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Abstract 

Previous research shows that variation in coherence (i.e., degrees of respect for axioms of 

probability calculus), when used as a basis for performance-weighted aggregation, can improve 

the accuracy of probability judgments. However, many aspects of coherence-weighted 

aggregation remain a mystery, including both prescriptive issues (e.g., how best to use 

coherence measures) and theoretical issues (e.g., why coherence-weighted aggregation is 

effective). Using data from six experiments in two earlier studies (N = 58, N = 2,858) employing 

either general knowledge or statistical information-integration tasks, we addressed many of 

these issues. Of prescriptive relevance, we examined the effectiveness of coherence-weighted 

aggregation as a function of judgment elicitation method, group size, weighting function, and 

the bias of the function’s tuning parameter. Of descriptive relevance, we propose that coherence-

weighted aggregation can improve accuracy via two distinct, task-dependent routes: a causal 

route in which the bases for scoring accuracy depend on conformity to coherence principles 

(e.g., Bayesian information integration) and a diagnostic route in which coherence serves as a 

cue to correct knowledge. The findings provide support for the efficacy of both routes, but they 

also highlight why coherence weighting, especially the most biased forms, sometimes imposes 

costs to accuracy. We conclude by sketching a decision-theoretic approach to how aggregators 

can sensibly leverage the wisdom of the coherent within the crowd.  

Keywords: coherence, correspondence, accuracy, probability judgment, 

aggregation 
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1. Introduction 

A theoretical divide between coherence and correspondence theorists has long defined 

decision science. Both camps share an interest in the descriptive, normative, and prescriptive 

quality of judgment (Bell et al., 1988; Hammond, 2000; Kleindorfer et al., 1993; Mandel, 2000). 

However, coherence and correspondence theorists approach these issues differently (Dawson & 

Gregory, 2009; Dunwoody, 2009). Coherence theorists (Davidson, 1986; Young, 1996) focus on 

the internal consistency of judgments; correspondence theorists (David, 2002; Patterson, 2003) 

focus on the empirical accuracy of judgments. Given their differing interests, few studies have 

examined the theoretical and empirical connections between individual differences in judgment 

coherence and correspondence.  

Indeed, early studies found no consistent correlation between coherence and 

correspondence in several judgment tasks for differing levels of expertise (e.g., Wright & Ayton, 

1987; Wright et al., 1988; Wright et al., 1994). Wright et al. (1994) concluded that individual 

differences in coherence might not predict correspondence. Such findings suggest that the 

divergent histories of the coherence and correspondence literature may not be accidental. If 

individual differences in coherence and correspondence are unrelated, why should it matter if 

the two schools pursue parallel or divergent theoretical paths? 

We believe this conclusion is premature. Wright and colleagues' experiments were 

statistically underpowered to detect correlations at conventional error rates (i.e., Type 1 = 5%, 

Type 2 = 20%). Furthermore, the correspondence score was a mean-squared-error function, 

while the coherence score used mean errors. Thus, the correspondence measure summed 

opposing errors (e.g., over- and under-estimation), while the coherence measure canceled 

opposing errors (e.g., super- and sub-additivity). These differences obscure correlations among 

measures of coherence and correspondence. More recent studies have indeed found correlations 

between coherence and correspondence (Weaver & Stewart, 2012; Weiss et al., 2009), directly 

challenging the hypothesis that the two are unrelated. Research has found correlations between 
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coherence and correspondence in predicting the winner of the 2011 Major League Baseball 

series (Tsai & Kirlik, 2012). Furthermore, superforecasters—elite forecasters who scored in the 

top 2% of accuracy rankings in a large geopolitical forecasting tournament—perform better than 

other forecasters on measures of logical coherence (Mellers et al., 2017). 

1.1. Coherence-Based Recalibration and Aggregation 

Going beyond research that examines correlations, research shows decision-makers can 

exploit coherence to improve correspondence. There are two primary mechanisms: 

recalibration methods that “coherentize” judgments (Karvetski et al. 2013; Predd et al., 2009; 

Mandel et al., 2018) and performance-weighted aggregation methods that use coherence as an 

aggregation weight (Mannes et al., 2014; see Collins et al., in press for review). Predd et al. 

(2008) showed that coherence-weighted aggregation improved group forecast accuracy on 

sports and economic forecasts. Studies have since generalized the method to US presidential 

election forecasts (Wang et al., 2011), general-knowledge and forecasting questions (Fan et al., 

2019; Karvetski et al., 2013), and Bayesian judgment tasks (Karvetski et al., 2020; Mandel et al., 

2018). The findings show that coherence and correspondence may, in fact, be strongly related. 

More importantly, decision-makers can exploit knowledge of the former to improve the latter.  

The fact that individual differences in coherence can predict correspondence is of 

prescriptive theoretical interest. Performance-weighted aggregation methods typically require 

that judges complete an additional task or that decision-makers keep records of the judges' past 

performance (Cooke, 2015). By comparison, coherence weighting requires neither; practitioners 

can apply the strategy as long as the elicitation contains a minimum of two logically related 

judgments  (Predd et al., 2009). The number of elicitations is comparable to popular elicitation 

methods such as the construction of probability intervals (e.g., Mandel et al., 2020; O’Hagan, 

2019; Speirs-Bridge et al., 2009) or the estimation of other assessors’ answers (Palley & Soll, 

2019; Prelec et al., 2017). Whereas Surowiecki (2004) proposed that aggregators can improve 

accuracy by exploiting the wisdom of crowds—namely, the unweighted average of groups of 
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judges—we propose that aggregators can achieve better performance by leveraging the wisdom 

of the coherent within the crowd.  

