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A B S T R A C T

Many cognitive models provide valuable insights into human behavior. Yet the algorithmic complexity of
candidate models can fail to capture how human reaction times scale with increasing input complexity. In
the current work, we investigate the algorithms underlying human cognitive processes. Computer science
characterizes algorithms by their time and space complexity scaling with problem size. We propose to use
participants’ reaction times to study how human computations scale with increasing input complexity. We
tested this approach in a task where participants had to sort sequences of rectangles by their size. Our results
showed that reaction times scaled close to linearly with sequence length and that participants learned and
actively used latent structure whenever it was provided. This behavior was in line with a computational model
that used the observed sequences to form hypotheses about the latent structures, searching through candidate
hypotheses in a directed fashion. These results enrich our understanding of plausible cognitive models for
efficient mental sorting and pave the way for future studies using reaction times to investigate the scaling of
mental computations across psychological domains.
1. Introduction

Imagine you are in a supermarket. Normally, choosing a box of
cereal takes you around one minute. However, today the selection of
cereal brands has expanded from 4 to 20. What does that mean for the
time it will take you to make up your mind?

In daily life, people are faced with a plethora of tasks that vary in
scope and complexity. For many of these tasks (like choosing between 4
boxes or 20 boxes of cereal), humans cope well with arbitrary changes
in complexity or size. Yet there is still much we do not know about how
the dimensions of a task or the size of the inputs affect the complexity of
cognitive computations in humans. Moreover, many cognitive models,
lack the scalability that everyday human behavior seems to suggest.

An example of how unrealistic this scaling can be is Gaussian
process regression, which has been used to describe human function
learning (Lucas, Griffiths, Williams, & Kalish, 2015; Schulz, Tenen-
baum, Duvenaud, Speekenbrink, & Gershman, 2017) and generaliza-
tion (Schulz et al., 2019; Wu, Schulz, Speekenbrink, Nelson, & Meder,
2018). Computing the posterior of a Gaussian process scales cubically
with the size of the input, which means increasing the input size from
4 to 20 (as in our cereal example) would transform a simple one
minute-long task into a laborious two hour-long ordeal.

∗ Corresponding author at: Max Planck Institute for Biological Cybernetics, Germany.
E-mail address: susanne.haridi@maxplanckschools.de (S. Haridi).

Since all psychological algorithms must eventually be implemented
in vivo by bounded agents with limited time and computational capac-
ities (Gershman, Horvitz, & Tenenbaum, 2015; Gigerenzer & Brighton,
2009; Gigerenzer & Selten, 2002; Lieder & Griffiths, 2020; Simon,
1990), the complexity of the proposed algorithms (Bossaerts & Mu-
rawski, 2017; Van Rooij, 2008), specifically the amount of processing
time to perform a computation, is a reasonable constraint on plausible
models.

An informative way to characterize an algorithm’s complexity is
to consider how the processing time and the required memory scale
with the problem or input size. This is standard practice in computer
science, where the complexity of an algorithm is measured by using
the big , 𝛺 or 𝛩 notations that track worst, best and average-case
complexities respectively (Papadimitriou, 2003; Thomas H, Charles,
Ronald L, Clifford, et al., 2009). We are interested in average-case
complexities since in sorting several algorithms have equivalent worst-
case complexity but the most efficient algorithms in practice are often
selected based on differing average-case complexities (Hoare, 1962).
Specifically, we focus on the average-case time complexity (i.e. the
processing time as measured by average RT), which is what we will
refer to when talking about complexity. Similarly, we will use the
term ‘‘scaling’’ to refer to how time complexity increases with input
vailable online 23 September 2023
010-0277/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cognition.2023.105605
Received 24 November 2022; Received in revised form 17 August 2023; Accepted
 24 August 2023

https://www.elsevier.com/locate/cognit
http://www.elsevier.com/locate/cognit
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
https://github.com/susanneharidi/mental-sorting
mailto:susanne.haridi@maxplanckschools.de
https://doi.org/10.1016/j.cognition.2023.105605
https://doi.org/10.1016/j.cognition.2023.105605


Cognition 241 (2023) 105605S. Haridi et al.

t
u
a
o
r
o
w
o

2

t
i

size. As a rule of thumb, constant processing time complexities are
ideal, logarithmic complexities are favorable, linear complexities are
tolerable, and polynomial complexities such as cubic scaling are to be
avoided whenever possible. Yet many psychological models scale worse
than linearly, i.e. superlinearly (Van Rooij & Wareham, 2008), as seen
in the example of a Gaussian process mentioned earlier.

But how can the scaling of mental computations be investigated?
Are there features of human cognition, for example, the use of latent
structures, that can help improve the scaling of mental computations?
And what type of models can capture this scaling? One way to approach
these questions is to treat the human mind as a black box server and use
methods inspired by algorithmic complexity attacks (Crosby & Wallach,
2003): send the server problems of varying input size and track its com-
puting time. This would allow us to estimate the algorithmic complexity
of the current computations based on the relationship between input
size and response time. Following this logic, we can create experiments,
varying the number of input points and the underlying structure of
the task. By measuring participants’ RTs, we can approximate the set
of plausible algorithms underlying participants’ mental computations.
A similar approach to constrain the algorithms which could underlie
a cognitive process has already been used by Dry, Lee, Vickers, and
Hughes (2006) to investigate the scaling of how solution times in a
traveling salesman problem depend on the number of nodes.

In fact, a great deal of cognitive psychology can be understood as
attempting to constrain mental computations by varying the inputs and
using RTs and performance measures to understand how the mental
computations change with these constraints. Consider, for example, re-
cent work by Planton et al. (2021), where RTs were used to probe how
humans compressed information in auditory and visual memory tasks.
RTs have also been used to measure how long people ponder before
making a decision (Ratcliff, 1978; Ratcliff & McKoon, 2008) or to study
set-size effects in working memory (Sternberg, 1969). In this study, we
are building on the rich tradition of linking mental computations and
RT by formally looking at how RTs can approximate the complexity of
potential algorithms underlying a mental computation.

In the current work, we apply this approach to a mental sorting
task. Sorting paradigms have a valuable history in psychological re-
search (Ashcraft & Battaglia, 1978; Berg, 1948; McGonigle & Chalmers,
2002), in particular in developmental psychology (Inhelder & Piaget,
1958; Young & Piaget, 1976). Earlier studies conducted by Piaget and
colleagues on children and adults’ seriation behavior (Young & Piaget,
1976) provided evidence for super-linear scaling in sorting. In these
tasks, participants were asked to sort physical objects from the smallest
to the largest element. Furthermore, there is some work arguing that
sorting algorithms (often in the form of stacking cups) are among the
earliest algorithms people acquire and that the hierarchical organiza-
tion of elements might be related to language development (Greenfield,
1991; Greenfield, Nelson, & Saltzman, 1972). However, in recent years
there has been less research in this domain, and the question of how
humans sort remains largely open. The importance of sorting lies in
the resulting order. If humans organize (sort) information well, it can
be retrieved more effectively. The smart organization of information is
also a fundamental problem in computer science, where the need to
search large corpora of information arises often. As such, the complex-
ity of sorting algorithms has been widely studied in this field (Cormen,
Leiserson, Rivest, & Stein, 2009). It has, for example, been proven that
all exact sorting algorithms that use any pairwise comparison between
items can at best achieve an average complexity of 𝛩(𝑁 log𝑁), i.e. scale
super-linearly but still favorably (Cormen et al., 2009). Many common
sorting algorithms fall under this category. Merge-sort, for example,
continuously splits the to-be-sorted array in half until it cannot be
further divided. Each separate array then gets sorted and merged in
sorted order with the array it was split from. Merge sort, as well as other
such algorithms, could be valid candidates to describe participants’
mental sorting behavior. Accordingly, if we find that human sorting
2

has a linear or below linear complexity, we can differentiate between a
a variety of algorithms that are no longer plausible candidates for how
humans sort. We can then focus on those algorithms, which remain
plausible candidates to better understand the mechanisms of mental
sorting in humans.

