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Abstract
Rate-distortion theory has been used to model the rela-
tionship between the capacity of a resource-limited agent
and learning performance. However, most of these mod-
els define a single bottleneck on either the representa-
tional or policy complexity of the agent, but not both.
Here we explicitly model representational capacity and
policy capacity separately, and show that they make in-
dependent and non-interchangeable impacts on learning
performance and efficiency of learned representations.
This preliminary work has the potential to provide nor-
mative guidance about how to design more efficient RL
agents, while also informing better descriptive models of
human behavior by capturing different forms of cognitive
constraints.
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Introduction
RDT was first introduced to describe lossy compression in
capacity-limited communication channels (Shannon, 1959).
Compression is cast as a constrained optimization problem,
where the capacity (or “rate”) of the channel is measured
by the mutual information between the input and output, and
bounded by a maximum limit. The goal is then to minimize
distortion in the signal, which is measured by a choice of loss
function, such as a mean squared error.

More recently, RDT has been applied to reinforcement-
learning (RL), where the agent is treated as a capacity-limited
channel striving to maximize reward (Malloy & Sims, 2022;
Gershman, 2020; Genewein, Leibfried, Grau-Moya, & Braun,
2015). Some have focused on the representational capac-
ity of the agent, for encoding and remembering features in
the input signal that are relevant for reward acquisition (Malloy
& Sims, 2022; Bates, Lerch, Sims, & Jacobs, 2019). Oth-
ers, have applied constraints to the policy capacity, constrain-
ing how much an agent’s policy can diverge from a stimulus-
independent prior (Gershman, 2020; Lai & Gershman, 2021).
In both cases a single parameter (typically denoted with β) is
used to capture the effects of capacity limitations.

A tale of two bottlenecks

Yet, representation and policy bottlenecks correspond to dif-
ferent types of constraints, with conceivably different impacts
on behavior. For example, the resolution of one’s representa-
tions impact how well stimuli are mapped onto rewards (rep-
resentational capacity), while more fine-grained distinctions
in the mapping of actions to value (policy capacity) impacts
the explore-exploit trade-off. Inspired by past work suggesting
the potential for non-trivial interaction between multiple bottle-
necks (Genewein et al., 2015; Tishby, Pereira, & Bialek, 2000),
we address this gap by exploring the impact of independently
constrained representation and policy capacities on the per-
formance of an RL agent.

In this work, we use a value-learning architecture based on
the β-variational autoencoder (β-VAE; Alemi et al., 2018) to
learn latent representations for each arm in a contextual ban-
dit task. We systematically manipulate both the capacity to
learn these latent representations, and the capacity to deploy
actions w.r.t. these representations, in order to elucidate the
interplay between constraints on both channels. We present
preliminary results showing that the two capacities indepen-
dently impact the performance of the agent and the efficiency
of learned representations.

Methods
We use a contextual multi-armed bandit task, where each arm
ai corresponds to a different binary vector xi of length N, with
2N arms in total. By analogy, each action can be thought of
choosing a fish lure (Fig. 1a) with N binary features (e.g., hook
type, color, etc...), which have different contributions to the
probability of catching a fish R(x). The problem is to learn
which arms (e.g., lures) maximize reward. We define the re-
ward function R(x) such that each of the N features have a dif-
ferent contribution to the desirability of the lure, R(x) = w · x̃,
where feature weights w are sampled from an exponential dis-
tribution w j ∼ exp(λ) with λ = 1, and x̃ providing a transfor-
mation of x to randomize whether the rewarding option corre-
sponds to xi = 1 or xi = 0.

We define a RL agent using a neural network that receives
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Figure 1: Task and model. a) Contextual bandit task with 2N

arms, corresponding to N = 6 binary features, each with a dif-
ferent weighted contribution to reward. b) Agent architecture
with representational and policy bottlenecks.

the feature vector xi as input for a given action ai, and en-
codes it into a latent vector z. The latent vector is then de-
coded into an estimated action-value Qi. The objective func-
tion combines reward prediction error (mean squared error;
MSE) between observed R and predicted rewards Qi, with
mutual information regularization, controlled by β1 to capture
the representation learning capacity of the agent:

L =
2N

∑
i
(Ri −Qi)

2 − 1
β1

I(z;x) (1)

The latent vector z is sampled from a multivariate nor-
mal distribution, parametrized by the encoder: p(z|x) =
N (µφ(x),σφ(x)). The representational bandwidth, or I(z;x),
is then calculated as the KL-divergence of this distribution
from the prior p(z) = N (0,I) (Kingma & Welling, 2013)1.