1.2. The Present Research 

The present work has several aims. One is to systematically compare the coherence-

weighted aggregation methods used in earlier studies (e.g., Fan et al., 2019; Karvetski et al., 

2013; Karvetski et al., 2020; Mandel et al., 2018; Predd et al., 2008; Wang et al., 2011) across 

two types of tasks where expert judgment is commonly sought: factual queries and statistical 

prediction. We examined whether the optimal coherence-weighting methods are stable or task-

dependent (Zellner et al., 2021). A second aim is to determine if individuals’ coherence on one or 

more tasks predicts correspondence on a different task. A third aim is to extend coherence-

weighted aggregation methods to judgments involving conditional probabilities. Whereas earlier 

studies focused on linear additivity constraints (e.g., Predd et al., 2008; Wang et al., 2011), we 

applied coherence-based recalibration and aggregation methods to judgments characterized by 

nonlinear constraints typical of conditional probability estimation. Finally, we attempt to 

develop a theory of why (and under what circumstances) coherence weighting can be effective. 

To pursue these aims, we reanalyzed data from Karvetski et al. (2013) and Wu et al. 

(2017). The experiments feature distinct tasks: Karvetski et al. (2013) had participants answer 

general-knowledge questions and assign probabilities that factual claims are correct, whereas 

Wu et al. (2017) had participants assess probabilities based on statistical background 

information, characteristic of statistical Bayesian tasks (Mandel, 2014). These represent two 

broad kinds of tasks where expert judgment is often called upon: factual queries and conditional 

statistical predictions. We show that coherence-weighting is effective for both task domains. 

However, we discover that elicitation methods that make coherence trivial, by difficulty or by 

accident, reduce its efficacy. Consequently, those tasked with optimizing judgments must 

consider these issues when determining where and how to elicit judgments and apply coherence 

weighing. Finally, we show that coherence on one task has limited ability to predict 
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correspondence on other tasks. 

The remainder of the article is laid out as follows: In Section 2, we formally define 

probabilistic coherence, how to quantify incoherence, how to apply this metric in performance-

weighted aggregation, and how we define and measure correspondence. In Section 3, we apply 

coherence-weighted aggregation to a general-knowledge task (Karvetski et al., 2013). In Section 

4, we apply coherence-weighted aggregation to a statistical-evidence task (Wu et al., 2017). 

Finally, in Section 5, we conclude with a General Discussion, including the reasons coherence-

weighting is effective, how it may be profitably exploited, and things to consider when choosing 

to utilize the method.  

2. Probabilistic Coherence 

When people estimate the probabilities of related events, their estimates will often be 

incoherent (Mandel, 2008; Karvetski et al., 2013; Predd et al., 2008; Tversky & Koehler, 1994), 

violating the axioms of probability calculus. Kolmogorov (1933; see also De Finetti, 1937) 

describes three relevant probability axioms: non-negativity, unitarity, and additivity. Non-

negativity states that probabilities must not take on negative values. Unitarity (also sometimes 

called complementarity) states that the summed probability of elementary events must equal 

one. Additivity states that any countable sequence of mutually exclusive events E1, E2,…, En must 

satisfy the condition: 

𝑃"#𝐸!

"

!#$

% ='𝑃(𝐸!)
"

!#$

. [1] 

We can define probabilistic coherence as the extent to which sets of probabilistic judgments 

respect Kolmogorov’s probability constraints. Consequently, we can measure incoherence as the 

degree of such violations. 

2.1. Quantifying Incoherence: The CAP 

Researchers measure incoherence using the coherence approximation principle (CAP; 
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Osherson & Vardi, 2006; Predd et al. 2008). The CAP is an optimization algorithm that takes 

elicited probability sets and returns: (1) a recalibrated (or coherentized) set of probabilities, and 

(2) a measure of the Euclidean distance between the elicited and recalibrated probabilities, ι. 

For judgments bound by linear constraints (i.e., addition and subtraction), the recalibrated set 

of probabilities is provably unique (De Finetti, 1990; Karvetski et al., 2013) and guarantees 

monotonic improvements in accuracy (Predd et al., 2009). More precisely, the CAP is a 

constrained optimization problem focused on minimizing the Euclidean distance formula 

between the elicited and coherentized probabilities, expressed as: 

𝜄 = ,'(𝑝! − 𝑦!)%
"

!#$

 [2] 

for n judgments, where p is the original elicited probability judgment and y is its coherentized 

equivalent, subject to the relevant constraints. The incoherence metric, ι, is, therefore, an 

objective measure of individuals’ probabilistic coherence. This measure serves as the input for 

coherence-weighted aggregation judgments. In the coherence-weighted aggregation functions 

that we tested in the present research, the derived aggregation weight is always a monotonically 

decreasing function of ι such that high ι produces low aggregation weights.  

As a final note, though recalibration is not the focus of our research, we analyzed the 

participants’ recalibrated rather than elicited probabilities for two reasons. The process for 

recalibration and calculating ι is the same. Since coherence-based recalibration improves 

accuracy (De Finetti, 1990; Karvetski et al., 2013; Mandel et al., 2018; Predd et al., 2009), we see 

no reason not to apply coherence-weighted aggregation to the (improved) recalibrated 

judgments. Second, by first recalibrating judgments to remove errors due to incoherence, we 

isolate improvements in aggregated judgment correspondence due exclusively to weighting by 

individual differences in coherence, separate from the improvements converging on a coherent 

judgment. 
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2.2. Coherence Weighting Functions 

There is no consensus on the “best” function for converting ι into aggregation weights. 