Given that some cognitive processes might scale poorly with the
number of observation points, we believe that it is prudent for agents,
biological or otherwise, to improve their scaling behavior by applying
strategies that simplify the algorithmic complexity or reduce the data
that needs to be processed.

One example that has been looked at is the classic mental rotation
task in which people had to determine whether two images showed the
same object, just with a different rotation (Shepard & Metzler, 1971).
RTs in this task increased linearly with the angle of rotation. However,
researchers have wondered how people decide in which direction they
rotate a given object (Hamrick & Griffiths, 2014), since the shortest
direction crucially depends on the starting position in the image. In a
series of studies, Hamrick and Griffiths (2014) showed that participants
used the structure of the original image to efficiently choose a rotation
direction, thus saving valuable computation time.

Additionally, Logan, Ulrich, and Lindsey (2016) argued that expe-
rienced typists use structure to predict future characters to achieve
faster typing times as the number of keys increases. The idea of using
structure in the environment to speed up cognitive algorithms can be
traced back to Brunswik (1952), who argued that people use cues in the
environment to decide which strategy to apply, and studies by Harlow
(1949) on learning-to-learn effects showed that repeated encounters
of similar structures led participants to learn novel tasks much faster.
The use of structure to reduce computational complexity lies at the
core of boundedly rational accounts of cognition (Gigerenzer & Selten,
2002) and has been described as the sine qua non of human learning
efficiency (Gershman et al., 2015; Griffiths, Lieder, & Goodman, 2015).
If there is structure in the world that can speed up mental computations
while maintaining accuracy, then intelligent agents should exploit this
structure.

1.1. Goals

Consequently, the aim of this study is to 1. investigate how human
sorting scales when more items need to be sorted and 2. to understand
if and how people’s sorting time can be reduced by the exploitation of
latent structure in the task.

To investigate how mental sorting scales, participants had to men-
tally sort sequences of rectangles of different sizes and colors by their
size. To measure how their sorting time scaled, we manipulated the
number of rectangles. Furthermore, we also manipulated the presence
or absence of different latent structures in the task. This allowed us to
investigate whether participants exploited latent structure to improve
the time complexity for mental sorting. Our results showed that for
the input range we presented, participants’ RTs scaled approximately
linearly with the number of rectangles (though we cannot rule out
scaling laws that behave very similarly to linear in our input range,
like 𝛩(𝑁 log𝑁)) and that they exploited the latent structures to reduce
heir RTs. This behavior was captured by a linear sorting algorithm that
ses information about the range of possible sizes of the rectangles to
void a pair-wise comparison sort. Furthermore, the algorithm used the
bserved trials to construct hypotheses about the underlying structure,
esulting in improved efficiency. These results enrich our understanding
f plausible cognitive models for efficient mental sorting and pave the
ay for future investigations using reaction times to probe the scaling
f mental computations across psychological domains.

. Methods

To investigate the scaling of mental computations, we studied how
he time people needed to mentally sort sequences scaled with increas-
ng sequence length. We also investigated if participants could detect

nd exploit latent structures to improve the scaling of their mental sort.
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Fig. 1. Overview of the experimental design. (A) Schematic of the six different conditions. The sequences shown here are matched, meaning they all had the same lengths and
heights and the same order for the three structure conditions in the sort task. (B) Schematic of one trial in the sort task. The display here left out the instructions, which were
always included at the bottom of the screen to remind participants of the correct action at each stage in the trial. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
2.1. Participants

We recruited 103 adults (37 female, age range: 24 to 74, Mean𝑎𝑔𝑒 =
39.31; SD = 11.13) via Amazon Mechanical Turk (MTurk). To ensure
that the task was well-understood, all participants had to answer three
comprehension questions before the start of the experimental trials.
Furthermore, we used the average accuracy a participant could achieve
if they only sorted the first three rectangles (75%) as a performance
cutoff. In total, 30 participants were excluded due to performance
below the cutoff (21 participants) or incomplete data (9 participants),
leaving us with a sample size of 73 participants. Participants were
paid up to $11.00 ($3.00 base fee plus a maximum bonus of $8.00;
Mean𝑟𝑒𝑤𝑎𝑟𝑑 = $10.3; SD = $0.96; the bonus was linearly dependent on
the accuracy, i.e. if a participant got 80% of the trials correct they
received a bonus of 0.8*$8 = $6.4). The experimental task took on
average about 40 Minutes (including breaks, which could be taken
after each block). Informed consent was obtained from all participants
before the experiment started. The study was approved by the ethics
committee of the medical faculty of the University of Tübingen (number
701/2020BO).

2.2. Design

We used a 3 × 2 within-subject design to manipulate the task (sort
vs. memory) and latent structure (no structure vs. query structure vs.
sequence structure; see Fig. 1A). Additionally, the input size, i.e. the
number of rectangles (sequence length) was varied from 1 to 7 colored
rectangles of different heights in all conditions.

In the sort task, sequences were scrambled requiring participants
to mentally sort them, while in the memory task, they were already
sorted from the smallest (on the left) to the tallest rectangle (on
the right). In both tasks, participants were asked to remember the
sequences in the sorted order and then correctly report the position of
a randomly queried rectangle. This meant that sequences only had to
be remembered in the memory task, but both sorted and remembered in
the sort task. The memory task was introduced to control for increases in
RTs solely due to memory, allowing us to quantify the scaling of mental
sorting by computing the difference in RTs between the memory and
3

sort tasks. For this purpose, all trials in the two tasks were matched
by the height of the rectangles, the length of the sequences, and the
queried position. To prevent any memory effect, the colors for each trial
were chosen randomly from a uniform distribution over all colors (see
Fig. 1A, for an example of a matched sequence for all 6 task × condition
combinations). Each color only appeared once in each sequence.

