of disease under varying new baseline risks, calculated from
a causal model where the impact of the vaccine is quantified using the ARR (corresponding
to the ∆P metric) or RRR (corresponding to the causal power metric), as per Equations 7
and 8, respectively.

Another problem with using ARR (or equivalently, ∆P ) to quantify treatment ef-
ficacy is illustrated by cases in which the baseline risk is extremely low or effectively zero,
as seen in scenarios like the eradication of smallpox. In such circumstances, the probability
of disease under the linear parameterization inherent in the ∆P model (Eq. 7) erroneously
yields a negative probability (Feynman, 1987), although by definition probabilities are lim-
ited to the interval [0,1]. Generally, this happens if the baseline risk in the novel context
is below the estimate of the absolute reduction. To avoid such cases, it is necessary to
constrain the sum of wc and wa to the interval [0, 1] to ensure a proper probability distri-
bution. In contrast, the functional form inherent in RRR (and equivalently, in the causal
power model) correctly indicates that the probability of the effect is zero. Generally, us-
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ing causal power and Equation 8 always yields a valid probability. Thus, causal power and
RRRs represent a better-behaved measure than the ∆P model and ARRs when making pre-
dictions for scenarios with baseline risks that differ from the original context, thus offering
better generalization to counterfactual settings.

Figure 3

Analysis of three scenarios illustrating the divergence of using ∆P or causal power qc for
generalizing treatment effects to situations with a new baseline risk. The top rows illustrates
three different scenarios, where the baseline risk (probability of effect in the absence of the
preventive cause) is rather low (left), intermediate (middle), or high (right). The middle row
shows the corresponding probabilities and values of ∆P and causal power. The bottom row
shows the predicted probability of the effect given the cause under new baseline probabilities,
calculated from a causal model where the causal strength of C is quantified using ∆P or
causal power qc (Equations 7 and 8, respectively). The red dot indicates the combination
of P (e|c) and P (e|¬c) from which the strength of C was originally estimated. Shaded area
indicate negative predicted probabilities.

But does using ARR and the ∆P model always lead to an underestimation of the
treatment effect under a new baseline risk? The answer is no. In fact, we can precisely
characterize the circumstances under which ∆P and, equivalently, an ARR, yields lower,
higher, or equal probabilities compared to using causal power.

Figure 3 illustrates the diverging implications for three hypothetical scenarios. In
each case, the strength of C is estimated under a specific baseline risk (i.e., probability of
the effect in the absence of the cause), and then used to make inferences about the likelihood
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of the effect in situations with new baseline probabilities. Inspection of the figure highlights
several generalizable insights.

First, there is always a cross-over of the predicted P (e|c) based on ∆P vs causal
power. Specifically, the predictions intersect (red dot in Fig. 3) at the originally observed
P (e|c) and P (e|¬c). This is necessarily the case because if the new baseline probability is
identical to the original one, both metrics should yield the same P (e|c) — namely recover
the original probability (see Appendix A2 for a numerical example). Left of this point (i.e.,
when then new baseline probability is lower than the original one), the predicted probability
of the effect given the cause based on ∆P is lower than the probability predicted by causal
power. Put differently, in this case using ∆P (or equivalently, an ARR) to make predictions
overestimates the treatment effect. Moreover, negative probabilities will result when the
new baseline probability is lower than ∆P . Conversely, right of this point, that is, when
the new baseline probability is higher than the one under which the strength of C was
estimated, the predicted probability of the effect given the cause based on ∆P is higher
than the probability predicted by causal power. In this scenario, using ∆P (or equivalently,
ARR) to make predictions underestimates the treatment effect.

These analyses demonstrate the application of causal modeling techniques to for-
mally represent and assess hypothetical scenarios through parameter adjustments in the
corresponding causal graph. Moreover, when it comes to generalizing causal effects to novel
situations with varying baseline risks (as opposed to simply summarizing the effects ob-
served in a particular study), ARRs are inadequate due to their implicit assumption of a
constant linear decrease in risk. This aligns with analyses of real-world data from meta-
analyses and individual RCTs which suggest that relative outcome measures (i.e., RRRs)
tend to be more stable than absolute reductions across studies and subgroups with differing
baseline risks (Deeks, 2002; Furukawa et al., 2002; Schmid et al., 1998). Accordingly, it
is usually recommended to avoid using absolute measures in meta-analyses that integrate
treatment effects across studies (Higgins et al., 2023).