Table 1 lists some of the functions used in prior research (Fan et al., 2019; Karvetski et al., 2013; 

Wang et al., 2011). Each converts increasing values of ι into a monotonically decreasing weight ω 

with differing properties. The exponential function (Wang et al., 2011) converts ι using an 

exponential function with Euler’s number, e, as its base. The function is a simple mapping rule, 

as the conversion is insensitive to the distribution of ι in the opinion pool. The standardized 

linear difference function (Karvetski et al., 2013) calculates the relative difference between an 

individuals’ ι and the maximum ι within the opinion pool. The function is sensitive to the 

distribution but not the size of the opinion pool; regardless of the pool size, weights are 

calculated relative to the most coherent judge. Because the ‘worst’ judge always receives a weight 

of ω = 0, it is undefined at a group size of 1. Finally, the ranked method (Fan et al., 2019) 

calculates an aggregation weight that is the multiplicative inverse of its rank. In the case of a tie, 

the average of their rank, i.e., three participants tied for first would receive a rank of $&%&'
'

= 2. 

The function is sensitive to pool size but not its variability; i.e., the second-best judge will receive 

a rank of 2 regardless of how much worse they are relative to rank 1.  

Two functions, the exponential function (Wang et al., 2011) and the standardized linear 

difference function (Karvetski et al., 2013), include a practitioner-controlled parameter. This 

tuning parameter used the symbol λ in Wang et al. (2011) and β in Karvetski et al. (2013). Both 

are conceptually and mathematically similar, exponentiating the translation of ι into a 

corresponding weight. In the present article, we adopt the symbol convention β used by 

Karvetski et al. (2013) for both functions. We also parameterized the rank function (Fan et al., 

2019), raising the function to exponent β. Regardless of function, β = 0 resolves to ω = 1 for 

every participant (i.e., equal-weighted aggregation). As β increases, the penalty for coherence 

violations increases, and the relative bias toward coherent responders increases. Sufficiently 

large values of β will reduce the contribution weight of all but the most coherent individual(s) to 
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zero. Simply put, β tunes the bias of the weighting function.  

Regardless of the translation function, coherence-weighted aggregation proceeds 

identically. For each coherent probabilistic judgment y and by n individuals for each ith 

judgment, we define an aggregated judgment as: 

𝑦! =
∑ 𝑦!( × 𝜔!("
(#$

∑ 𝜔!("
(#$

. [3] 

In the present research, we consider three values for β ∈ {1, 10, 100}. The decision to use 

discrete values rather than continuous values was pragmatic rather than theoretically driven. 

Technically, any value β > 0 is a valid choice, with increasingly larger values behaving like a step 

function that assigns ω = 1 to the most coherent judge and ω = 0 to all others. Regardless, an 

important property to note is that setting β = 0 results in ω = 1 for all participants. Thus, [3] 

simplifies to the equal-weighted average given by the equation 

𝑦! =
1
𝑛
'𝑦!(

"

(#$

. [4] 

2.3. Correspondence Metric: MAE 

We measured accuracy using the mean absolute error (MAE): 

𝑀𝐴𝐸 = $
)
∑ |𝑦! − 𝑥!|)
!#$ , [5] 

where yi is the judgment, xi is the true value, k is the number of judgments made by the 

participant, and i represents a particular judgment. Although root mean square errors or Brier 

scores are popular probabilistic judgment error metrics, it is important to note there is no 

“correct” scoring rule. Rather, the scoring rule should be determined by the needs of the 

decision-maker, namely, whether they wish to penalize large mistakes more than small 

mistakes. Furthermore, Willmott and Matsuura (2005) propose that MAE is the superior 

measure for comparing average model performance. In our case, the use of MAE also adds 

information to the reanalysis of Karvetski et al. (2013), originally scored using the Brier score 

(i.e., mean squared error).  
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3. General-knowledge Domain 

Karvetski et al. (2013) investigated the effect of coherence-based recalibration and 

aggregation on truth ratings of general-knowledge questions. In two experiments, fifty-eight 

undergraduate psychology student participants (30 in Experiment 1, 28 in Experiment 2) rated 

the probability that four logically related statements were true. For each of the 60 topics, 

participants rated the probability that: (1) statement A was true, P(A); (2) statement A was false, 

P(Ac); (3) statement B was true (where A Ç B Î Æ), P(B); and (4) either statement A or 

statement B was true, P(A ∪ B). For example: A - Neil Armstrong was the first man to set foot on 

the moon; B - Buzz Aldrin was the first man to set foot on the moon; Ac - Neil Armstrong was 

NOT the first man to set foot on the moon; and A ∪ B - Either Neil Armstrong or Buzz Aldrin 

was the first man to set foot on the moon. Karvetski et al. (2013) evaluated several variants of 

coherentization and methods for calculating ι, the most effective of which was based on the 

additivity constraint P(A) + P(B) = P(A ∪ B), which we use here also. In Experiment 1, 

participants rated one randomly selected judgment in each topic, cycling through all other topics 

before rating the next statement in the topic set. In Experiment 2, participants rated the 

statements for a given topic consecutively. We refer to these two experiments as the spaced and 

grouped conditions, respectively.  

3.1. Method 

All data and R scripts described below are available on the Open Science Framework 

(OSF; Collins et al., 2021). 

3.1.1. Incoherence Metrics 

We coherentized probabilities and calculated ι via the CAP [2] using the quadprog 

package in R Studio (Turlach, 2019) running the R programming language. We calculated two 

different ι measures for use in the aggregation model. The first, endogenous ι, is the measured 

incoherence of a judge on the target judgment. The second, exogenous ι, is the average 
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incoherence for all judgements other than the target judgment. That is, for Question 1, we used 

the average ι for each participant’s answers to Questions 2-60 as the input weight; for Question 

2, the average ι of each participant’s answers to Questions 1 and Questions 3-60; and so on. We 

used this metric to evaluate whether ι has potential use in disposition- and history-based 

performance-weighting methodologies that weight judges according to past performance or 

expertise (Cooke et al., 1988; Budescu & Chen, 2015; Mellers et al., 2015) per one of the primary 

aims of the study. 

