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Abstract 

Humans are remarkably efficient in exploring vast decision spaces. However, environments vary in how they are 

structured, raising the question of whether and how people adapt their generalization and exploration strategies 

accordingly. People might flexibly adapt their behavior within each environment (i.e., local adaptation), or also learn to 

associate specific strategies with distinct environments (i.e., meta-learning). Using a spatially correlated bandit 

paradigm and computational modeling, we examined how humans adapt their search strategy across two 

environments optimized for different levels of generalization. Across three experiments, participants showed more 

generalization and more random exploration in environments with stronger spatial correlations. Moreover, they meta-

learned to associate different degrees of generalization with different environmental cues. These findings illustrate 

how humans control and adapt search strategies across diverse decision spaces. 

Keywords: value-based decision making, cognitive control, meta-learning, contextual multi-armed bandit 

Public significance statement 

This study shows that people not only change how they search and make decisions depending on the demands of the 

environment, but can also learn to store, link, and retrieve these search strategies whenever they return to similar 

environments. This form of meta-learning reflects a flexible learning process that helps us make more adaptive 

decisions in real-world, information-rich settings. 
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1 Introduction 

Humans can search in different ways depending on how structured their environment is. For instance, 

shopping in a department store allows for more targeted search because similar items are grouped together, 

whereas a disorganized thrift shop may demand more exploration and limited generalization. Many models 

of decision-making suggest that we can adjust our search strategies to different environments, likely based 

on a learned cost-benefit trade-off (Cogliati Dezza et al., 2019; Otto et al., 2022; Shenhav et al., 2017; Wu et 

al., 2022). Beyond such local adaptation, humans may also meta-learn – that is, associate effective strategies 

with recurring environmental cues (Abrahamse et al., 2016; Braem et al., 2024; Braem & Egner, 2018; Chiu & 

Egner, 2019; Verbeke & Verguts, 2024; Wang, 2021). However, few studies have directly tested whether 

people actually implement this form of meta-learning, particularly in complex, choice-rich environments (but 

see Wu, Deffner, et al., 2025), and some found similar search patterns across differently structured 

environments (Wu, Schulz, Speekenbrink, et al., 2018). In this study, we contrast two environments that 

require different optimal generalization strategies (based on model simulations), investigate people’s 

environment-specific search behavior, and provide a new test of whether people meta-learn to associate 

different strategies to different environments. 

Most paradigms on value-based decision-making test human decisions using just a few (typically two 

or three) choice options, largely underappreciating the vast decision spaces typically faced by searching 

agents (Wu, Meder, et al., 2025). In everyday contexts – such as searching through a large store, people must 

generalize from limited experience to estimate the potential value of undiscovered options. To study how 

humans generalize and explore in such vast decision spaces, we can use spatially correlated multi-armed 

bandits (Borji & Itti, 2013; Reverdy et al., 2019; Wu, Schulz, Speekenbrink, et al., 2018), where nearby options 

yield correlated rewards. This spatial structure enables generalization, allowing learners to infer which 

unexplored options are promising when exhaustive exploration of all options is not feasible (Figure 1).  
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Previous research has shown that people can flexibly adapt their learning and control strategies to local 

environmental statistics, such as adapting their learning rate to volatility (Behrens et al., 2007; Goris et al., 

2021; Simoens et al., 2024; Wang et al., 2018) or task control to task switch probabilities (Dreisbach & Haider, 

2006; Wen et al., 2023; Xu et al., 2024). These forms of local adaptation reflect on-the-fly adjustments to 

momentary task demands (Krugel et al., 2009), i.e., local strategy adaptations. In contrast, meta-learning 

implies forming associations between strategies and higher-order statistics of the environment, enabling the 

reuse of effective strategies when revisiting an environment (Binz et al., 2024; Simoens et al., 2024).  

Here, we examine whether people adapt their generalization and exploration strategies across different 

environments with different reward correlations in a spatially correlated bandit task. Specifically, we 

compared within-participant strategy differences in environments with stronger reward correlations (smooth 

grids) to environments with weaker correlations (rough grids). Across three experiments, we test whether 

participants (1) adjusted their search and generalization parameters to the structure of each environment 

(Experiments 1-3), and (2) meta-learned to associate these distinct strategies with different environmental 

cues (Experiment 3). 

2 Methods 

2.1 Participants 

Across three online experiments, we recruited 274 participants (Exp 1: N = 90; Exp 2: N = 87; Exp 3: N = 97) 

from Prolific. To focus on the cognitive mechanisms of healthy, non-aging brains (Salthouse, 2009; 

Strittmatter et al., 2020), we selected participants between 18 and 35 years old (M = 26.6, SD = 4.5). 

Experiments 1, 2, and 3 took 13, 19, and 32 minutes to complete, in return for which participants received a 

participation fee of ₤1.50, ₤4.56, and ₤5.40 and average reward bonuses of ₤1.47, ₤2.29, and ₤2.23, 

respectively. 
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2.2 Behavioral paradigm 

Participants conducted the ‘truffle farmer experiment’ (Figure 1a; see also, Goetmaeckers et al., 2025) in 

which they assumed the role of a truffle farmer and guided their truffle pig to the best location in a forest to 

dig up truffles. The task was an adaptation of the design by Wu et al. (2018). In our version, the goal was to 

find as many truffles as possible by clicking on locations (cells) in an area (grid of 15 by 15 cells) of a forest 

(shown in the background, either teal-green or khaki-green; see Figure 1b). After selecting a location to dig 

for truffles, the selected cell showed a reward value and a corresponding color, with darker red indicating 

higher rewards. The observed rewards were generated following a normal distribution with a standard 

deviation of 1 to allow for slight variations in the observed rewards of cells that were selected multiple times. 