The policy module of the agent is simply a softmax distribu-
tion over Q-values:

π(ai|x) ∝ p(ai)exp[β2Q(xi)] (2)

where the prior policy p(a) is assumed to be uniform. It follows
that β2 captures the policy capacity of the agent, who in order
to exploit the value-relevant information about the feature at-
tributes of a given arm, Q(x), must reduce the exploration rate
(increase β2), in order to deviate from the uniform prior policy
p(a).

1This can be computed in closed form using: I(z;x) = 1
2 ∑

|z|
k (µ2

k +

σ2
k −1− log(σ2

k))
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Figure 2: Results. Each epoch corresponds to 32 trials. a)
Average reward (colors), with contour lines showing areas of
equivalence. b) Information cost (in terms of mutual informa-
tion) in the representation channel across different values of
β1. c) Cost-reward efficiency as a function of policy capacity.
d) Efficiency as a function of representational capacity.

Results

We performed 10,000 simulations, using each combination
of β1 and β2 values from a set of 10 evenly log-spaced val-
ues from 2.56 to 98.42. Each combination of parameters was
simulated over 100 different randomly generated reward land-
scape (Fig. 1a), where we set N = 6, and the encoder and
decoder consisted of a single layer of 10 and 20 neurons, re-
spectively (Fig. 1b).

We first examined whether β1 and β2 are interchangeable.
We test this by examining whether changes in performance as
a result of modifying one capacity limit can be counteracted by
appropriate modifications to the other. Figure 2a visualizes av-
erage performance across variations in β1 and β2, where the
contour lines indicate regions of equivalence. These contours
are largely orthogonal, suggesting that no increase in repre-
sentational or policy capacity can compensate for limited ca-
pacity in the other channel. Note that improved performance
with higher βs is expected, as they reflect increase in repre-
sentational and policy capacities of the agent.

However, improved performance comes at a cost, and the
dynamics of these costs over time are differently shaped by
β1 and β2 . In Figure 2b, we first plot the direct relationship
between β1 on the representational costs of the agent I(z;x)
over time, using an illustrative case where policy capacity is
large (β2 = 98.42) and representational capacity serves as
the main bottleneck for the agent. As expected, larger repre-
sentational capacities allow for more complex representations
to be learned (higher I(z;x)), highlighted by distinct maxima
in early phases of learning. Notably, the actual capacity does



not always match maximal capacity limits, as representations
become more compressed with further training.

We then analyze the dynamics of reward-cost efficiency us-
ing E(T ) = ∑

T
t=0 R(t)/∑

T
t=0 Ixz(t), and describe how this is

differently impacted by the two bottlenecks. Figure 2c shows
how when policy capacity is the limiting bottleneck on the
agent (β1 set to 98.42), higher policy capacity trivially yields
more efficient agents regardless of the elapsed time. On the
other hand, Figure 2c shows that when representational ca-
pacity accounts for the main bottleneck in the agent (β2 set
to 98.42), lower capacity corresponds to higher efficiency, but
with some notable convergences during intermediate phases
of learning.

In future work, we intend to model constraints on policy ca-
pacity within the same loss function as representational ca-
pacity (Eq. 1), allowing us to more symmetrically characterize
how the two bottlenecks impact one another and to describe
their interplay in meta-learning across multiple RL tasks.

Conclusion
We present preliminary work seeking to extend the RDT
paradigm in RL by independently manipulating representa-
tional and policy capacities. Our early results suggest that per-
formance and the efficiency of learned representations cannot
be captured by a single bottleneck, with both independently
influencing performance. This work has the potential to pro-
vide normative guidance about how to design more efficient
RL agents, while also informing better descriptive models of
human behavior by capturing different forms of cognitive con-
straints (Zenon, Solopchuk, & Pezzulo, 2019).
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