3.1.2. Correspondence Metrics 

We calculated the MAE [5] across judgments {P(A), P(B), P(A ∪ B)} for each of the 60 

questions. This error serves as the primary dependent variable of interest. The difference 

between the MAE for coherence-weighted strategies and MAE for equal-weighted strategies will 

therefore represent the mean improvement in MAE across the 1,000 bootstrapped trials. We 

also examine the proportion of bootstrapped samples (out of 1,000, described in greater detail 

below) in which the coherence-weighted aggregation strategies performed better than equal-

weighted strategies. That is, the proportion of times MAECW < MAEEW, where CW stands for 

coherence-weighted and EW stands for equal-weighted, respectively. Although ties are 

exceedingly rare, we treat them as losses due to the computational burden posed by coherence-

weighting. We call this measure of performance proportion improved (PI).  

3.1.3. Simulation and Aggregation Method 

One of our research aims was to determine the implementations of coherence weighting 

that work best. To compare the efficacy of our various strategies, we used bootstrap sampling 

with replacement technique. Using bootstrap sampling with replacement allows us to examine 

the effect of aggregation at arbitrary group sizes not limited by the original sample size (30 in 

Experiment 1, 28 in Experiment 2). We analyzed different combinations of weighting function, 

parameterization, and group size. For each experimental condition (spaced vs. grouped), and for 
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each bootstrap, we added a randomly selected participant to the opinion pool one at a time until 

we achieved the maximum group size, k = 100. Each time we added a participant to the opinion 

pool, we calculated aggregated MAE across the 60 questions for each of our different 

aggregation strategies. This corresponds to a 2 (Condition: spaced, grouped) ✕ 100 (Group Size: 

k = 1-100) ✕ 3 (Weighting Function: exponential, standardized linear difference, rank) ✕ 3 

(Parameter: β = {1, 10, 100}) ✕ 2 (Item Sample: endogenous, exogenous) design. We also 

include an equal-weighted function as a baseline comparison; however, this was not crossed 

with the parameter and item sample manipulation. We completed 1,000 bootstrap simulations 

for each condition. This approach is conceptually like a multiverse analysis (Steegen et al., 2016; 

Harder, 2020), in that we can compare different ι weights, weighting functions, levels of β, and 

group size while holding all else equal. We use this multiverse approach to develop decision-

theoretic recommendations for ideal coherence-weighting strategies. The final analysis included 

3,800,000 data points. We collapsed across the 1,000 bootstrap samples, producing 3,800 

unique MAE values (1,900 per condition) as well as 3,600 unique PI values (1,800 per 

condition). 

3.1.4. Analysis Plan 

 Due to the number of bootstraps, the standard errors (SE) were extremely low in all 

cases. In over 99% of simulations SE < .001. The confidence intervals were invisible on figures at 

conventional resolutions. The low SE means that virtually any absolute differences between 

methods, parameters, and group sizes will be statistically significant. Combined with the sheer 

number of comparisons, and the fact we had no a priori theories about specific comparisons of 

interest, we relied on visual inferences from plotted figures. Nevertheless, we provide full 

statistical and distributional data for specific formal comparisons in the data files on the Open 

Science Framework (OSF). To determine the significance of our PI measure, we compared this 

metric to the 99% confidence interval for a binomial distribution with 1,000 events (lower 
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bound = .459, upper bound = .541). A PI higher than the upper bound indicates greater than 

chance levels of performance improvements. Conversely, a PI lower than the lower bound 

indicates greater than chance levels of performance decrements. We suggest that this is the 

appropriate benchmark, as even small, reliable gains in aggregated accuracy have the potential 

to be highly consequential. The PI metric is like the probability of superiority (Grissom & Kim, 

2005; Mandel et al., 2018; Ruscio & Mullen, 2012; Vargha & Delaney, 2000), and provides a 

measure of the reliability and consistency of accuracy improvements by employing coherence 

weighting. 

3.2. Results  

Figures 1-4 show the results of the coherence-weighted aggregation for MAE and PI for 

each of endogenous ι and exogenous ι, respectively, as a function of k and β. We scaled group 

size k on the x-axis logarithmically (base 10). Aggregation performance at k = 1 is equal to the 

sample MAE regardless of aggregation strategy. A corollary of this statement is that PI = 0 at k = 

1 because MAECW = MAEEW. Further, because the correct probability of a verifiable fact is either 

0 or 1, participant responses cannot bracket the correct probability. Consequently, the error of 

the equal-weighted judgment is strictly equivalent to the average error of the judges (Larrick & 

Soll, 2006). In other words, equal-weighted aggregation is ineffective at reducing MAE for any 

value of k. This contrasts with MSE, which decreases as k increases due to noise reduction (see 

Karvetski et al., 2013). Thus, MAE allows us to focus on improving the signal and reducing the 

distance from the resolution values. 
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3.2.1. Endogenous ι 

3.2.1.1. MAE. The MAE results for endogenous ι are shown in Figure 1. Each 

coherence-weighted aggregation method reduced MAE compared to equal-weighted aggregation 

when k > 2. Note several important results. First, increasing k beyond 2 reduced MAE in most 

cases. However, the improvements afforded by an additional judge diminished as k increased, 

such that the addition of new assessors had a negligible effect for k > 10. Nevertheless, accuracy 

continued to improve past these thresholds, albeit at a much lower rate per additional judge. An 

exception to this was the standardized linear difference function at β = 1, for which performance 

worsened for k > 4. Second, increasing β consistently improved MAE for each of our methods. 

These improvements were larger in the spaced condition than in the grouped condition. 