The mean of each cell’s normal distribution varied between a minimum of 5 and a maximum randomly 

generated per round between 65 and 85. The maximum was different per round to avoid participants 

identifying global optima. 

  

The cell’s mean rewards were spatially correlated, resulting in nearby cells yielding similar rewards. This 

implied that the location of a cell on the grid was informative of the reward to be expected. These reward 

distributions over the grids’ cells were created by sampling from a Gaussian process prior parameterized by 

Figure 1: The behavioral paradigm a) A screenshot of one trial in the truffle experiment. b) Example 
reward distributions of a smooth (left) and rough (right) grid in their respective environment.   
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a radial basis function kernel, which transforms spatial (Euclidian) distance to a reward covariance: 

𝑘(𝒙, 𝒙′) = exp⁡ (−
||𝒙−𝒙′||

2⁡𝜆𝑔𝑒𝑛
2 ), 

with 𝜆𝑔𝑒𝑛 the length scale of the kernel, parametrizing the rate of the exponential decay of similarity for 

increasing distance and thereby defining the smoothness of the reward distribution. Larger length scales 

correspond to slower decays, stronger spatial correlations, and smoother reward landscapes. Half of the 

rounds used smooth grids, with length scales 𝜆𝑔𝑒𝑛 = 16, and the other half used rough grids, with length 

scales 𝜆𝑔𝑒𝑛 = 2 (Figure 1b). These values were chosen based on an optimality analysis (see Appendix A) 

showing that the differences in reward correlations differed sufficiently to allow for different optimal 

generalization strategies. To study environment-sensitive decision-making, grids with the same smoothness 

𝜆𝑔𝑒𝑛⁡were encountered in the same forest. Participants were told they would travel to two different forests, 

visiting 8 (Exp 1) or 16 (Exp 2 and 3) different areas in each (i.e., one area per round), and they could dig 30 

times per area. Experiments 2 and 3 were double the length of Experiment 1 to study learning effects over 

rounds. In Experiments 1 and 2, the two different environments were encountered in a block-wise manner 

of two consecutive blocks of each 8 or 16 rounds, respectively (e.g., AB or AABB). Experiment 2 was a longer 

version of Experiment 1 to evaluate the robustness of our findings. Experiment 3 differed from the other two 

experiments in that the environments were experienced in four alternating blocks of 8 rounds each (e.g., 

ABAB), and ended with additional test rounds at the end of the experiment that allowed us to test meta-

learned associations between generalization parameters and environment cues (see section 2.5). 

2.3 Behavioral exploration measures 

We measured exploration using four behavioral measures (see also, Goetmaeckers et al., 2025). First, we 

counted the number of novel clicks, which we defined as the frequency of selecting a cell that had not been 
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opened before in the round (Figure 2a). More novel clicks indicate more exploration, whereas reselecting 

cells with high rewards indicates exploitation. Thus, we counted the number of high-value clicks, defined as 

the frequency of selecting an already revealed cell with a visible reward that is at least 90% of the highest 

current observation in the round (Figure 2b). Due to the spatially correlated nature of the rewards, clicking 

close to a high-value observation can also be considered a less explorative choice than clicking further away. 

Additionally, travelling longer distances between consecutive clicks can be considered explorative behavior, 

since the participant actively moves away from exploiting from previous experiences. Therefore, we defined 

two distance measures, based on the distance between consecutive clicks (Figure 2c) and the distance from 

most nearby high-value cell (Figure 2d). 

 

Figure 2: The four behavioral exploration measures a) Novel clicks are clicks where the participant selects a cell that 

has not been opened yet in the current round. b) High-value clicks are clicks where the participant selects a cell that 

has been opened in that round and that has a reward that is at least 90% of the highest observed reward. For this trial, 

the highest observed reward is 54, so all cells higher than 48.6 (= 90% of 54) are high-value cells. All high-value cells 

have a green border in this illustration. c) The distance between consecutive clicks is the Manhattan distance between 

the current and previous (here illustrated as the cell with a yellow border) click. In this illustration, this distance is 8. d) 

The distance from most nearby high-value cell is 2 in this illustration. 
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Differences between environments in these four different measures were evaluated using non-

parametric Wilcoxon signed rank tests, as our measures did not meet the assumptions for parametric 

analyses. Finally, we also analyzed the obtained rewards using linear mixed effects models with trial number 

(within a round), round number (within an environment), and environment (smooth versus rough) as fixed 

factors, and subject as a random effect, to evaluate whether rewards increased over time (i.e., trials and 

rounds). 

2.4 Computational model 

We modeled participants’ search and generalization strategies with the Gaussian Process – Upper Confidence 

Bound (GP-UCB) model (see Figure 3), which has been shown to account for a variety of human value-based 

decision-making behaviours (Giron et al., 2023; Goetmaeckers et al., 2025; Wu, Meder, et al., 2025; Wu, 

Schulz, Garvert, et al., 2018; Wu, Schulz, Speekenbrink, et al., 2018).  The GP provides a Bayesian and kernel-

based account of value generalization that bridges classical theories (e.g., Shepard’s law of generalization; 

Shepard, 1987) and modern reinforcement learning mechanisms (e.g., function approximators; Silver et al., 

2016). Namely, we use Gaussian Process (GP) Regression, as a Bayesian non-parametric approach to function 

learning, to make predictive generalizations about the expected reward 𝑚(𝒙) and uncertainty 

𝑠(𝒙)⁡conditioned on past observations across (unseen) locations x (see Appendix B for full equations). These 

predictions are in the form of a normally distributed posterior, where a kernel function defines the 

covariances. Here, we use the common Radial Basis Function (RBF) kernel, 

𝑘𝑅𝐵𝐹(𝒙, 𝒙
′) = exp⁡ (−

||𝒙−𝒙′||
2

2𝜆2
),  (1) 
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which defines the covariance between cells 𝔁 and 𝔁’ as an exponentially decaying function of their Euclidean 

distance. The length scale parameter 𝜆 controls the rate of this decay. We treated 𝜆 as a free parameter, 

where larger values correspond to the participant assuming smooth reward structures and generalizing over 

larger spatial extents. 