To investigate the effects of latent structure on the scaling of mental
sorting, we also introduced three structure conditions. Participants
were not informed about the latent structures in any way, i.e. to use
them they had to learn them unprompted. In the no structure condition,
the scrambled sequences were generated randomly, meaning that col-
ors, the height of the smallest rectangle, the position of the rectangles,
and the queried position were chosen from a uniform distribution.
Since all rectangles had equal differences in height to their neighboring
rectangles, the height of the smallest rectangle completely determined
the height of all rectangles in a sequence. The query structure condition
used the same sequences as the no structure condition; however, partic-
ipants were only queried about the tallest rectangle in the sequence. To
prevent memory effects, the colors of the rectangles were re-sampled
randomly from a uniform distribution. Accordingly, the query structure
transforms this task into a length task, which scales more favorably.
Exploiting the structure of this condition means realizing that the task
has changed to an easier task. Lastly, the sequence structure condition
also used the same sequences as the other two conditions and the
queried position was randomly sampled from a uniform distribution.
However, we used three reoccurring colors that were always assigned
to rectangles that followed each other in height once the sequence was
sorted. The two sets of three colors (one for the sort task and one for
the memory task) remained constant for each participant. These colors
always appeared so long as the length of the sequence allowed it. For
example, if the color sequence was ‘‘purple’’, ‘‘green’’ and ‘‘yellow’’ (as
in the example in Fig. 1A), then a sequence of length two would have a
‘‘purple’’ and a ‘‘green’’ rectangle, with the purple rectangle being the
smaller one. For sequences that had more than three rectangles, the rest
of the colors were sampled randomly as in the other two conditions. If
participants learned the latent sequence structure, they should be able
to connect the three rectangles into a single ‘‘entity’’, thus reducing
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the sorting time by a (theoretically) constant amount. For sequences
of length three or below no sorting was necessary at all.

The way we generated sequences resulted in trials which (between
conditions) were matched for the length of the sequence, the heights of
the rectangles and the order of the rectangles (for the sort task). Due to
the latent structure and to prevent learning effects, the trials were not
matched for queried position and colors. Each of the six combinations
of the 3 × 2 design were presented in separate blocks. To avoid any
order effects, both the order of the blocks and the order of the trials
were randomized for each participant.

Materials and procedure
The experiment was conducted online. Participants were instructed

to either mentally sort (sort task) or to remember the pre-sorted se-
quences (memory task) as fast and accurately as possible. Participants

ere told that their bonus depended on the percentage of correct trials
but not the speed at which they responded). Participants were not
nformed about the latent structures in any way.

After the instructions, participants completed 14 no structure prac-
tice trials (one for each possible sequence length in randomized order)
from both the sort task and the memory task. Participants were then
equired to answer three comprehension questions correctly. After-
ards, the six experimental blocks started in a fully randomized order,

onsisting of 35 trials (5 trials for each sequence length) in each
lock, resulting in 210 trials for each participant. At the end of the
ask, participants performed a short color blindness test, and were
sked to provide demographic information and an optional description
bout which strategies they used and whether they had noticed any
ifferences between the blocks. No participants were excluded due to
he color blindness test.

Each trial began with participants seeing a sequence of rectangles
nd being asked to respond by pressing the space-bar after they had
orted and/or memorized the sequence. We instructed participants to
nly press the space-bar once they had finished the sort. Accordingly,
e used the time between the presentation of the sequence and the
ress of the space-bar (encoding RT) to measure the duration of their
ental sort. As soon as they responded, the sequence disappeared

nd a fixation cross was shown for 1 s. Afterwards, participants were
hown a colored circle (query), corresponding to the color of one
f the rectangles. They were then asked to respond by pressing the
umber key corresponding to the (sorted) position of the rectangle
ith the same color (see Fig. 1B for an example). In the memory task,

this corresponded to simply remembering the position of that colored
rectangles without any mental sorting. We recorded both the reaction
time (RT) during which participants observed the stimuli (referred to
as encoding RT from here onward) and during which they were shown
the query (referred to as recall RT). As mentioned earlier, we believe
that the mental sort happened during the encoding RT. Theoretically,
it is also possible that participants sorted the sequence after they saw
the query (recall RT). But since encoding the unsorted sequence and
then sorting it from memory would require higher working memory
demands than sorting the visible sequence and then remembering it in
the sorted order, we believed this to be unlikely (see appendix A for
further checks). Participants received feedback about the correctness
of their response after every trial and at the end of each block when
they were told the percentage of correct trials for the block they had
just completed.

The experiment was programmed in HTML and JavaScript with the
help of the jsPsych toolbox (De Leeuw, 2015). The rectangle stimuli
were generated using the psycho-physics plugin (Kuroki, 2020). The
rectangles were presented at the center of the screen and were 50
pixels in width and varied in height from 150 to 390 pixels. The
height difference between adjacent rectangles in the sorted order was
always 30 pixels, meaning that the height of the smallest rectangle
fully determined the height of all other rectangles in a sequence. To
4

prevent uncertainty about the name of particular colors, we used colors w
corresponding to the 11 basic color terms (except gray, which was the
background color) from the color lexicon of American English (Lindsey
& Brown, 2014) for the color of our rectangles, i.e. black, white, red,
yellow, green, blue, brown, orange, pink and purple.

Exclusions
We had 15,330 trials in total (210 trials per participant), but for all

subsequent analysis, we excluded all incorrect trials (670 trials). For the
correct trials, we also excluded all trials for which either the encoding
or the recall RTs were longer than 10 s (1216 trials), to avoid including
trials, where the participant had left the screen (see Fig. C1a). This left
us with 13,444 trials in total.

3. Results

3.1. Hypotheses

We had three main hypotheses. First, we hypothesized that the
encoding RT would increase with the length of the sequence, the nature
of this increase (sub-linear, linear, or super-linear) being the subject of
our investigation. Secondly, we hypothesized that participants would
benefit from the latent structure, leading to faster encoding and better
scaling. Thirdly, we hypothesized that for the encoding RT, participants
would profit increasingly with increasing sequence length in the query
structure condition, since they only ever had to identify the tallest
rectangle. Similarly, we hypothesized that the encoding RTs would
profit increasingly only for the first three rectangles and then remain
faster by a constant amount for the sequence structure condition, since
three rectangles always followed each other and therefore could be
treated as one connected unit during mental sorting. In this study, we
focused on the RTs, but it is important to note that people did make
mistakes and that our manipulations influence the number of mistakes
(see Fig. C1 and appendix C). The implications of this for our results
are discussed in the discussion.

In the following, we first investigate the scaling of mental sorting
via linear regression models. We then looked at the effects of structure
on the RT and modeled how this structure could potentially be learned.

3.2. Behavioral results

To investigate which predictors are relevant for the change in the
encoding RTs (see appendix A and Fig. A1 for analyses with recall RTs)
we used Bayes Factors (BFs) to compare a full model with a model
where the predictor we were investigating was excluded. Specifically,
we performed model comparisons using maximally-structured mixed
effects models (Barr, Levy, Scheepers, & Tily, 2013). This means that
we always compared a full model containing the structure and task
conditions and the sequence length1 as both random and fixed effects
as well as the block number (to control for block order) as a random
effect over participants against a model that did not contain the target
variable as a fixed effect. If the full model is not explaining the data
better than the model which misses the target variable, then the target
variable is unlikely to have a strong and systematic contribution to the
change in RTs. Accordingly, the model comparison here only serves
to confirm the relevancy of the target variables (i.e. our experimental
manipulations). We used bridge sampling (Gronau, Singmann, & Wagen-
makers, 2017) as included in the brms package (Bürkner, 2017, 2018)
to approximate Bayes Factors (BF) for these comparisons. A BF that
is larger than 1 provides evidence for an effect, while a BF below 1
provides evidence against it. A BF of 2 would indicate that the data
is twice as likely under the alternative hypothesis. Generally, BFs that
are larger than 3 are interpreted as giving substantial evidence for