Conclusions

We have integrated concepts from three distinct fields: i) health and medical re-
search, which seeks to quantify and generalize treatment effects, ii) risk communication,
which is concerned with the understanding of health information in patients and health
professionals, and iii) cognitive psychology, which investigates how people infer causal re-
lations from covariation data. Conceptually, our analyses provide a theoretical foundation
for interpreting risk reduction measures through the lens of causal inference, making causal
considerations explicit that are otherwise left implicit. From an applied standpoint, the
findings demonstrate how the causal Bayes nets framework can be leveraged to clarify the
diverging implications of using ARR and RRR when generalizing treatment effects to con-
texts with varying baseline risks.

The analyses also hold specific implications for the different fields and central de-
bates that have engaged them. First, our analyses underscore the potential of real-world
data for the theoretical and experimental analysis of human causal induction (Bramley
et al., 2017; Gerstenberg et al., 2021; Gopnik et al., 2004; Griffiths & Tenenbaum, 2009;
Holyoak et al., 2010; Meder et al., 2014; Waldmann, 2017). Psychologists have focused on
the inference processes that transform raw data (i.e., described or experienced frequencies)
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into estimates of causal strength, with recurring debates about the normative and descrip-
tive validity of different metrics (Cheng, 1997; Griffiths & Tenenbaum, 2005; Holyoak &
Cheng, 2011; Lober & Shanks, 2000; Meder et al., 2014). Typically, causal learning ex-
periments present participants with stylized scenarios akin to real-world experiments (e.g.,
hypothetical study data on the joint occurrences of a virus and disease cases), typically
with equal base rates for the presence and absence of the candidate cause (Buehner et al.,
2003; Griffiths & Tenenbaum, 2005; Meder et al., 2014). While this design facilitates the
assessment of the relevant probabilities assumed to enter the computations, it also incurs a
mismatch with real-world environments characterized by low probability events, such as the
comparably low exposure rate to a pathogen like the Coronavirus. To enhance ecological va-
lidity, empirical studies could use real-world data from medical studies (e.g., vaccine trials)
as stimuli, where base rates are typically much lower and therefore ARR (∆P ) and RRR
(causal power) strongly diverge. Participants could then be prompted to make inferences
about contexts with varying baseline risks, where different models imply distinct predic-
tions. Such experiments would provide additional insights into how people generalize their
rich causal knowledge to novel situations to inform their judgment and decision making
processes. Notably, there are further relations between probabilistic theories of causality
proposed in philosophy and psychology, and metrics routinely applied in medical research
and practice (Sprenger, 2018). Variants of the ∆P model have also featured prominently
in philosophy of science and confirmation theory (Crupi & Tentori, 2014; Tentori et al.,
2007) and models of the value of information (Nelson et al., 2022; Nelson, 2005; Wu et al.,
2017). These relationships provide further traction for theory integration across disciplinary
boundaries, while also highlighting differences among concepts, such as disparities between
the definition of generative causal power and relative risk increases (see Appendix A3 for
details).