In addition to valuing rewards, humans also display an intrinsic motivation to explore uncertain 

options (Mehlhorn et al., 2015). The GP-UCB model accounts for this by valuing each option 𝔁 as a weighted 

sum of the expected reward m(𝔁) and the uncertainty s(𝔁); 

𝑈𝐶𝐵(𝒙) = 𝑚(𝒙) + 𝛽 ⋅ 𝑠(𝒙) (2) 

with 𝛽 quantifying an exploration bonus, determining how strongly the reduction of uncertainty is valued 

relative to reward expectation. The UCB can be intuitively understood as optimistically inflating the values of 

expectations with their uncertainty. Since higher values of 𝛽 lead to sampling in the direction of more 

uncertain options, this second free parameter regulates the degree to which behavior is guided by an 

uncertainty-guided exploration strategy. 

To test a locality bias, where subsequent choices are likely to stay near one another (Wu, Schulz, 

Speekenbrink, et al., 2018), we also used a localized version of the model. There, the UCB value of a cell 𝒙 

was further weighted by its inverse Manhattan distance from the previous choice 𝒙𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠: 

𝑈𝐶𝐵𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑(𝒙) =
𝑈𝐶𝐵(𝒙)

||𝒙−𝒙𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠||
, 

except  for the UCB value of the previous cell (if 𝒙 = 𝒙𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ), which remained unaffected. Through model 

comparison, this alternative variant is compared to the original model.   
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Finally, to translate the value of each option (UCBlocalized) to a sampling probability, a SoftMax choice 

rule is applied, weighted with a temperature 𝜏; 

𝑃(𝒙)~⁡𝑒𝑥𝑝 (
𝑈𝐶𝐵𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑(𝒙)

𝜏
). (3) 

Temperature 𝜏 scales the level of noise in sampling, where 𝜏 → 0 refers to purely deterministic sampling. This 

third free parameter governs a random exploration strategy (in contrast to uncertainty-guided exploration). 

We estimated the three model parameters per participant by minimizing the negative log loss (nLL) using 

leave-one-round-out cross-validation, where we imposed lower and upper bounds (i.e., 𝜆 ∈ [𝑒−5, 𝑒6], 𝛽 ∈

[𝑒−5, 𝑒3], and⁡𝜏 ∈ [𝑒−5, 𝑒3]).  

 

Figure 3: the localized GP-UCB model Through Gaussian Process Regression, the observed rewards 
generate expected rewards and uncertainty per cell, which are combined in an Upper Confidence Bound 
(UCB). After adding local bias and SoftMax, the sampling probability guides the next choice. The previous 
choice is indicated by a blue box around the observed reward. 
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2.5 Meta-learning test phase  

To tease apart the difference between local strategy adaptation (i.e., adapting generalization 

strategies to the needs of the environment) and meta-learning (i.e., reactivating previously learned strategies 

based on associated environmental cues), we included an unannounced meta-learning test phase at the end 

of Experiment 3. Specifically, participants encountered a grid with only two opened cells and were asked to 

report their reward expectations on a third, highlighted cell (see Figure 4). This allowed us to measure how 

strongly participants generalized from prior observations. Yet, since only two cells were opened, the observed 

rewards were not informative of the smoothness of the reward distribution. Because of this, participants 

could not gauge the needs of the grids and potential behavioral differences between the two forests 

(environmental cues) could not be attributed to local, grid-specific strategy adaptation. Instead, a behavioral 

difference between environments would prove that participants used the environmental cues to decide 

which strategy to employ, i.e., meta-learning.  

The different meta-learning test phase grids were created using optimality analyses to find maximally 

diagnostic stimuli where each single-shot decision assessed if different environments triggered different 

generalization strategies (see Appendix C). Participants were presented with 10 grids per environment, in a 

randomized order. We analyzed these data using three different measures to show differences in meta-

learned generalization strategy, which we will introduce in Subsection 3.2.  
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3 Results 

3.1 Environment-specific strategies 

In what follows, we will discuss the results across experiments, as all three experiments were highly similar. 

Across-experiment analyses also showed that none of our measures (including computational parameters) 

showed differences across experiments in the effects of environment (all F <  1.6, p > .191). Results per 

experiment can be found in Appendix D. 

 

Figure 4: Meta-learning test phase. At the end of Experiment 3, there was an unannounced meta-learning 
test phase to test if participants meta-learned associations between the different environmental cues and 
their generalization strategies. Participants were presented with different trials of minimally revealed grids 
with just two opened cells and were asked to indicate which reward they expected on a third, highlighted, 
unopened cell. The background was either the environment (forest) formerly associated with smooth or 
rough grids, and we investigated whether participants reward expectancy was guided by differentially 
associated generalization strategies. 
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Behavioral results 

Throughout the experiment, participants gradually improved by opening higher rewards over trials (b = 3.74 

± 0.04, t = 84.21, p < .001) and over rounds (b = 0.51 ± 0.05, t = 10.58, p < .001), with a positive interaction of 

trial and round (b = 0.41 ± 0.04, t = 9.25, p < .001). These results indicate participants learned from their 

experiences both within and across rounds.  