1 The task and structure conditions were both encoded as nominal variables,
hile the sequence length was numerical.
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Fig. 2. Behavioral results. (A) Average encoding RT over all trials. The left plot only shows the trials from the memory task, while the right plot shows the trials from the sort
task. (B) Estimates of the fixed effects of the full encoding RT model. The depicted numbers are the mean estimated effects. (C) Predicted and actual RT gain through structure.
The upper plot is a schematic of the predicted gain that structure can provide if the participants were fully aware of the structure and were using it to the full extent. The exact
shape of the increasing gain depends on the way that mental sorting scales. The depicted linear increase is therefore just for illustrative purposes. The lower plot shows the actual
gain trough structure; calculated by taking the mean of the difference of each trial in the no structure sort task to the difference of the corresponding trials in the query structure
ort task (blue) and the sequence structure sort task (orange). All error-bars represent the standard error (SE). (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
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ne hypothesis over the other. All models we used to estimate effects
re linear regression models. As has been done e.g. by Bartsch and
berauer (2021), we estimated the models via an MCMC algorithm that
sed sampled parameter values that are proportional to the product of
he likelihood and the prior to estimate the posterior. We generated
hese samples with 4 independent Markov chains with 5000 warm-
p samples each, followed by 5000 samples drawn from the posterior
istribution. We also visually inspected the chains for convergence. All
̂ values were equal to 1.

equence length increases RTs, while latent structures reduce RTs
Our analysis of encoding RTs showed that the full model2 performed

etter than the model without the structure conditions3 (𝐵𝐹 > 100),
he sequence length4 (𝐵𝐹 > 100), or the task conditions5 (𝐵𝐹 > 100)
s fixed effects. The resulting parameter estimates of the full model
howed that RTs increased for longer sequences (𝛽 = 0.66, 95% HDI

[0.57, 0.82]), confirming our first hypothesis.
RTs also increased in the sort compared to the memory task (𝛽 = 0.26,

5% HDI = [0.17, 0.36]). Including interaction effects in the model6
evealed that this effect was mainly driven by an interaction between
equence length and task (see Table D1 for more details).

In line with our second hypothesis, we found that participants
esponded faster in the query structure condition (𝛽 = −0.26, 95% HDI =
−0.41, −0.12]), and in the sequence structure condition (𝛽 = −0.17, 95%
DI = [−0.25, −0.09]) when compared to the no structure condition. (see
ig. 2B and Table 1 for a summary of the model estimates).

To make sure that the observed effect of structure was not just due
o block order effects, we included the block number as an additional
ixed effect in the model.7 We found that with increasing block number

2 RT ∼ Sequence Length + Structure + Task + (Sequence Length + Structure
Task + Block | Subject)
3 RT ∼ Sequence Length + Task + (Sequence Length + Structure + Task +

Block | Subject)
4 RT ∼ Structure + Task + (Sequence Length + Structure + Task + Block |

Subject)
5 RT ∼ Sequence Length + Structure + (Sequence Length + Structure +

Task + Block | Subject)
6 RT ∼ Sequence Length * (Structure + Task) + (Sequence Length *

(Structure + Task) + Block | Subject)
7 RT ∼ Sequence Length + Structure + Task + Block + (Sequence Length
5

+ Structure + Task + Block | Subject) w
Table 1
Fixed effects of the full model of the encoding RTs.

Predictors Encoding RT

Estimate HDI (95%)

Sequence Length 0.66 0.57, 0.82
Query Structure −0.26 −0.41,−0.12
Sequence Structure −0.17 −0.25,−0.09
Sort Task 0.26 0.17, 0.36
Intercept 0.60 0.38, 0.82

Observations 13,444
𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 73
Marginal R2/Conditional R2 0.357/0.529

This Table summarized the model results of the full model of the encoding RTs. This is
the same model that is also shown in Fig. 2B. The estimates refer to the mean posterior
estimate.

the RTs were reduced (𝛽 = −0.09, 95% HDI = [−0.12, −0.07]). However,
the effect of the query structure only seemed to increase with the
inclusion of the blocks (𝛽 = −0.33, 95% HDI = [−0.44, −0.22]), while
he effect for sequence structure remained approximately the same (𝛽 =
0.16, 95% HDI = [−0.22, −0.11]). The effect of the sequence length
lso remained unchanged (𝛽 = 0.66, 95% HDI = [0.60, 0.73]). This
ndicates, that participants learned to sort faster over the blocks, but
hat learning alone cannot explain our results.

Next, we investigated the possibility that parts of people’s men-
al sort happened during recall. In particular, we are concerned that
articipants flexibly allocate varying amounts of their sort time to
ither the encoding or the recall phase. If this was the case, by just
nalyzing the encoding RT we could be missing increases or decreases
hat might only be present in the recall RT. To investigate this, we
nalyzed the trade-off between encoding RTs and recall RTs. If people
ccasionally allocated larger parts of their sort to the recall phase, then
he trials in which this happened should have shorter encoding RTs,
esulting in a negative correlation between the two. Instead, we found
n overall positive correlation. Even when accounting for different
equence lengths or structures, this relationship remained positive for
lmost all scenarios (see Fig. A1B).

To further ensure that we are not neglecting parts of the sort time
y focusing our analysis on the encoding RT, we also ran a full model

ith all RTs (encoding and recall), with the RT-type as an interaction
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effect.8 For the same reason, we also analyzed the sum of recall and
encoding RT. Neither of these analyses changed the results qualitatively
compared to the results from the encoding RT analysis (see appendix
A for more details). We, therefore, concluded that participants did
not deliberately push any sorting behavior into the recall part of our
experiment.

In summary, we found that participants’ encoding RT increased with
the length of the sequence and benefited from latent structure. In the
next section, we will further investigate how participants’ encoding RTs
increased with longer sequences.

3.3. Scaling analysis

Having shown that there was a measurable difference between the
sort task and the memory task, we investigated how sorting times scaled
with increasing input size by analyzing the difference between these
two tasks (see Fig. 3A). For the following analysis (unless otherwise
stated), we used this difference (i.e. Sort RT - Memory RT), which
we refer to as sorting time. Since the trials were made to match each
other in the two task conditions in length and queried position, we
only included the differences where both trial types met the exclusion
criteria (i.e. the response was correct and the RT was below 10 s in
both the memory and the sort task), leaving us with 6193 differences.
Because we later also calculate differences in the sorting times between
the different sequence lengths, and this cannot be done on a trial by
trial basis, we used the summarized data of each sequence length and
structure per participant for all analysis in this section.