Increasing β was also associated with diminishing returns regardless of condition. The largest 

improvements occurred between β = 1 and β = 10. Third, comparing our different methods, the 

standardized linear difference function performed best in the spaced condition at β = 1 and 

where k < 5. In all other cases, the MAE for the rank function was equal to or better than the 

standardized linear difference and exponential function. Notably, all MAE functions converged 

as both k and β increased such that performance is nearly identical for all conditions where k > 4 

and β = 100. 

3.2.1.2. PI. The PI results for endogenous ι are shown in Figure 2. Each coherence-

weighted aggregation method dramatically improved upon the equal-weighted MAE most times 

in both experimental conditions. In the spaced condition, PI > .82 at k = 2 for each method, 

converging at PI = 1 at k = 11 for every method. In the grouped condition, performance was 

worse, starting at PI > .59 at k = 2 for each method, and converging at PI = 1 at k = 27 for all 

methods. In contrast to increasing k, increasing β decreased PI. This was more pronounced in 

the grouped condition than in the spaced condition. When comparing the weighting functions, 

the standardized linear difference function performed worse at lower group-size values, while 

the exponential and rank functions perform similarly. 



IMPROVING CORRESPONDENCE THROUGH COHERENCE 15 

3.2.2. Exogenous ι 

3.2.2.1. MAE. Figure 3 shows MAE results when using exogenous ι. For the spaced 

condition, there were three important findings. First, as with endogenous ι, increasing β 

improved MAE for each function. Second, increasing k had nuanced effects on MAE in the 

spaced condition, particularly for β ≥ 10. MAE improved up to k = 5, had inconsistent effects for 

5 < k < 20, and steadily improved again for k ≥ 20. Third, as with the endogenous ι, the 

standardized linear difference function performed best at β = 1 and where k < 5. For all other 

combinations of k and at β, the rank function performed as well as or better than either the 

exponential or standardized linear difference function. Finally, weighting by exogenous ι 

produced almost no consistent or reliable improvements in the grouped condition. 

3.2.2.2. PI. Figures 4 shows PI results when using exogenous ι. For the PI measure, 

coherence weighting was typically effective in both conditions. The exceptions were k < 4 for 

some functions and parameter levels. This confirms that coherence weighting consistently 

improved MAE in the grouped condition, albeit only slightly. Regardless,  the magnitude of 

improvement was small. Beyond this, there were three important findings. First, if β = 1, 

increasing k had either no effect or a negative effect on PI for each function and value k. Second, 

increasing k again had a similarly nuanced effect. For lower values of at β = 1, increasing k 

tended to improve PI. However, as β increased, each function conformed to a similar shape as 

observed with MAE: first improving, then worsening slightly, and then improving again. Third, 

no function is superior, although PI for the exponential function was highest in most cases. 

3.3. Discussion 

The aggregation results confirm that coherence-weighted aggregation is an effective tool 

in the general-knowledge domain, reducing MAE by as much as 21.4% in the best-case scenario 

relative to equal-weighted equivalents (using endogenous weight, and the rank function at β = 

100 and k = 100; see Figure 1). However, there are caveats to this conclusion. Regarding our 

primary aim to identify the best-performing coherence-weighted aggregation strategies, there 
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are several important observations. Increasing group size k improves aggregated accuracy but 

with diminishing returns (Figures 1-4). We saw the greatest variability among aggregation 

methods between 1 < k < 10, with performance converging at larger group sizes. Coherence-

weighting presented a slight risk-reward trade-off: increasing β improved accuracy (Figures 1 & 

3) but decreased PI slightly (Figures 2 & 4). The reason is that large values of β often converged 

on ‘coherent and certain’ probabilities, like an extremization procedure. This was most often 

correct; however, in the rarer case that an individual is equally coherent and certain but 

incorrect, divergent answers with large penalties to accuracy will occur. 

Although there is no unambiguously superior weighting function—each converged at 

high k and β—we believe there are reasons to prefer the exponential function. First, compared to 

the standardized linear difference function, the exponential function is unambiguously superior 

in terms of PI (Figures 2 & 4) and did not worsen MAE when we increased k (Figures 1 & 3), in 

part because the standardized linear difference function always zeros out the least coherent 

forecaster and thus the exponential function has the advantage of keeping this extra forecaster 

within the aggregation. Second, compared to the rank function, however, the exponential 

function was less biased (i.e., it did not penalize incoherence as much) and less effective at β = 1. 

It is conceivable that this more modest weighting strategy may be desirable and effective in 

certain contexts. Thus, the added flexibility of lower coherence weight is potentially useful. We 

also suggest the translation of ι into corresponding weights ω is more intuitive, predictable, and 

useful for the exponential function than for the other functions. 

Our second aim was to determine whether individual differences in average levels of 

coherence are useful predictors of correspondence. We found limited supporting evidence. 

Compared to endogenous ι, exogenous ι was much more error-prone. Weighting according to 

exogenous ι only produced numerical improvements in the spaced condition (Figures 3 & 4). 

This demonstrates important constraints on the advantages of coherence weighting reported in 

Karvetski et al. (2013). Moreover, even within the spaced condition, changes in both group size 
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and weighting strategy had inconsistent effects when using exogenous ι. Nevertheless, each of 

our functions improved over the equal-weighted average in most cases (Figures 3 & 4). This 

suggests that aggregators have little to gain from employing the method—in both absolute and 

relative terms—but also little to lose. Even small gains in empirical accuracy have the potential 

to be highly consequential. 

Finally, the results shed light on why coherence weighting is effective in the general-

knowledge domain. Unsurprisingly, like Karvetski et al. (2013), we saw that coherence weighting 

was most effective in the spaced condition (Figures 1-4). This is counterintuitive, as the 

significant gaps between related judgments make it difficult to remain coherent. Certainly, 

participants who diligently respect coherence constraints would have to remember the truth 

probability they provided at least 60 questions ago! One explanation for this effect relies on the 

fact that correct responses are, by definition, coherent (Hammond, 2000). When coherence is 

difficult to maintain, true experts who know the correct response will nevertheless be coherent. 