Next, we examine differences in exploration patterns between smooth and rough environments. We 

observed a higher number of novel clicks in smooth than in rough grids (Wilcoxon signed rank test: W = 13812, 

z = -3.40, p < .001; see Figure 5a), indicating that participants selected more unique options in the grids with 

stronger reward correlations. The number of high-value clicks, indicating how often participants reclicked 

high reward choice options, did not differ between environments (W = 19272, z = -1.55, p = .121; see Figure 

5b). The distances between consecutive clicks were lower for smooth grids (W = 26319, z = -5.83, p < .001; 

see Figure 5c), as were the distances from most nearby high-value cell (W = 32519, z = -10.58, p < .001; see 

Figure 5d).  

 

Figure 5: Behavioral results. In smooth grids, we observed more novel clicks (a), lower distances between 
consecutive clicks (c), and lower distances from most nearby high-value cell (d). The number of high-value 
clicks was similar between both grids (b).  *** p value Wilcoxon signed-rank test < .001, n.s. p value Wilcoxon 
signed-rank test > .05.  
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Computational results 

To better try and understand the underlying mental processes driving people to explore, we estimated the 

model parameters for generalization, uncertainty-guided, and random exploration using the GP-UCB model. 

The model fits for the localized version of the model (Exp 1: R = 0.376; Exp 2: R = 0.434; Exp 3: R = 0.397) 

surpassed the original (Exp 1: R = 0.217; Exp 2: R = 0.320; Exp 3: R = 0.312). For that reason, we only discuss 

the parameter estimates for the localized version of the model.  

As expected, we observed higher values for generalization in smooth grids (W = 8645, z = -7.76, p < 

.001; see Figure 6a). This highlights that people (correctly) generalized previous observations over longer 

distances in grids with stronger spatial correlations between the rewards. Participants’ generalization 

parameters show a bimodal pattern, to which we will return in section 3.3. We did not find evidence for 

different strategies related to uncertainty-guided exploration. (W = 15357, z = -1.52, p = .13; see Figure 6b). 

Additionally, we also saw more random exploration in smooth grids (W = 9662, z = -6.99, p < .001; see Figure 

6c). This suggests that people sampled less deterministically in grids with stronger reward correlations. 

Together, these results indicate that the discussed behavioral differences are driven by different 

generalization and random exploration strategies, but not by a different way in which participants try to 

reduce the uncertainty of the grid. 
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Interpreting environment-specific strategies 

As an interim summary of these first results, we conclude that participants adapted to the stronger spatial 

reward correlations in the smooth grids compared to the rough grid, by showing more generalization in the 

smooth environments. The more participants generalize, the more they can use previous rewards to generate 

expectations about nearby, not yet opened cells. This is consistent with our observation that people also 

showed an increased choice for novel (unopened) cells and more local sampling (lower distances between 

clicks and from most nearby high-value cells) in the smooth grids. Concretely, stronger generalization led to 

the opening of more novel cells but also encouraged more targeted decisions within a smaller spatial range 

(i.e., local exploration).  

These analyses focused on participants’ behavior within these different environments with different 

spatial reward correlations (i.e., one forest always offered smooth grids, and another offered rough grids). 

While they allow us to conclude that participants adapt different strategies to the statistical structure of the 

environment, they cannot distinguish between local, on-the-fly strategy adaptation in response to current 

Figure 6: Computational results. In smooth grids, we observed higher values for the generalization (a) and 
the random exploration (c) parameters. The uncertainty-guided exploration parameter was similar across 
grids (b).  *** p value Wilcoxon signed-rank test < .001, n.s. p value Wilcoxon signed-rank test > .05.  
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task demands, versus a meta-learning of associations between these different environments and parameter 

settings. That is, the observed behavior could still reflect either flexible, grid-specific adjustments or more 

meta-learned environment-specific strategies. To evaluate whether participants also did the latter, we turned 

to the data of the meta-learning test phase. 

3.2 Meta-learned environment-sensitive generalization strategies 

To test whether participants also meta-learned environment-parameter associations, we included a meta-

learning test phase in Experiment 3 (see section 2.5). Participants were presented with grids in either 

environment that had only two opened cells and were asked to report their reward expectations on a third, 

highlighted cell. We performed three different analyses to investigate whether participants generated 

different expectations based on the environmental cue:  

First, we simply evaluated the similarity between the observed reward of the closest open cell and 

responded reward expectation. A more similar reward expectancy should suggest stronger generalization. 

Indeed, we observed that the reward expectations were more similar to the most nearby opened cell in 

rounds with smooth rather than rough environmental cues (b = 4.86 ± 1.90, t = 2.56, p = .011), indicating 

stronger generalization with smooth environmental cues. Furthermore, this similarity should decrease as the 

highlighted cell becomes further away from the open cells. Effectively, reward expectancies were more 

dissimilar with increasing distances (b = 1.06 ± 0.14, t = 7.58, p < .001). Finally, stronger generalization should 

imply a steeper effect of distance. Indeed, the effect of distance interacted with the environmental cue (b = 

-0.52 ± 0.21, t = -2.53, p = .011; see Figure 7a), showing stronger spatial generalization with smooth 

environments.  