Sorting time scales approximately linearly for the given sequence lengths
To investigate whether the increase in sorting times was linear,

sub-linear, or super-linear, we combined two comparisons.
In the first comparison, we transformed the sequence length to rep-

resent different complexities (from constant to exponential scaling, see
below for details). This allowed us to investigate which complexity best
described participants’ sorting times. For this purpose, we calculated
maximally-structured mixed effects models on the sorting times. The
models contained the structure condition and the sequence length (s) as
both fixed and random effects over participants (because we used the
differences, which covered both task conditions and were calculated
from trials that came from different blocks, we could not include the
blocks or the task condition as factors in this analysis). To cover the
space of different complexities, we applied different functions 𝑓 to s.
As such, we had a constant model, a logarithmic model, a linear model,
a model representing 𝛩(𝑁𝑙𝑜𝑔(𝑁)) scaling, a polynomial model (2nd
degree), and an exponential model. These functions were defined as
follows: constant: 𝑓𝑐𝑜𝑛𝑠𝑡(s) = 1; log: 𝑓𝑙𝑜𝑔(s) = 𝑙𝑜𝑔10(s); linear: 𝑓𝑙𝑖𝑛(s) = s;
NlogN: 𝑓𝑁𝑙𝑜𝑔𝑁 (s) = 𝑠𝑙𝑜𝑔10(s); polynomial(2): 𝑓𝑝𝑜𝑙𝑖(s) = s2; exponential:
𝑓𝑒𝑥𝑝(s) = 𝑒𝑠. We then did a model comparison by calculating the BFs
of all pairwise model-combinations9 (see Fig. 3B for a depiction of
all results). The linear model (Linear vs. Constant: 𝐵𝐹 > 100; Linear
vs. Log: 𝐵𝐹 > 100; Linear vs. Polynomial(2): 𝐵𝐹 > 100; Linear vs.
Exponential: 𝐵𝐹 > 100) and the NlogN model (NlogN vs. Constant:
𝐵𝐹 > 100; NlogN vs. Log: 𝐵𝐹 > 100; NlogN vs. Polynomial(2):
𝐵𝐹 > 100; NlogN vs. Exponential: 𝐵𝐹 > 100) were better than all
others, supporting that participants’ sorting times scaled favorably. A
direct comparison between the linear and the NlogN model resulted
in evidence slightly in favor of the NlogN model (NlogN vs. Linear:
𝐵𝐹 = 1.92). However, it is important to note that in the space of
1–7 𝑓𝑁𝑙𝑜𝑔𝑁 (s) behaves very similarly to 𝑓𝑙𝑖𝑛(s) (see Fig. E1), making
it impossible to clearly distinguish between these two complexities

8 RT ∼ (Sequence Length + Structure + Task) * RT-type + ((Sequence
ength + Structure + Task + Block) * RT-type | Subject)

9 General model structure: Sorting Time ∼ f(s) + Structure + (f(s) +
tructure | Subject)
6

or the given input range. Nevertheless, this comparison is crucial,
ecause ideal comparison-based sorting algorithms have a complexity
f 𝛩(𝑁 log(𝑁)). Our results suggest an approximately linear scaling of
ental sorting in the given input range but leave open the possibility

or ideal comparison-based sorting.
In our second comparison, we looked at an approximation of the

erivative of scaling times over the sequence length. To calculate this
pproximation, we took the differences between each participant’s
orting time for 𝑛 rectangles and 𝑛 + 1 rectangles for all consecutive
lements of 𝑛 (we excluded all participants that did not have valid

trials for all seven sequence lengths). The rationale of this analysis
is that the derivative of a linear function should be constant, and,
therefore, regressing 𝑛 onto this difference.10 should not improve the
model fit compared to an intercept-only model11 If including 𝑛 as a
predictor does, however, improve the model fit (i.e. the derivative is
not constant), then this would be evidence that the sorting time scaled
super-linearly. The derivative should be 0 if the scaling was constant.
Furthermore, to test our hypothesis that the scaling for the structure
conditions should be better, we calculated a separate model for each
structure. For all structures, the constant model performed better than
the model containing 𝑛 (no structure condition: 𝐵𝐹 = 7.54, 𝛽 = 0.17,
5% HDI = [0.01, 0.32], query structure condition: 𝐵𝐹 = 9.67, 𝛽 = 0.16,
5% HDI = [0.02, 0.3], and sequence structure condition: 𝐵𝐹 = 7.31,
̂ = 0.17, 95% HDI = [0.02, 0.32]), meaning we found evidence for
inear scaling. The fact, that the intercept estimates of the constant
odel did not overlap with 0 suggests no constant scaling, supporting

he conclusion of the above analysis.
To summarize, we found evidence that mental sorting scaled ap-

roximately linearly for the given input range. We managed to rule
ut that in the given input space sub-linear complexities such as con-
tant or logarithmic components and super-linear complexities such as
olynomial and exponential components govern the scaling of mental
orting.

.4. The effects of structure

As we proposed in our second and third hypotheses, one reason why
uman cognition could scale to complex problems is because humans
ecognize and exploit structural regularities in the environment. Our
ehavioral results already showed that participants used the latent
tructures to improve their RTs (hypothesis two). In the next part
e tested our third hypothesis, by investigating what exactly this

mprovement looked like and whether it aligned with our expectations
egarding the used structures.

tructure helps, but is not used to its full extent
We first calculated a model in which we included an interaction

ffect of sequence length and structure6. We found an interaction
etween query structure and sequence length, resulting in larger RT
ecreases for longer sequences (𝛽 = −0.16, 95% HDI = [−0.24, −0.08]).
or the sequence structure there seemed to be a small effect in the
ame direction (𝛽 = −0.04, 95% HDI = [−0.08, −0.00]), but the results
ere less clear (see Table D1 for all estimates). To quantify the effect
f structure further and to test our third hypotheses (namely, that
articipants would profit increasingly with increasing sequence length
n the query structure condition and that the encoding RTs would be
aster by a constant amount for the sequence structure condition), we
alculated the differences between the no structure sort task and the
wo structure sort tasks (see Fig. 2C). If people really used the structure,
e would expect there to be an increasing difference between the no

tructure condition and the query structure condition, since the longer
he sequence, the more people should benefit from not having to sort

10 diff ∼ 𝑛 + (𝑛 | Subject)
11 diff ∼ 1 + (𝑛 | Subject)
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Fig. 3. Investigation of the scaling. (A) The 𝑦-axis shows the differences of the sort task RTs and the memory task RTs. This difference represents the sorting time (without the
memory component). (B) Scaling analysis. We calculated maximally-structured mixed effects models on the RT difference depicted in A with the transformed sequence length as
a predictor. We depict the log of the BFs, meaning positive values (blue) give evidence for a model and negative values (red) give evidence against it. The size and the hue of
the circle represent the size of the evidence. The rows represent the models for which the evidence is gathered, meaning that the winning model is the model where the whole
row has values above zero. (C) Sorting times increase for each sequence length increase. The plot shows the mean of the difference in values shown in A from each s to the next
larger s +/−SE. This difference of differences is akin to a derivative: it should be 0 for constant scaling, constant for linear scaling, and above constant for super-linear scaling.
(D) Evidence in favor of linear scaling. For each structure, we calculated a constant and a linear model trying to predict the differences of the differences displayed in C. The BFs
here are log-transformed (as in B) and represent the evidence in favor of linear scaling. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
it. For the sequence structure condition we expected the difference to
increase for the first three rectangles and then stay constant, since
there are only three connected rectangles and otherwise the sorting is
the same as for the no structure condition. To test these hypotheses,
we ran three models on the two differences between the conditions.
The first model was a constant (intercept-only) model12 (representing
the hypothesis that there was no or a constant difference), the second
model had the sequence length as a predictor13 (representing our
hypotheses about the benefit of the query structure condition) and the
third model also had the sequence length as a predictor, but recoded
sequence lengths above 3 as 314 (representing the hypothesis about the
sequence structure condition).