By contrast, the poor mental availability of prior estimates will make it difficult for non-experts 

to be coherent unless coherence is an incidental byproduct of suboptimal response strategies; 

e.g. a mid-lined .50 response to every prompt is coherent for complementary probability 

judgments. . In other words, spacing responses does not affect the rate of true positives (i.e., 

individuals who are correct and coherent), but it does reduce the rate of false positives (i.e., 

individuals who are coherent but not correct). However, another potential source of false 

positives is overconfident, false experts who are certain that the incorrect response is accurate 

(Tetlock, 2009), who will also be both coherent and incorrect. 

The importance of this balance between true and false positives was clear in a Bayesian 

judgment experiment (Karvetski et al., 2020): coherence-weighted aggregation performed best 

when the aggregation pool had a small number of primarily coherent judges. The results suggest 

that coherence-weighted aggregation does not exploit a direct relationship between the 

probabilistic numeracy required for coherence and the knowledge required for correspondence. 
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Rather, individual aggregators can exploit individual differences in coherence to diagnose 

potential experts for factual queries. This diagnostic process benefits from spacing logically 

related judgment queries farther apart so that: (1) coherence does not misdiagnose “mere” 

awareness of the logical constraints, and (2) coherence does not misdiagnose “overconfidence” 

as expertise. Both are unlikely to be reliable indicators of accurate world knowledge. 

4. Statistical-evidence Domain 

Wu et al. (2017) investigated how information presentation influenced the accuracy of 

probability judgments. Across four experiments, 2,858 participants completed the Turtle Island 

task. The fictional scenario in the task concerned an island populated by two turtle species (i.e., 

Bayosians and Freqosians). The species were visually identical, identifiable only by 

differentiating two genes: the DE gene or the LM gene. Each gene has two forms (D or E for DE; 

L or M for LM). The rate of expression for each form of each gene differed between species. Wu 

et al. (2017) provided participants in different conditions with different background 

information: half of the participants received the Bayesian prior and likelihood (PL) 

probabilities; the other half received the Bayesian marginal and posterior (MP) probabilities. 

Participants used this information to judge the remaining, missing probabilities. That is, 

participants in the PL condition used the information to judge the marginal and posterior; 

participants in the MP condition used the information to judge the prior and likelihood. 

Critically, using Bayes’ theorem (or intuitive reasoning consistent with Bayes’ theorem) it was 

possible to calculate these probabilities precisely. Therefore, coherence and correspondence 

depended on reasoning consistent with Bayes’ theorem.  

4.1. Method 

The R scripts and aggregated data described below are available on the OSF (Collins et 
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al., 2021)1. 

4.1.1. Incoherence Metrics 

Whereas Karvetski et al. (2013) examined sets of probabilities constrained to 

Kolmogorov’s axioms, the estimates elicited in the Turtle Island task concerned sets of 

probabilities constrained to Bayes’ theorem: 

𝑃(𝑥	|	𝑦) =
𝑃(𝑥) × 𝑃(𝑦	|	𝑥)

𝑃(𝑦)
 [6] 

where x and y refer to distinct events or classes. The formula consists of the following 

components: the prior, P(x), an unconditional probability describing the chance that x will 

occur; the likelihood, P(y | x), a conditional probability describing the chance that y will occur 

given that x occurred; the marginal, P(y), an unconditional probability describing the chance 

that y will occur; and the posterior, P(x | y), a conditional probability describing the chance that 

x will occur given that y occurred.  

 In the Turtle Island experiments, the labeling of the underlying probabilities was 

randomized. For simplicity, we canonized the probabilities as follows: (a) P(B) is the prior 

probability that a turtle was a Bayosian turtle; (b) P(E) is the marginal probability that a turtle 

had the E form of the DE gene and, similarly, P(L) is the marginal probability that a turtle 

possessed the L form of the LM gene; (c) P(E | B) and P(E | F) are the likelihood probabilities 

that a Bayosian and Freqosian turtle expressed the E form of the DE gene, respectively, and 

similarly, P(L | B) and P(L | F) are the likelihood probabilities that a Bayosian or Freqosian 

turtle expressed the L form of the LM gene, respectively; and (d) P(B | E) and P(B | D) are the 

posterior probabilities that a turtle with the E or D form of the DE gene was a Bayosian turtle, 

respectively, and similarly, P(B | L) and P(B | M) are the posterior probabilities that a turtle with 

the L or M form of the LM gene was Bayosian, respectively. The researchers constrained the 

 

1 For the participant-level raw and coherentized data sets, please contact co-author Charley M. Wu 
(charley.wu@uni-tuebingen.de). 
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probability of binary complements such that P(F), the prior probability that a turtle was 

Freqosian, was equal to 1 – P(B). Participants input probabilities using a visual analog slider; if 

e.g., P(B) was set to 20%, then P(F) would automatically be set to 80%, and both probabilities 

were visually apparent.  

 To the best of our knowledge, no practitioner has yet applied the CAP to conditional 

probability estimates with nonlinear constraints such as Bayesian probabilities. To make the 

problem computationally manageable, we coherentized and aggregated participants’ 

unconditional and conditional probability estimates separately. The inequality constraints were 

identical between conditions and judgments, i.e., 0 ≤ P ≤ 1 for all judgments. By contrast, the 

equality constraints differed between condition and judgment. To construct the equality 

constraints for the unconditional and conditional judgment tasks in each condition, we 

rearranged and substituted terms in Bayes’ formula [6] to solve for zero using only the given 

information and judged probability. For example, for unconditional probability judgments in 

the PL condition, participants judged marginal probabilities P(E) and P(L). For both judgments, 

we solved for 0 using a combination of the marginal judgment and the prior P(B), the 

likelihoods P(E | B) and P(E | F) or P(L | B) and P(L | F). We provide the full set of judgment 

constraints in Appendix A and the code on OSF.  