Second, depending on the scenario, stronger generalization could lead to either smaller (as in the 

scenario in Figure 4) or larger reward expectations, depending on whether the most nearby cell is lower or 
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larger than the further away cell. We used simulations from smooth and rough generalization strategies (of 

which we used the estimated generalization parameters of Experiments 1 and 2) to group scenarios into 

those where stronger generalization should result in lower versus higher expectations. Next, we 

operationalized participants’ generalization strength by subtracting average expectations in the lower from 

the higher expectation scenarios. The bigger this difference score, the more participants take the revealed 

cells’ rewards into account, so the stronger their generalization strength. We observed this generalization 

strength to be higher in grids shown in a smooth environment than in a rough environment (W = 4182, z = -

6.22, p < .001; see Figure 7b), indicating that participants indeed used environmental cues to flexibly adapt 

their generalization strategy.  

 Finally, as a last measure of meta-learned generalization, we also estimated each individual 

participant’s smooth and rough generalization strength based on their performance on the first phase of 

Experiment 3. Next, we used these estimated model parameters to predict their responses in the meta-

learning test phase. Through simulations, we predicted what their expectations should be if they generalized 

in the same way as they did in smooth and rough training rounds (respectively smooth generalization 

expectation and rough generalization expectation). To assess whether their responded expectations were 

indeed more similar to their smooth generalization expectation (than their rough generalization expectation) 

if the scenarios were shown with smooth environmental cues (and the other way around for rough 

environmental cues), we used the following linear mixed effects regression: 

responded expectation ~ (smooth generalization expectation + rough generalization expectation) * 

environment + (1|subject ID). 

We observed an interaction effect between smooth generalization expectation and environment, where 

the linear relationship between the responded expectation and smooth generalization expectation was 
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stronger with smooth environmental cues (b = -0.10 ± 0.03, t = -4.06, p < .001; see Figure 7c). In other 

words, the responded expectations followed the predicted model-based smooth generalization 

expectations more when participants encountered smooth environmental cues. This suggests that the 

smooth generalization strategy is actively switched on (off) by smooth (rough) environmental cues. We did 

not see this interaction effect for the rough generalization expectations (b = -0.03 ± 0.04, t = -0.62, p = 

.539), which could be due to the more limited adaptive value of participants’ rough generalization 

strategies.  

  Together, these results prove that participants' generalization strategies were actively influenced by 

the environment in which they are. Since the meta-learning test phase grids did not differ in their statistical 

structure, this strategy difference could  not be attributed to a local grid-specific adaptation. Rather, it proves 

that participants meta-learned to associate environment-sensitive generalization strategies with the 

environment they were in.  

 

Figure 7: Measures showing meta-learned environment-sensitive generalization in the meta-learning test 
phase. At the end of Experiment 3, we tested whether participants generalized differently from observed 
rewards based on the environment they were in. When the observations were presented together with 
smooth environment cues, a) participants were more affected by spatial distances, b) showed higher 
generalization strength, and their responses were c) more similar to predicted smooth generalization 
expectations. 
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3.3 Individual differences in environment-sensitive generalization strategies 

Although we observed a clear positive adaptation of generalization at the group level (i.e., stronger 

generalization in smooth grids than in rough grids), not all participants showed this effect. In fact, a bimodal 

distribution appeared visible in the estimated generalization parameters (see Figure 6a). Indeed, a Hartigan’s 

dip test for multimodality refuted the unimodality of the generalization parameters distribution (D = 0.06, p 

< .001). Interestingly, these clear individual differences appeared to be largely independent of other 

adaptations, as there were no correlations with the environment-specific differences in uncertainty-guided 

or random exploration (all p > .2, see Appendix Figure 4). This suggests that other individual strategy 

adaptations in both forms of exploration occurred independently. However, these results could also reflect 

limitations in the reliability of these parameters, as split-half reliability scores between the parameters 

estimates on odd versus even rounds (Spearman-Brown-corrected Spearman’s rho rank-order correlations) 

showed ρ > .28, p < .006 for λ, ρ > .64, p < .001 for β, and ρ > .68, p < .001 for τ, for smooth or rough 

environments in Experiments 2 or 3 (where we had sufficient rounds to perform these analyses). 

 We also evaluated whether the observed environment-specific adaptations led to better reward 

accumulation (see Appendix Figure 5). While the observed trends of more novel clicks and higher random 

exploration in smooth grids were indeed linked to higher rewards (r(272) = .23, t = 3.85, p < .001 and r(272) 

= .29, t = 4.93, p < .001, respectively), we also observed that the lower sampling distances and stronger 

generalization observed in smooth grids actually correlated with lower rewards (distance between 

consecutive clicks: r(272) = .17, t = 2.79, p = .006; distance from most nearby high-value click: r(272) = .36, t 

= 6.32, p < .001; generalization: r(272) = -.21, t = -3.58, p < .001). We will return to this observation in the 

discussion.  
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4 Discussion 

This study investigated whether humans flexibly adjust search strategies based on different environmental 

needs and meta-learned associations to environmental cues. Across three experiments, we observed 

different generalization and exploration strategies between two environments with different reward 

structures that either allowed for more versus less generalization. Our behavioral analyses indicated a 

strategy adaptation featuring more novel clicks but also more local sampling in smooth environments, which 

can be summarized as more local exploration. Computational modeling further revealed that participants 

showed stronger generalization, and engaged in more random exploration, in smooth grids. These findings 

suggest that when faced with more strongly correlated environments, people generalize more and shift to 

an exploration strategy governed by less deterministic sampling, but increased novel and local option 

selecting — adapting their search strategies based on environmental needs. Finally, and critically, we 

demonstrated that people did not just adjust their generalization strategies to these local environment-

specific task demands, but also meta-learned to associate these different generalization strategies to 

different environmental cues. 