Second, our analyses contribute to a causal inference perspective on medical prob-
lems, leveraging the Bayes nets formalism. Causal modeling techniques support the explicit
specification of causal structure, which despite recent advances in formal methodology re-
mains rare in clinical research. Notably, the computational framework offers a means to
express the crucial distinction between observational and interventional probabilities, fa-
cilitating the development of interventional clinical predictive models and the calculation
of counterfactuals (Prosperi et al., 2020). Here, we analyzed common measures of risk re-
duction from a causal inference perspective, highlighting that in contexts like a pandemic,
where base rate probabilities fluctuate, using ARRs to quantify vaccine efficacy is inade-
quate and leads to error-prone generalizations. This limitation extends to related measures
like the number needed to treat (Olliaro et al., 2021), which is inversely related to ARRs.
Our analyses thus refute arguments that ARRs provide a more appropriate measure for
quantifying vaccine efficacy (Brown, 2021, 2022). In fact, whereas a common criticism
of RRRs is that they are not sensitive to the baseline risk, for the purpose of estimating
treatment effects this could be considered a desirable property, as it renders the measure
independent of the particular baseline risk under which the treatment effect is estimated.
Accordingly, one practical implication is that in contexts with dynamic baseline risks, RRRs
are better-behaved measures of treatment benefits than ARRs. This aligns with analyses
showing that relative outcome measures are more consistent across studies than absolute
measures (Deeks, 2002; Furukawa et al., 2002; Schmid et al., 1998).
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Third, our analyses contribute to the ongoing debate on the interpretation of ARRs
and RRRs in health communication. A central concern in this discourse is how laypeople
(Carling et al., 2009; Hembroff et al., 2004) and healthcare professionals (Akl et al., 2011;
Bucher et al., 1994; Marcatto et al., 2013) interpret and respond to treatment benefits
expressed either as relative or absolute risk reduction. We argue that both absolute or
relative risk reductions in isolation are inadequate for communicating medical risks and
supporting individual decision-making. For instance, while both measures quantify the
causal impact of a treatment by a single number derived from the likelihood of an outcome
in one group compared to another, research shows that laypeople actually prefer having two
numbers: one indicating how many people are likely to develop a disease with treatment and
another without treatment (Carling et al., 2009; Trevena et al., 2006). Moreover, informed
health decisions also require consideration of additional elements, including the magnitude
of the baseline risk3 (Bodemer et al., 2014; Marcatto et al., 2013; Natter & Berry, 2005;
Sheridan et al., 2003), heterogeneity of treatment effects across subpopulations (Kent et al.,
2010), the applicability of summary findings to individual patients (Kent & Hayward, 2007;
Rothwell, 1995), as well as the quality of evidence on which estimates and recommendations
are based (Guyatt et al., 2011; Higgins et al., 2023). Neither ARR nor RRR can account for
these requirements. Instead, standards of evidence-based health communication ensure the
support of informed and shared decision-making in the health domain (Bonner et al., 2021;
Gigerenzer et al., 2007; Woloshin et al., 2023). Promising pathways include so-called Fact
Boxes (McDowell et al., 2016, 2019; Schwartz & Woloshin, 2013) that summarize the best
available evidence on the benefits and harms associated with medical interventions, as well
as carefully designed visual information (Woloshin et al., 2023). Thus, while our analyses
demonstrate that relative reductions provide a more accurate assessment of treatment effects
when generalizations to varying levels of baseline risk are desirable or required, effective
risk communication requires a more comprehensive approach than providing healthcare
professionals and the general public with a single number (or two).
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Appendix

A1. ∆P and causal power: Differences in model behavior

Analogously to absolute and relative risk reductions, ∆P and causal power can yield
very different values when applied to the same data (Figure A1). Consider a disease with
a baseline risk of P (e|¬c) = 0.00002, i.e. 2 in 100,000 people have the disease. Assume a
vaccine reduces this baseline risk to 1 in 100,000, such that P (e|c) = 0.00001. In this case,
∆P = 0.00001, but qc = 0.5, as the vaccine reduces the number of cases by 50%.

Generally, the same level of ∆P can entail different levels of causal power, depending
on the probability of the effect in the absence of the cause (i.e., P (e|¬c); or the baseline risk).
Conversely, low values of ∆P can imply maximum values of causal power, namely in those
cases where the adverse event never occurs in the presence of the cause (i.e., P (e|c) = 0). In
this case, while the level of ∆P depends on and in fact is equal to the baseline risk P (e|¬c),
causal power is always 1 as the presence of the cause eliminates the presence of the effect
(e.g., if a vaccine provides perfect protection against a disease).
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Figure A1

∆P and causal power as a function of the probability of the effect in the presence and
absence of the candidate cause, P (e|c) and P (e|¬c). ∆P is always in the range [−1, 1],
whereas causal power is strictly non-negative in the range [0, 1].