 We applied the CAP using the “NlcOptim” package in R (Chen & Yin, 2019). The 

optimization procedure required three user-set tolerance parameters that controlled the 

criterion and stopping rules for the aggregation procedure. A complete description of these 

tolerances and their functions can be found in the package documentation. Due to the limited 

precision afforded to participant responses, ostensibly coherent responses could receive a score 

of ι = .01 due to rounding errors. To compensate for this rounding-induced incoherence, each of 

our tolerances was set to .01. In practice, this treated any score as coherent if both equality 

constraint violations and ι were less than .01. For aggregation, we treated all values of ι ≤ .01 as 

if they were ι = 0. For the exogenous ι, we used the ι calculated for the opposite component: for 
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the unconditional probability estimates, we weighted participant responses using the 

conditional probability estimate ι, and vice versa. 

4.1.2. Correspondence Metrics 

We calculated the MAE [5] for the unconditional probability estimates and the 

conditional probability estimates separately before averaging the two. The MAE reflected the 

error across both the given and judged probabilities. As with the general-knowledge domain, we 

also calculated PI. Finally, because the only difference between the four experiments in Wu et al. 

(2017) is the values of the canonized environmental probabilities, we collapsed across the four 

experiments for our analyses. 

4.1.3. Simulation and Aggregation Method 

We compared the effectiveness of our aggregation methods using a method identical to 

that described in the general-knowledge domain with one exception. Because the Turtle Island 

experiments had different probabilities for the priors, likelihoods, marginal and posterior 

probabilities, we had to aggregate each experiment separately. This corresponds to a 2 

(Condition: prior & likelihood, marginal & posterior) ✕ 4 (Experiment: 1-4) ✕ 100 (Group Size: 

k = 1-100) ✕ 3 (Weighting Function: exponential, standardized linear difference, rank) ✕ 3 

(Parameter: β = {1, 10, 100}) ✕ 2 (Item Sample: endogenous, exogenous) design. Again, we 

included an equal-weighted function for a baseline comparison. Excluding redundant 

combinations of conditions, the final analyses consisted of 15,200,000 unique data points. We 

collapsed across the 1,000 bootstrap samples and 4 experiments to calculate 3,800 MAE values 

(1,900 per condition) as well as 3,600 PI values (1,800 per condition).  

4.1.4. Analysis Plan 

We approached the analysis similarly to the general-knowledge domain. Although SE 

was typically higher in this experiment, the largest was still SE < .002 and the majority were SE 

≤ .001. Thus, we will again rely on visual inferences from the graphs for MAE comparisons. For 
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our PI, we used the 99% confidence interval corresponding to the binomial distribution for 

random chance of 4000 events (lower bound = .480, upper bound = .520). 

4.2. Results  

Figures 5-8 show the results of the coherence-weighted aggregation for MAE and PI for 

endogenous ι and exogenous ι, respectively, as a function of k and β. Again, we scaled the x-axis 

for group size k logarithmically (base 10). As in the prior study, aggregation performance at 

group size k = 1 was equal to the sample MAE. Unlike the prior study, participants’ responses 

can bracket the correct answer, and simple equal-weighted aggregation reduced error (Larrick & 

Soll, 2006).  

4.2.1. Endogenous ι 

4.2.1.1. MAE. Figure 5 shows MAE results when using endogenous ι. Each coherence-

weighted aggregation method was effective at reducing MAE compared to the equal-weighted 

average, with some noteworthy exceptions. First, increasing k tended to improve MAE in most 

cases, but these improvements were associated with diminishing returns. Again, the largest 

numerical improvements occurred between 1 < k < 10, regardless of function or β value. 

However, unlike the general-knowledge domain, there was a critical point for each of our 

functions beyond which increasing k worsened accuracy slightly. There is a noticeable worsening 

of accuracy when comparing k = 25 with k = 100 in the PL condition, though this trend does not 

revert the aggregated accuracy to that of equal-weighted aggregation. Second, increasing β 

improved MAE up to a certain point, after which accuracy worsened. This worsening was more 

pronounced for larger group sizes and with the rank function. Unlike aggregated accuracy in the 

general-knowledge domain, the coherence-weighted functions did not converge.  

4.2.1.2. PI. Figures 6 shows PI results when using endogenous ι. Each of our methods 

improves upon the equal-weighted MAE most of the time. Note other important results. First, 

increasing k improved PI to a critical point, after which PI would plateau or even decrease 
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slightly depending on the function and β. Second, increasing β led to a decrease in PI for each 

function and k value. Third, comparing our different strategies, the exponential function, once 

again, performed best most of the time. The results of the MAE and PI analyses show that, given 

these data and the weighting strategies we considered, the best results occurred with group size 

in the low double-digits and moderate to strongly biased (i.e., β ≥ 10) weighting strategies. 

To better understand why performance appeared to worsen between k = 25 and k = 100 

in the PL condition where β = 100, we examined the distribution of bootstrapped MAE values 

(Figure 7). As the histogram shows, increasing k from 25 to 100 produces a slight increase in 

cases where MAE is between .00 and .05, but a larger increase in the number of cases where 

MAE was between .20 and .25. An inspection of the raw data revealed that four participants 

across three of the experiments answered .50 for every estimate. This response tendency 

produced an incidentally coherent judgment with an MAE ≈ .25. These incidentally coherent 

cases explain the second peak in the histogram. That is, coherence-weighting strategies assigned 

a high weight to these incidentally coherent but inaccurate judges. Although rarer than coherent 

and accurate judges, larger group sizes increased the chance that the algorithm selected at least 

one of these individuals, reducing the accuracy of the aggregated judgment. 