Previous work has demonstrated that people can make adaptive changes in decision-making model 

parameters, such as adjustments of learning rates (Behrens et al., 2007; Simoens et al., 2024; Wang et al., 

2018) or caution parameters (Cavanagh et al., 2011; Dunovan & Verstynen, 2019; Held et al., 2024; Ratcliff & 

Frank, 2012). In contrast, there is only limited evidence that people can also adapt exploration and 

generalization parameters to environmental demands in large decision spaces. Some studies suggest that 

exploration strategies may become more prominent in volatile or sparse environments (Gershman, 2018; 

Wilson et al., 2014), but empirical support for within-participant adaptation of these strategies remained 
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scarce. Similarly, there is limited empirical evidence that people adjust generalization strategies in response 

to changes in environmental structure, despite theoretical motivation (Schulz et al., 2018; but see Wu, 

Deffner, et al., 2025). Our findings provide such direct evidence, showing that both generalization and 

exploration are not fixed but adapt flexibly within individuals, depending on the structure of the environment.   

We further demonstrate how these adaptations can reflect both local strategy adaptations (i.e., on-

the-fly responses to the local differences in the reward correlations) or meta-learning (i.e., learned 

environment-sensitive strategies that are flexibly activated when revisiting an environment). Using our meta-

learning test phase, we showed that participants exhibited more generalization in environments formerly 

associated with smooth grids. Our findings indicate that people meta-learn to associate environmental cues 

to specific generalization strategies, and can flexibly switch between these strategies based on the 

environment they are in. This learned flexibility aligns with research on meta-learning and cognitive control, 

which suggests that humans not only learn which actions to take but also how to adjust their decision-making 

strategies based on context (Botvinick et al., 2019; Collins & Frank, 2013; Nussenbaum & Hartley, 2024; 

Simoens et al., 2024, 2025; Verbeke & Verguts, 2024; Wang, 2021; Xu et al., 2024). This pattern resonates 

with evidence from cognitive neuroscience suggesting that the prefrontal cortex maintains hierarchical 

control policies along its rostro-caudal axis (Badre & Nee, 2018; Fuster, 2001; Hunt & Hayden, 2017; Koechlin 

et al., 2003; Nee & D’Esposito, 2016). Meta-learned, higher-order representations that encode “how to learn” 

within a given environment may be represented in more rostral regions, such as the orbitofrontal cortex (Fine 

& Hayden, 2021; Hattori et al., 2023; Moneta et al., 2024; Simoens et al., 2025), supporting flexible 

adjustment of generalization and exploration strategies. 

Notably, our results suggest this meta-learning can develop quite quickly (here, during a short 

experiment). This contrasts with other theories and findings (Botvinick et al., 2019; Braem et al., 2024; Xu et 

al., 2024), who suggested the learning of environment-specific control strategies often develops more 
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gradually and slowly (over multiple sessions and/or days). Future research should compare the different 

learning mechanisms and trajectories for meta-learned environment-sensitive generalization, as studied 

here, as opposed to the meta-learning of other decision-making parameters such as learning rates (Simoens 

et al., 2024, 2025). Another exciting research question is whether environment-specific parameter settings 

can transfer across different task domains or other related environments (Verbeke et al., 2025), providing 

insights into the generalizability of meta-learning.  

Although we observed distinct within-participant strategy adaptations at the group level, individual 

differences suggest that not all participants adapted their generalization strategies. Interestingly, some of the 

observed environment-specific strategy adaptations were even associated with lower reward accumulation.  

These correlations are difficult to interpret, given the complex interplay between exploration and 

generalization strategies. One possibility is that people who eventually discovered more adaptive 

generalization strategies may have initially explored a broader range of strategies, temporarily reducing 

reward (e.g., (Masís et al., 2023; Masís Obando et al., 2025). We also observed a bimodal distribution of 

generalization parameters in the smooth environment, which may point to deeper differences in how 

participants represented the task’s structure. One group of participants may have clustered both 

environments into a single latent context, applying a common generalization strategy across them. In 

contrast, the other group may have inferred distinct latent states for each environment and adjusted their 

generalization accordingly. This interpretation aligns with theories of latent state inference in reinforcement 

learning, which propose that individuals segment their experiences based on perceived contextual structure 

(Anderson, 1991; Collins & Frank, 2013). 

Beyond its theoretical importance for understanding how people adapt their decision-making 

strategies to the structure of their environment, our gamified design (Allen et al., 2024) can be expanded for 

developmental (Gopnik, 2020; Nussenbaum & Hartley, 2019) and aging research (Samanez-Larkin & Knutson, 
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2014), as well as for clinical populations (Browning et al., 2015; Goetmaeckers et al., 2025; Goris et al., 2021; 

Maia & Frank, 2011). Additionally, because the task formalizes adaptive exploration in structured decision 

spaces, it may also act as a link between human cognition and machine learning approaches that model meta-

learning and hierarchical adaptation (Lake et al., 2017; Wang, 2021). 

Our findings extend previous research on generalization and exploration in vast decision spaces (Giron 

et al., 2023; Wu, Schulz, Speekenbrink, et al., 2018) by confirming that humans can actively modulate their 

generalization and exploration strategies based on environmental cues. This work complements previous 

research on environment-sensitive model parameter adaptation (Simoens et al., 2025; Xu et al., 2024) and 

theories of associative learning of cognitive control (Abrahamse et al., 2016; Braem & Egner, 2018). Together, 

these results emphasize the flexibility of human decision-making and the human capacity to meta-learn 

environment-specific strategies in complex environments.  
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Appendices 

A. Optimality analysis for creating environment-sensitive generalization grids 

To test if people can use distinct generalization strategies, we needed to design two environments to meet 

these criteria: 

(1) Task performance (i.e., the cumulative rewards) should benefit from adapting the generalization 

strategy, such that some generalization strengths are more optimal than others. 