A2. Causal inference with graphical models: Numerical example

To provide a numerical example for modeling causal inference with the graph shown
in Figure 1, we use the data from the BioNTech SARS-CoV-2 vaccine trial (Polack et al.,
2020, Table 1). First, we show how the parameterized causal model recovers the empirical
probabilities. Then, we demonstrate how it can be used to generalize to different baseline
risks.
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The first step is to estimate parameters wa and wc from the observed frequencies
(The base rate of the cause, bc, can be estimated analogously, but is not relevant for the
present purposes.) If we use maximum-likelihood point estimates derived from the observed
frequencies for estimating wa and wc, the conditional probability of the effect given the cause
computed via Equations 7 and 8 corresponds exactly to the empirical probability (i.e.,
proportion of observed disease cases in the vaccine group). We do not consider alternative
approaches based on Bayesian methods (for details, see Griffiths & Tenenbaum, 2005; Lu et
al., 2008; Meder et al., 2014) here for the sake of simplicity. While Bayesian methods involve
more intricate mathematical computations, the conceptual implications do not change.

In the BNT162b2 trial, 8 out of 18,198 people in the vaccine group developed Covid-
19 (Table 1). Hence, P (disease|vaccine) = P (e|c) = 8/181988 = 0.0004. This probability
remains consistent when computing P (e|c) from the parameterized causal model according
to Equation 7 and using ∆P (absolute risk reduction) as an estimate for wc, or when
using Equation 8 and using causal power (relative risk reduction) as an estimate for wc.
An estimate for the strength of the background cause, or baseline risk, is provided by the
number of disease cases in the placebo group, where 162 out of 18,325 participants developed
Covid-19 (Table 1). Thus, wa = 162

18,325 = 0.0088.
For estimating causal strength, represented by wc, we can either use ∆P , which is

equal to an absolute risk reduction, or causal power, which corresponds to a relative risk
reduction. First, we compute ∆P :

∆P = P (e|c) − P (e|¬c)

= 8
18198 − 162

18325

= 0.0004 − 0.0088

= −0.0084

(A1)

Next, we use Equation 7 to compute the conditional probability of the effect given the cause,
that is, the probability of Covid-19 given vaccination:

P (e|c, a; wa, wc) = a · wa + c · wc

= a · wa + c · ∆P

= a · wa + c · ARR

= 0.0088 − 0.0084
= 0.0004

(A2)

This probability is identical to the probability obtained from the observed frequencies as
computed above.

Next, we show that the same probability obtains when using causal power qc instead
of ∆P as estimate for wc (Equation 4), and compute the probability of the effect given the
cause according to Equation 8. Using causal power as estimate for wc corresponds to an
alternative parameterization of the graph, instantiating a probabilistic generalization of
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logical functions (Pearl, 1988; Yuille & Lu, 2007). Incidentally, this aligns with using a
relative risk reduction as a measure of vaccine efficacy. First, we compute the causal power
of the vaccine according to the observed data (Table 1):

qc = P (e|c) − P (e|¬c)
P (e|¬c)

= −∆P

P (e|¬c)

= 0.0084
0.0088

= 0.95

(A3)

Now we can compute the probability of the effect (Covid-19) given the cause (vac-
cine) in accordance with Equation 8:

P (e|c, a; wa, wc) = a · wa(1 − c · wc)

= a · wa(1 − c · qc)

= a · wa(1 − c · RRR)

= 0.0088(1 − 0.95)

= 0.0004

(A4)

Again, this yields the same probability as calculated directly from the empirical frequencies.
These calculations illustrate how one can perform probabilistic causal inferences

with a parameterized causal model. For the present purpose, we have used maximum-
likelihood estimates for the graph’s parameters that are directly derived from the empirical
data. Accordingly, the recalculated probability of effect given cause corresponds exactly to
the empirical proportion, both under a linear-additive parameterization based on ∆P and
a noisy-logical parameterization based on causal power.

This approach corresponds to a causality-based factorization of the joint probability
distribution over C and E, which enables inferences about scenarios that differ from the
observed data. In particular, we can perform counterfactual reasoning by making inferences
about novel situations for which no data is (yet) available. For instance, we might be
interested in making predictions about the expected number of disease cases under a baseline
risk different from the one under which the treatment effect was estimated (e.g., for a group
of health professionals who have a much higher risk of being exposed to the virus). This
inference can be modeled by setting the parameter wa to the desired baseline risk, where a
baseline risk of 1% would correspond to wa = 0.01, a baseline risk of 30% would correspond
to wa = 0.3, etc.