For the query structure condition, we found that including the se-
quence lengths improved the model, both compared to a constant
model (𝐵𝐹 = 50.85) as well as to a model with the re-coded sequence
length (𝐵𝐹 > 100). This indicates that people used the query structure
with increasing benefits for longer sequences. For the sequence structure
condition, however, the best model was less clear. Both the intercept
only model and the re-coded sequence length model were better than
the model with the normal sequence length (𝐵𝐹 = 2.33 and 𝐵𝐹 = 1.97),
and the constant model was better than the re-coded model (𝐵𝐹 = 1.2).
But the comparatively small BFs suggest that people did not benefit as
much from the sequence structure as we expected.

12 diff ∼ 1 + (Sequence Length | Subject)
13 diff ∼ Sequence Length + (Sequence Length | Subject)
14 diff ∼ re-coded Sequence Length + (re-coded Sequence Length | Subject)
7

In summary, as we proposed in our third hypothesis, query structure
increasingly benefited participants’ RTs for longer sequence lengths.
However, while we have shown in previous analyses that there was also
a benefit for the sequence structure condition, this benefit was smaller
and did not take the form we expected.

3.5. Models of structure learning

To investigate the mechanisms people used to learn latent structure,
we evaluated two potential models of participants’ behavior. Since
for this analysis we focused on capturing the mechanisms that peo-
ple used to learn latent structure to inform their mental sorting, we
chose one sorting algorithm (as a stand-in for any sorting algorithm
that scales linearly) which matched the approximately linear scaling
we observed empirically. Specifically, both models were based on a
bucket sort algorithm (Horsmalahti, 2012), which is not an exact
comparison-based algorithm and, therefore, achieves an average scal-
ing of 𝛩(𝑁) in exchange for being prone to errors. Our bucket sort
algorithm takes knowledge about the range of possible sizes of the
rectangles into account to immediately sort each rectangle into the
correct bucket/position (see appendix B for more details).

To benefit from latent structure, an agent needs to propose and
evaluate hypotheses about the structure of the task. We assume that
hypotheses about structure can contain information about three things:
(1) which rectangles might be connected, (2) how long to sort, and (3)
which sort direction is more beneficial (i.e. one example hypothesis
would be a connection between the ‘‘red’’ and ‘‘blue’’ rectangles, a
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Fig. 4. Sorting models. The division illustrates the dimension on which the models differ. The illustration below depicts a schematic of the two different models. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
sort length of three and a sort that starts with the smallest rectangle).
The evaluation of a proposed hypothesis can be performed based on
whether or not the resulting sorting process was correct and how
long it took. We looked at two models (see Fig. 4A) which varied
in their search method, determining which hypotheses were currently
evaluated for their usefulness. In other words, the search method de-
fined how an algorithm proposed hypotheses about the structure in the
task. For both models, the updating of the hypotheses depends on the
feedback after the recall phase and is therefore unlikely to be captured
by our RT measures. Therefore, we did not use the complexity of the
structure learning process as a selection criterion. However, we do talk
about the implications of differences in complexity in the discussion.

3.5.1. Hypothesis mutator
We first considered a model with undirected search, using random

mutations to traverse the space of possible hypotheses. This model used
an evolutionary search, which evaluates a limited set of hypotheses
about the structure, exchanging bad hypotheses (i.e. hypotheses that
resulted in wrong or correct, but slow responses) with mutated variants
of better performing hypotheses. Meaning this model has two hyper-
parameters. 1. the number of evaluated hypotheses at any given time
and 2. the number of hypotheses which get replaced with mutants. Be-
cause the number of evaluated hypotheses was fixed, the computational
costs of this model remained constant with the amount of possible
hypotheses, but plausible hypotheses were harder to locate.

3.5.2. Hypothesis generator
In contrast, we also developed a model using directed search, based

on regularities in the sorted sequences and the queried positions to
generate a plausible hypothesis. The generator only considered one
hypothesis at a time, which was changed based on representations of
transitions between colors 𝑇 , the maximum queried position 𝑏, and the
best sort direction 𝑑.

The transition matrix 𝑇 represented transitions between colors in
the sorted sequence (i.e. the probability that ‘‘red’’ follows ‘‘blue’’)
and was updated after each trial with the observed transitions in the
sorted sequence. If the probabilities of certain transitions exceeded
0.8, the generator grouped the concerned colors together in future
trials, eliminating the need to sort the rectangle with the second (or
third) color. The threshold vector 𝑏 encoded the maximum position
8

of the queried position, such that if the second position kept being
queried, this gradually formed the hypothesis that only two rectangles
needed to be sorted. Lastly, the sort direction vector 𝑑 encoded the sort
direction based on the relative position that was queried. If the second
position was queried in a sequence of length 4, then this increased the
probability of the model sorting the next sequence from the smallest to
the tallest rectangle vs. from the tallest to the smallest rectangle. For
details on the implementation of the models, see appendix B.

Model comparison
The two models we compared correspond to two different assump-

tions of how people search through hypotheses in order to use structure:
random (hypothesis mutator) vs. directed (hypothesis generator). To
ensure a fair model comparison, we used a grid-search over model
parameters to determine the parameters that resulted in the highest log
likelihood estimate for each participant.

We estimated the two models on trials from the sort task that each of
the 73 participants observed. This means that the models observed the
35 trials from each block (three blocks per participant, one for each
structure) in the same order as the participants. At the beginning of
the 35 trials, the models always started naively. For the hypothesis
mutator, this means that the model was initiated with a random set
of hypotheses. For the hypothesis generator, this means that the model
assumed there was no structure (i.e. the model assumed that no colors
co-occur, the direction of the sort is irrelevant, and the whole sort is
required). The models then sorted each trial, based on their current
belief about the structure. This sort generated model times, which were
defined as the number of steps the sorting algorithm executed until
the sort was stopped. After receiving feedback for each trial, the model
adjusted its belief about the structure according to said feedback, the
model times, and (in the case of the hypothesis generator) the sequence
it observed. Accordingly, the models learned the structure online while
observing the same trials as the participants did (see Fig. 5D and E for
the final hypotheses that the hypothesis generator learned at the end of
the 35 trials for each participant). For the model comparison, we ran a
Bayesian regression model on participants’ encoding RTs of the sort task
using the model times (as well as the structure) as fixed and random
effects.15 We calculated the loo R2 values to compare the two models.

15 RT ∼ model times + Structure + (model times + Structure | Subject)
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Fig. 5. Output of hypothesis generator. (A) This plot shows the mean model time for each sequence length over all trials. (B) Behavioral pattern. With this model, we investigated
whether the times of the hypothesis generator have a similar pattern to the human RT data depicted in Fig. 2B. (C) This plot shows the improvement of the model times over the
35 trials of a block (see Fig. F1 for equivalent analysis for the human data). (D) This plot shows the learned thresholds, i.e. how many rectangles the hypothesis generator was
willing to sort for the last trial of each block. (E) This plot shows whether the hypothesis generator learned the correct connections for each of the blocks. As can be seen, no
wrong connections were learned. (F) The plot shows the relationships of the model and the real RT data for each trial. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
The hypothesis generator explained the most variance in the data
(hypothesis generator: loo R2 = .59, hypothesis mutator: loo R2 = .57).
To ensure that this small difference in the loo R2 values was meaningful,
we also compared the models directly via BFs. This comparison showed
that the hypothesis generator described trial-by-trial variations in the
participant’s RTs better than the hypothesis mutator (𝐵𝐹 > 100).