(2) The optimal generalization strategy should differ between environments so that both environments 

favour a different, distinct level of generalization. 

(3) Using environment-sensitive strategies should lead to higher cumulative rewards than applying a single 

shared strategy across both environments.  

We performed an optimality analysis to systematically identify environment pairs that would maximize the 

environment-sensitive gain, i.e., the difference in performance between using environment-sensitive 

strategies versus a shared strategy. The analysis consisted of the following steps: 

1. Define task parameters. 

We specified the grid size, the search horizon (number of trials per round), and the strength of the 

reward correlations (𝜆𝑔𝑒𝑛) for the rough and smooth environment.  

2. Simulate average performance as a function of generalization strength. 

We varied the decision-making strategies by randomly generating the three model parameters 

across a wide range and simulated how many rewards each agent accumulated. 

3. Estimate maximal environment-specific performance. 
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For each environment separately, we identified the generalization parameter that yielded the 

highest mean reward, i.e., the optimal environment-specific generalization strategy. 

4. Estimate maximal shared performance across environments. 

We also simulated performance when using a shared strategy (same three model parameters) 

across both environments, and identified the best shared strategy. 

5. Calculate environment-sensitive gain. 

We computed the difference between the total performance achieved by using environment-

specific strategies per environment and the performance achieved by using a shared strategy across 

environments. 

6. Optimize environments. 

We repeated this process for multiple candidate environment pairs (by varying the strength of the 

reward correlations of the rough and smooth environment), and for various search horizons and grid 

sizes, to identify which pair yields the largest environment-sensitive gain.  

The optimized environments used in the experiments had reward correlations of 𝜆𝑔𝑒𝑛 = 2 and 𝜆𝑔𝑒𝑛 =  16 for 

the rough and smooth environments, respectively, and search horizons of 30 with a grid size of 15x15. These 

values offered sufficiently different strengths of reward correlations to support distinct optimal environment-

specific generalization strategies, while ensuring that adapting to the environment would meaningfully 

increase cumulative rewards compared to a single shared strategy (see also Figure A1). 
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Figure A1: Visualization of optimized environments. The chosen environments, with reward correlations of 

𝜆𝑔𝑒𝑛 = 2 and 𝜆𝑔𝑒𝑛 =  16 for the rough and smooth environments, respectively, lead to optimal performances 

(see *) for distinct generalization strategies. The full lines represent the mean across 1000 simulations, while 

the error bands indicate the standard error. a) shows the performance in function of generation strategy for 

the non-localized version of the model, b) shows the localized version of the model. 

B. Gaussian Process Regression 

To model how participants generalized observed rewards across the grid, we used Gaussian Process (GP) 

regression. This non-parametric Bayesian function learning approach maps each cell location x to a real-

valued scalar output (representing the expected rewards for that cell location). A GP specifies a prior 

distribution over functions, formalized as: 

𝐺𝑃(𝑚(𝒙), 𝑘(𝒙, 𝒙′)), 

where 𝑚(𝒙) is the prior mean and 𝑘(𝒙, 𝒙′) the kernel function that governs the covariance between pairs of 

cells. In our case, the prior mean was set to the median reward of the task (𝑚(𝒙) = 40). The kernel was a 

radial basis function (RBF), which encodes the similarity of two cells based on their Euclidian distance: 

𝑘𝑅𝐵𝐹(𝒙, 𝒙
′) = exp⁡ (−

||𝒙−𝒙′||
2

2𝜆2
). 
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This kernel ensures that cells closer on the grid are more correlated, with the strength of this correlation 

decaying exponentially as distance increases. The decay rate is controlled by the length scale parameter 𝜆, 

for which larger values imply longer-range generalization, more strongly correlated environments, and 

smoother reward landscapes, whereas smaller values yield weaker correlated environments and rougher 

landscapes. In the limit as 𝜆 → 0, cells become independent, and no generalization occurs.  

Formally, at trial t (after t choices), the dataset 𝐷𝑡 = {𝑿𝑡, 𝒚𝑡} contains choice option inputs 𝑿𝑡 = (𝑥1, … , 𝑥𝑡) 

and observed noisy rewards 𝒚𝑡 =⁡  𝑦1, . . .⁡⁡𝑦𝑡  , where each choice option 𝑗’s reward 𝑦𝑗 ⁡~𝑁(𝑓(𝒙𝑗), 𝜎
2) is 

sampled from the latent reward function 𝑓(𝒙𝑗) with Gaussian noise⁡𝜎2 = 1. GP regression combines these 

observations with the prior to compute a posterior distribution over functions. For a new input 𝒙∗, the 

predictive posterior is Gaussian with mean and variance: 

𝑚(𝒙∗|𝐷𝑡) = 𝑲∗,𝑡
𝑇 ⁡(𝑲𝒕,𝒕+⁡𝜎2𝑰)−1𝒚𝑡⁡, 

𝑣(𝒙∗|𝐷𝑡) = 𝑲∗,∗−𝑲∗,𝑡
𝑇 ⁡(𝑲𝒕,𝒕+⁡𝜎2𝑰)−1𝑲∗,𝑡⁡, 

with 𝑲∗,𝑡 = (𝑘(𝒙1, 𝒙∗), … , 𝑘(𝒙𝑡, 𝒙∗))⁡
T⁡the covariance between each observed input 𝒙 up to 𝒙𝑡 and new input 

𝒙∗ , and 𝑲𝒕,𝒕 = 𝑘(𝒙𝑡, 𝒙𝑡) between observed inputs. 