Importantly, in this case it does matter whether a linear or noisy-logical parame-
terization of the graph is adopted, hence whether an absolute or relative risk reduction is
used to quantify vaccine efficacy. An absolute risk reduction amounts to a linear-additive
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parameterization; accordingly, the predicted probability of the effect given the cause when
the baseline risk is 30% (i.e., wa = 0.3) would be

P (e|c, a; wa, wc) = a · wa + c · wc

= a · wa + c · ∆P

= a · wa + c · ARR

= 0.3 − 0.0084

= 0.2916

(A5)

Thus, when making a generalization using an absolute risk reduction, the inherent linearity
assumption yields an (erroneous) estimate of about 29%.

In stark contrast, using a relative risk reduction yields a very different estimate,
which aligns with the assumption that the vaccine should prevent the disease in 95% of the
cases:

P (e|c, a; wa, wc) = a · wa(1 − c · wc)

= a · wa(1 − c · qc)

= a · wa(1 − c · RRR)

= 0.3(1 − 0.95)

= 0.015

(A6)

For instance, if we had 1000 health care professionals with a 30% base line risk, without
vaccination we would expect about 300 to get infected. If they were vaccinated, we would
expect that 95% of these cases would be prevented, leaving 15 expected disease cases among
the vaccinated people.

A3. Relative risk increases and generative causal power

Analogously to absolute and relative risk reductions, the medical literature uses
quantitative estimates to assess increases in health-related risks, such as the increased risk of
skin cancer from repeated sunlight exposure or the increased risk of lung cancer for smokers.
Experimental study designs that regularly examine potentially beneficial interventions for
risk reduction also reveal risk increases for adverse events due to the interventions (e.g.
allergic responses to medications). Similar to the preventive case there are fundamental
mathematical relationships among the concepts used in the medical and causal modeling
literature.

The absolute risk increase (ARI) is defined analogously to the preventive case as the
arithmetic difference between the event rate in a control condition compared to a condition
where participants have been exposed to the risk factor or treatment(Equation 1). Thus,
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both absolute risk increases and absolute risk reductions align with the ∆P model, quanti-
fying the (beneficial or harmful) change in risk as an absolute difference in the probability
of the effect in the presence and absence of the cause.

In contrast, a relative risk increase (RRI) as used in the medical literature and
generative causal power are not defined identically. The relative increase normalizes the
absolute risk increase by the event rate in the control group:

RRI = P (event|treatment) − P (event|control)
P (event|control) (A7)

However, for generative causes (∆P > 0), causal power is defined as

qc = P (e|c) − P (e|¬c)
1 − P (e|¬c) = ∆P

1 − P (e|¬c) (A8)

where 1−P (e|¬c) serves as denominator. This normalization ensures that generative causal
power is always in the range [0,1], whereas the calculation of a relative risk increase (Equa-
tion A7) does not impose any such constraints, rather making the RRI a multiple of the
baseline risk. Generative causal power is zero when the cause does not change the probabil-
ity of the effect (i.e., ∆P = 0), and obtains the maximum value of 1 if P (e|c) = 1, regardless
of the value of the baseline risk, P (e|¬c).

Both relative risk increases and generative causal power quantify increases in the
probability of the effect given the cause event. However, normatively generative causal
power has several advantages over relative risk increases as defined in the medical literature.
First, generative power is constrained to the same range as relative risk reductions, namely
[0,1] (or, when expressed as percentages, 0-100%). This symmetry facilitates a causal inter-
pretation analogously to decreases in risk. Second, mathematically causal power is better
behaved: because the denominator in the definition of relative risk increases is P (e|¬c), the
measure is undefined if the effect never occurs in the absence of the cause (Equation A8).
To illustrate, assume 10 people eat a fish dish (cause C) and get food poisonings afterwards
(effect E), whereas 10 other people eat no fish and develop no food poisoning. Accordingly,
P (e|c) = 1 and P (e|¬c) = 0. Using Equation A7 entails division by zero, leaving the risk
increase undefined. By contrast, generative causal power is defined and takes value 1 (Equa-
tion A8), suggesting that the fish caused the food poisoning. Third, relative increases can
loom large even if the overall risk remains very low. For instance, a factor that increases
the risk from 0.001% (1 in 100,000) to 0.002% (2 in 100,000) increases the relative risk by
100%, although the absolute risk is still fairly low. Causal power, being bounded between
0 and 1, does not suffer from this shortcoming:

qc = P (e|c) − P (e|¬c)
1 − P (e|¬c) = ∆P

1 − P (e|¬c)