Model output
To make sure that the hypothesis generator is a valid description

of human behavior, we qualitatively compared the model times we
generated (see above) to the data collected in our task. We found that
the hypothesis generator generated human-like scaling patterns (see
Fig. 5A and B) and that it also profited from the underlying structure.
The hypothesis generator also replicated the empirical finding that
participants benefited more from the query structure than from the
sequence structure.

The hypothesis mutator, on the other hand, often learned faulty
sequence structures, and was unable to replicate participants’ use of
latent structure, particularly the use of the sequence structure (see Fig.
B1), making the hypothesis generator a better model of participants’
behavior.

Interestingly, the hypothesis generator even improved its processing
time in the no structure condition. Specifically, the model learned that
sorting smaller parts of a sequence could still result in high accuracy
given that items further down in the sorted sequence were queried only
infrequently (this can be seen by the low thresholds, see Fig. 5D, and
the improved processing times, see Fig. 5C). It is, therefore, possible
that human subjects applied a similar strategy, decreasing their sorting
time even in the no structure condition. This is a noteworthy finding
because the model highlights a structural property of our task that
could have been used by humans as a strategy to reduce sorting times.

Taken together, these results indicate that participants likely used a
directed search method that took the observed transitions into account
to generate hypotheses about latent structures in our task.
9

4. Discussion

People are robust to the varying complexities they encounter in
everyday life. Yet cognitive models do not always scale as well with
increasing complexity. To help bridge this gap, we studied the scaling of
mental computations to identify plausible models of human cognition.
We used RTs to assess the scaling of one such mental computation:
mental sorting. We found that participants’ sorting times scaled ap-
proximately linearly with the number of rectangles they needed to
sort. Additionally, participants recognized and actively exploited latent
structure to improve their sorting times. To understand how this struc-
ture could be learned, we used computational modeling to compare
two models that used undirected or directed search methods to learn
hypotheses about the latent structure. We found that the model that
applied directed search to generate and test hypotheses could replicate
our observed behavioral patterns. These results show that people deal
well with increasing complexities (at least at the scale presented in
our experiment) and emphasize the usefulness to study how mental
computations scale more generally.

One limitation of the current study is the length of the considered
sequences. Due to the nature of the task, we were limited to a length
that could still be maintained in working memory. Accordingly, draw-
ing strong conclusions about the complexity of mental sorting from this
limited range of input sizes is not easily possible. For instance, when
compared to a linear complexity, a complexity of 𝑁 log𝑁 can result
in equally fast or even faster sorting times for short sequences and
is therefore hard to distinguish from linear scaling. Nonetheless, we
believe that with our current paradigm, we can make inferences about
the super- or sub-linearity of the scaling and we managed to exclude
the possibility that very favorable scaling factors (such as constant or
logarithmic complexities) or very unfavorable scaling factors (such a
polynomial or exponential complexities) govern the scaling of mental
sorting in the investigated input space.

A related concern is that at small input sizes, a linear component
might drive the scaling effects. For example, both [2000 ∗ 𝑛+(1∕1000) ∗
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𝑛2] and [𝑛2] scale exponentially, but the former could explain linear
caling of the RTs. In other words, by only observing the complexity
or sorting 1 to 7 rectangles we cannot exclude the possibility that
he approximately linear scaling we observe just marks the beginning
f an exponential or logarithmic curve. However, we argue that even
onclusions about the scaling in the limited space we observe allow
s to narrow down the possible underlying sorting algorithms. Fur-
hermore, it is possible that the sorting algorithms used by humans
hange depending on the length of the sequences and the scaling
ould therefore differ for longer sequences. In fact, most default sorters
f programming languages also combine different sorting algorithms
epending on the length of the to be sorted lists (e.g Timsort, which
s the python default sorter, combines insertion sort for small lists
ith merge sort). Future studies could look at scaling times for more

omplex tasks to test the limits of this approach.
One important observation in our study is that participants make

istakes and the number of mistakes increases with the sequence
ength. This can broadly be the result of two explanations with very
ifferent implications. First, the decreasing accuracy could be a reflec-
ion of an increased difficulty to encode or recall the correct order of
he rectangles for longer sequences. This scenario would only affect
he memory component, but not the sort and should therefore not
ffect the presented analysis. This explanation is supported by the fact
hat errors also increased in the memory task. A second possibility is
hat participants strategically reduced the number of rectangles they
orted in longer sequences. This would result in mistakes. However,
ince longer sequences are rare and even an incomplete sort had good
hances of resulting in correct responses, the number of mistakes would
till be limited. As such, participants might have willingly allowed these
istakes to reduce the overall workload. Our results do not allow us

o conclusively differentiate between these two possibilities. Therefore,
e cannot exclude the possibility that the favorable scaling of partici-
ants’ sorting time is a result of incomplete sorts for longer sequences.
owever, since the effect of structure on RT and accuracy correlated
ositively over participants, there is at least some evidence that there
s no trade-off between accuracy and sorting time (see appendix C).
his makes it unlikely that some participants explicitly accepted a lower
ccuracy to reduce their sorting time.

In relation, in our current design we only rewarded accuracy. This
ould be problematic in two ways. First, it could mean that participants
bandoned strategies which are fast, but which have some (acceptable)
egree of error. Secondly, it is also possible that by rewarding accuracy
e motivated participants to be extra cautious, and thus the RTs might
ot only reflect the sorting time, but also an added time factor due to
autiousness (which would, however, only be problematic if this extra
ime also scaled with the input size).

Another point to consider is the relationship between memory and
orting. While we introduced the memory task to abstract away every-
hing that was not sorting from the analyzed response times, with the
resent study, we are unable to confirm that this is a valid analysis.
t is possible that memory and sorting are not additive processes,
ut rather that they interact. Memory and sorting could, for example,
e sharing some common resource and therefore interfere with each
ther, especially for longer sequences. This would also result in longer
esponse times. As such we cannot be sure that the increase in RT
ctually represented the complexity of mental sorting. The fact that
e do observe the pattern in increase of RTs with increasing sequence

ength, while controlling for increases in RTs from the memory task,
oes, however, support the notion that the RTs are related to the length
f the mental sort.

One question that our study has not yet addressed concerns the
xact algorithms used by participants to accomplish approximately
inear scaling. Despite eliminating a range of sorting algorithms that
xhibit less favorable scaling than our results suggest, we are still
onfronted with numerous potential algorithms that warrant consider-
10

tion. We used a bucket sort algorithm in our model, which explained
participants’ behavior well. By avoiding the pairwise-comparison, this
algorithm can be error-prone, just like we observed in participants’
behavior. However, bucket sort is not the only possible algorithm that
scales linearly. Other sorting algorithms with the same complexity
like radix sort, or counting sort (Horsmalahti, 2012) could be just as
likely given our current results. Another promising option would be a
parallel sorting mechanism that functions like a criterion-bar that is
moved either up or down all rectangles at the same time. Rectangles
that exceed (in case of upward movement) or are below (in case of
downward movement) the current position of the bar are then sequen-
tially moved into the next available position of the sorted sequence.
However, a different study design, which probes the idiosyncrasies
of different sorting algorithms, would be required to make a clearer
statement about which of these algorithms is most likely. The aim of
our current study was not to identify the exact algorithms with which
humans solved our task, but rather to use the scaling complexity as a
criterion, with which we can evaluate the plausibility of a wider range
of algorithms or models.