In practice, the posterior mean 𝑚(𝒙) provides the model’s estimate of the expected reward at each cell, 

while the posterior variance 𝑣(𝒙) yields an uncertainty estimate 𝑠(𝒙) = √𝑣(𝒙). Together, these 

characterize how observed rewards are generalized across the grid, enabling us to capture the strength and 

extent of participants’ generalization strategies. 

C. Optimality analysis for creating maximally diagnostic generalization test scenarios 

In the meta-learning test phase of Experiment 3, our goal was to test whether participants had meta-learned 

to associate the generalization strength with specific environmental cues. To do so, we designed single-shot 
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test scenarios that maximally differentiated between smooth-like (stronger) and rough-like (weaker) 

generalization strategies. Each test scenario consisted of two revealed cells and a third highlighted cell for 

which participants were asked to report their reward expectation. The highlighted cell was optimally selected 

such that participants’ expectations, if prompted by the generalization strategies previously used in the two 

environments, were maximally different between the environments. To identify the most diagnostic test 

scenarios, we performed an optimality analysis, containing the following steps: 

1. Generate a candidate scenario. 

Similarly to the reward distributions used in the training phases, we created a 15x15 reward grid 

using a Gaussian Process with a smooth kernel. Two cells were randomly selected and opened. 

2. Ensure environment-agnostic observations. 

To prevent the observed rewards from revealing the needs of the grid (i.e., if the reward 

distribution was smooth or rough), we fitted Gaussian Process Regression with the length scales 

of the smooth (𝜆𝑔𝑒𝑛 = 16)⁡and rough (𝜆𝑔𝑒𝑛 = 2) reward distributions. We assessed the goodness 

of fit to verify that both length scales explained the observations equally well.  

3. Assess the diagnostic value of each potential third highlighted cell. 

We used participants’ estimated generalization parameters of the smooth and rough 

environments of Experiment 1 (we omitted overlapping generalization parameters from the full 

smooth and rough distributions) to respectively simulate smooth-like and rough-like reward 

expectations. For each candidate unopened cell, we computed the mean reward expectation 

under both smooth-like and rough-like generalization. The difference between these means 

defines the diagnostic value of the candidate cell.  

4. Select the maximally diagnostic cell. 
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We identified the cell for which the difference between smooth-like and rough-like mean reward 

expectations was largest. If this difference exceeded a predefined threshold (≥ 15), we accepted 

the scenario.  

This procedure was repeated until we identified 15 unique test scenarios. We accepted scenarios such that 

half of them (7) showed lower mean expectations for rough-like generalization. 5 test scenarios were 

uniquely shown in smooth environments, 5 in rough, and 5 were presented in both environments, creating 

20 different test trials.   

D. Results per experiment 

Table 1 

Environment-specific strategies: behavioral results per experiment 

 Experiment 1 Experiment 2 Experiment 3 

Behavioral measure W z p W z p W z p 

Novel clicks 1788 -0.71 .481 1408 -2.29 .022 1412 -2.96 .003 

High value clicks 1601 -0.46 .644 2267 -1.49 .136 2685 -1.70 .088 

Distance from previous click 2921 -3.51 <.001 2318 -1.50 .135 3618 -4.96 <.001 

Distance from most nearby 

high value cell 
3567 -6.40 <.001 3223 -5.26 <.001 4125 -6.56 <.001 
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Table 2 

Environment-specific strategies: computational results per experiment 

 Experiment 1 Experiment 2 Experiment 3 

Behavioral measure W Z p W z p W z p 

Generalization 851 -4.81 <.001 1100 -3.57 <.001 933 -5.10 <.001 

Uncertainty-guided 

exploration 
1417 -2.25 .025 1566 -1.47 .140 2095 -0.96 .33 

Random exploration 1214 -3.35 <.001 355 -6.67 < .001 1858 -1.72 .086 
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Figure A2: Behavioral results per experiment (Experiment 1 a-d, Experiment 2 e-h, Experiment 3 j-l). *** p 

value Wilcoxon signed-rank test <.001, ** p value Wilcoxon signed-rank test ε [.001, .005[, * p value Wilcoxon 

signed-rank test ε [.005, .05[, n.s. p value Wilcoxon signed-rank test > .05. 

 

a) c) b) d) 

e) g) f) h) 

i) k) j) l) 
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Figure A3: Computational results per experiment (Experiment 1 a-c, Experiment 2 d-f, Experiment 3 g-i). *** 

p value Wilcoxon signed-rank test <.001, * p value Wilcoxon signed-rank test ε [.005, .05[, n.s. p value 

Wilcoxon signed-rank test > .05. 
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E. Individual differences: extra figures 

 

Figure A4: Model parameter adaptations. Adaptations are calculated by subtracting the logged parameters 

in the rough environments from the logged parameters in the smooth environments. Positive parameter 

adaptations therefore refer to larger parameters in smooth environments. Pearson’s correlations and p 

values are shown in the respective plots. We did not find any pairwise parameter adaptation. 
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Figure A5: Performance benefits of strategy adaptations. Adaptations are calculated by subtracting the 

measures of the rough environments from the measures of the smooth environments. Positive adaptations 

therefore refer to larger measures in smooth environments. Pearson’s correlations and p values are shown 

in the respective plots.  