= (0.0002 − 0.0001)
(1 − 0.00001) = 0.0001

(1 − 0.0001)

≈ 0.00001

(A9)
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This low value better aligns with the intuition that the candidate cause has only a weak
influence on the likelihood of the effect. Fourth, using generative causal power ensures that
the estimate can be incorporated into a causal modeling framework and be used to represent
wc, thereby supporting counterfactual inferences and the evaluation of hypothetical scenar-
ios. Thus, from a normative perspective generative causal power is a better-behaved metric
that relative risk increases as defined in the medical literature. Pragmatically though, it
seems unlikely to replace an established measure like relative risk increase.

Like in the preventive case, using an absolute risk increase or, equivalently, ∆P ,
as estimate for wc in the causal graph (Fig. 1) corresponds to a linear parameterization.
In contrast, using generative causal power (but not an RRI) instantiates a so-called noisy-
OR parameterization, which extends the logical OR by allowing the cause events A and
C to influence E probabilistically (Cheng, 1997; Glymour, 2003; Pearl, 1988; Yuille & Lu,
2007). Given a noisy-OR parameterization, the conditional probability of the effect given
the cause (e.g., probability of infection given vaccine) can be computed from the causal
model’s parameters as follows:

P (e|c, a; wc, wa) = c · wc + a · wa − c · wcc · a · wa (A10)

where a, c ∈ {0, 1} denote the presence and absence of candidate cause C and background
cause A, and wa and wc denote their causal strength.

Like in the preventive case, using causal power has several advantages compared
to using a linear parameterization where ∆P provides the estimate for wc. Figure A2
illustrates this using three scenarios analogous to the analysis of preventive causes and
risk reductions (Figure 3). In each instance, the causal impact of the cause is assessed
under a specific baseline risk P (e|¬c), and this estimate is then utilized to draw inferences
about the likelihood of the effect in scenarios with new baseline probabilities, that is, P (e|c).
Analogous to the preventive case, there is always a crossover of the predicted P (e|c) based on
∆P versus causal power. The intersection is always located at values of P (e|c) and P (e|¬c)
that were originally used to estimate causal strength, because for this particular combination
both measures recover the original P (e|c). To the left of this point, i.e., when the new
baseline probability is lower than the original one, the predicted conditional probability
of the effect given the cause based on ∆P (or, equivalently, an ARR) is lower than the
probability predicted by the causal power model. Conversely, to the right of this point, i.e.,
when the new baseline probability is higher than the one under which the strength of C
was estimated, the predicted probability of the effect given the cause based on ∆P is higher
than the probability predicted by causal power. Moreover, as in the preventive scenarios
a linear parameterization based on ∆P does not always yield valid probability estimates.
Specifically, while in the preventive case negative probabilities result if the new baseline
probability is lower than the (absolute) value of ∆P , in generative scenarios the probability
estimates exceed unity if the baseline risk is higher than 1 − ∆P .
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Figure A2

Analysis of three scenarios illustrating the divergence of using ∆P or causal power qc for
generalizing generative causes to situations with a new baseline risk. The top rows illustrates
three different scenarios, where the baseline risk (i.e., probability of effect in the absence of
the generative cause) is low (left), intermediate (middle), or high (right). The middle row
shows the corresponding probabilities and values of ∆P and causal power. The bottom row
shows the predicted probability of the effect given the cause under new baseline probabilities,
calculated from a causal model where the causal strength of C is quantified using ∆P or
causal power qc (Equations 7 and A10, respectively). The red dot indicates the combination
of P (e|c) and P (e|¬c) from which the strength of C was originally estimated. The shaded
area indicates predicted probabilities that exceed unity.
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