One caveat here is, that humans could also adaptively allocate
more neural resources to more complex tasks (Krebs, Boehler, Roberts,
Song, & Woldorff, 2012; Vassena et al., 2014; Verguts, Vassena, &
Silvetti, 2015). Accordingly, it is possible that the favorable increase
in RTs for longer sequences is due to the parallelization of substeps
of a more complex sorting algorithm. Whether the favorable scaling
we observe is the result of varying neural resources or the use of a
beneficial algorithm remains an open question for future research using
neuroimaging techniques.

Our modeling results suggest that participants used a directed
search method that was informed by the observed transitions to gen-
erate hypotheses about latent structures. The incremental hypothesis
generation is reminiscent of previous research. For instance, Bramley,
Dayan, Griffiths, and Lagnado (2017) proposed that structure can be
learned by maintaining a global hypothesis, which is updated via local
changes, illustrating an unwillingness to abandon the current hypoth-
esis about the structure entirely. The hypothesis generator functions
similarly, by taking the properties of the current trial into account to
slightly adjust the belief about the underlying structure. Furthermore,
how the model learned the sequence structure, was inspired by existing
sequence learning models (Éltető, Nemeth, Janacsek, & Dayan, 2022),
though due to the deterministic nature of our structures, our version is
relatively simple in comparison. In less deterministic environments the
model would likely need to be adjusted accordingly. Furthermore, the
hypothesis generator does not explicitly reward speed (as opposed to
the hypothesis mutator), but nonetheless results in faster processing
times for the structure conditions. In this study, we only compared
two models as broad representations of a directed or undirected search
across possible structures. Further studies are necessary to delineate
more precise mechanisms by which latent structure can be learned in
tasks like this. For instance, we only considered task-relevant struc-
tures, but it is possible that participants considered a wider variety of
features than the ones we included in the model hypothesis spaces. For
example, participants might choose to skip a number of elements at
the beginning of a sort, to only remember the positions of the items
with odd-numbered indices, or decide that sorting may be done by
color rather than height. While some of these features are unlikely
given our task structure, a more unconstrained hypothesis space is
an important factor for further exploration in future studies. Further
studies could also look at how the hypothesis learning process scales. In
our current study, the hypotheses were shared across sequence lengths.
This means, that the hypotheses space that is being searched is defined
by the maximum sequence length, not the current sequence length.
Nevertheless, the sequence length influenced the number of trial-by-
trail updates. Specifically, for the hypothesis generator the updates
of the transition-matrix 𝑇 were dependent on the presented colors.
If a color was not presented, the corresponding row of 𝑇 was not

updated. Accordingly, the number of updates in the matrix in any
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given trial increased linearly with the sequence length. The number
of updates for the threshold vector 𝑏 and the 1 𝑥 2 direction-vector
𝑑 respectively depended on the maximum sequence length or are
independent of the sequence length and are therefore constant in our
task. The hypothesis mutator, on the other hand, considered a fixed
number of hypotheses with random local mutations, resulting in a
constant number of updates. However, since the updates of both models
were performed based on the feedback in the recall phase of the
experiment, they likely did not influence our RT measures, making us
unable to investigate these differences in our study. Furthermore, it
would be interesting to investigate how the maximum sequence length
(and therefore the size of the hypothesis space) affects the time of the
hypothesis learning algorithm and use that to test the plausibility of
the different hypothesis learning algorithms. Theoretically, the average
number of updates required by the hypothesis generator in each trial
should increase quadratically with the maximum sequence length. The
updates by the hypothesis mutator, on the other hand, should remain
constant. However, due to the randomness of the search, the growing
hypotheses space would make it harder to find valid hypotheses with
this search method. This results in a trade-off between complexity
increase and accuracy, which would be interesting to investigate.

Finally, we believe that other psychological domains could also ben-
efit from gaining further insights into the scaling of the computations
of the concerned mental processes. And while we have currently only
used this approach for a simple mental sorting task, we would like to
study other domains, such as category learning or retrieval from long-
term memory, using a similar approach. To further arbitrate between
different process-level models of mental computations, one could also
combine the current approach with additional method to gain insights
about what people do and attend to. Two such methods could be eye-
tracking to assess where people look at while solving a task (Anderson
& Douglass, 2001) or MEG to decode their programming traces when
applying a particular algorithm (Eldar, Lièvre, Dayan, & Dolan, 2020).

5. Related work

There also exist other studies on human sorting behavior. Lieder
et al. (2014) studied how people choose between different sorting
algorithms in a manual sorting task, showing that participants can
be trained to either perform cocktail sort or merge sort-like behav-
iors. Thompson, van Opheusden, Sumers, and Griffiths (2022) stud-
ied how participants sorted sequences of unknown numbers, showing
that several known sorting algorithms were discovered during cultural
transmission chains. Sorting has also been studied using the Wisconsin
Card Sorting Task (Grant & Berg, 1993) in which participants need
to sort cards according to different criteria, while the experimenter
changes the used criterion after the participant made 10 consecutive
correct classifications. This task has not only been used to study patients
with brain damage (Anderson, Damasio, Jones, & Tranel, 1991), but
also been analyzed using computational models of symbolic sorting
algorithms (Dehaene & Changeux, 1991).

We are also not the first to show that participants benefit from
repeatedly encountering structure in their environment. As studied
extensively in the literature on practice effects, participants tend to
reuse the solutions to previously performed computations to speed up
their responses when the same problems are encountered again (Logan,
1988). And even when two problems or queries are not exactly the
same, partial similarity can be leveraged (Dasgupta & Gershman, 2021).
Past work has shown that this amortization of computation is prevalent
in human planning (Huys et al., 2015; Mattar & Daw, 2018), and it has
recently also been studied in human probabilistic inference (Dasgupta,
Schulz, Tenenbaum, & Gershman, 2020). Additionally, how people
learn that certain steps in a computation can be skipped, as was
the case in our sequence structure condition, has also been studied
before, particularly in mental algebra. For example, in a series of
experiments conducted by Blessing and Anderson (1996), participants
11
had to perform mental algebra to solve problems in which they could
skip steps and still arrive at the correct solution. Their results showed
that participants first skipped steps mentally but later started to use
fully new transformations, thereby covertly skipping steps.

Lastly, the field of computer science has a longstanding focus on
algorithm efficiency. In line with our research, Cropper and Muggle-
ton (2019) demonstrated that it is possible to learn algorithms with
minimal computational cost using a few examples. This suggests that
humans may also employ similar mechanisms to discover efficient algo-
rithms. However, their method is intended to learn any logic program.
In our specific domain, where the task is already defined, it is more
practical to investigate a narrower set of potential algorithms from the
beginning.

6. Conclusion

In summary, we have applied an approach towards testing the plau-
sibility of psychological models based on the scaling of participants’
response times to take a precise look at mental sorting. We found that
mental sorting scales surprisingly well and that latent structure, is used
to improve the time complexity for mental sorting. We believe that this
approach will provide a widely-applicable and fruitful assay for future
investigations.
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Supplementary material related to this article can be found online
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