4.2.2. Exogenous ι 

Figures 8 and 9 show the results of the coherence-weighted aggregation for MAE and PI, 

respectively. As with the general-knowledge domain, the exogenous ι weighting strategy was 

much less effective than the endogenous ι weighting strategy, both in terms of MAE and PI. 

Similarly, improvements were also subject to diminishing returns. Nevertheless, coherence 

weighting improved MAE in most instances, both in absolute terms and relative to the equal-

weighted average. Otherwise, the results followed the broad patterns established with 

endogenous ι, including the slight worsening of MAE for large group sizes at β = 100. The results 

show that the best performance occurred with a combination of moderate-to-large group size 

combined with a moderate to severely biased combination of weighting function and tuning 
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parameter. 

4.3. Discussion 

The results demonstrate that aggregators can apply coherence efficaciously to the 

statistical-evidence domain with nonlinear optimization constraints. The strategy reduced MAE 

by as much as 38.0%; endogenous ι and standardized linear difference function at β = 10 and k 

= 100\ relative to equal-weighted equivalent (Figures 1 & 2). In applying the CAP to a set of 

probabilities bound by nonlinear constraints (Appendix A & Formula 6), we generated a metric ι 

that was an effective basis for coherence-weighted aggregation. This shows that practitioners 

can efficaciously apply the CAP to complex conditional probability estimates with nonlinear 

constraints.  

Regarding what worked best, as with the general-knowledge domain, the exponential 

function often produced the best results (in terms of lower MAE) and behaved more predictably 

in response to changes in k and β. This function worked best with large group sizes and 

moderate weighting (β = 10) or moderate group sizes (10 ≲ k ≲ 25) and severe weighting (β = 

100). Incremental changes were minimally positive and sometimes negative for k > 10, 

reflecting strongly diminishing returns (Figures 5-6, 8-9).  

The finding that increasing group size past a critical point worsened accuracy (Figures 5-

6, 8-9) is particularly interesting. In general, the addition of information should not worsen 

accuracy. However, coherence weighting restricts the pool of information to a smaller set of 

coherent individuals, resulting in some information loss. Our findings show this sometimes 

results in the selection of a coherent but inaccurate assessor (Figure 7). These individuals are 

conceptually like the false positives in the general knowledge domain: they are coherent not 

because of mathematical rigor or internal consistency (as with true positives). Rather, they are 

coherent due to sub-optimal response biases that incidentally produce coherent responses 

(Bruine de Bruin et al., 2002; Fischhoff & Bruine de Bruin, 1999). In fact, this is why Karvetski 

et al. (2013) found that excluding the complementarity constraint from coherence-weighting 
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schemes improved accuracy; judges who expressed epistemic uncertainty by responding .5 to 

both P(A) and P(Ac) would otherwise be incidentally coherent. Unfortunately, coherence-

weighted aggregation cannot discriminate between false positives and true positives. We return 

to this issue in the General Discussion.  

Regarding our aim of evaluating the usefulness of exogenous coherence weighting, we 

find that exogenous ι provided an effective basis for coherence-weighted aggregation. 

Promisingly, weighting by exogenous ι improved MAE most of the time in most cases in both the 

PL and MP conditions (Figure 8-9). Again, combinations of the exponential function with 

medium group size and severe weighting or large group size and moderate weighting performed 

best. This is intuitive, given that the knowledge required to produce one coherent Bayesian 

estimate is intricately related to the knowledge required to produce another coherent Bayesian 

estimate. 

5. General Discussion 

The present investigation contributes to our understanding of prescriptive and 

descriptive theoretical issues concerning coherence-weighted aggregation. First, we provided a 

proof of concept that coherence-weighting can be effective in two dissimilar task domains where 

expert judgment is frequently relied on: general knowledge tasks and statistical-evidence tasks. 

Coherence-weighting reduced MAE relative to equal-weighting by as much as 21.4% in the 

general-knowledge domain (Figure 1), and 38.0% in the statistical-evidence domain (Figure 5). 

These are large and reliable improvements, comparable to other contemporary performance-

weighted aggregation methods such as Cooke’s classical method and the contribution weighted 

method (Budescu & Chen, 2015; Cooke et al., 1988). Second, we showed that the ideal group size 

and parameterization are task-dependent. Third, we found the exponential function to be the 

most intuitive and flexible weighting function. Fourth, we show that out-of-sample exogenous ι 

holds some promise of predicting correspondence on tasks (Figures 3-4, 8-9), particularly in the 

statistical-evidence domain. Fifth, we show that the CAP (Osherson & Vardi, 2006; Predd et al., 
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2008) can be efficaciously applied to sets of probabilities characterized by nonlinear coherence 

constraints. Importantly, these types of problems are frequently encountered in forecasting 

where conditional probabilities must be considered (Mandel, 2014). Finally, our results indicate 

that there are at least two potential reasons that coherence-weighting is effective. For some 

tasks, coherence and correspondence are scored on similar bases, in which case coherence may 

be a causal determinant of accuracy. For other tasks, aggregators can simply exploit the fact that 

correct answers are, by definition, coherent, and therefore coherence diagnoses potential 

experts in a crowd. Whether aggregators exploit the causal or diagnostic relationship has 

consequences for elicitation and aggregation strategies.  

Next, we will discuss these theoretical issues in greater detail before revisiting the issues 

of ideal implementation with these theoretical developments in mind. We first examine why 

coherence weighting is effective in Section 5.1, then discuss how to best exploit the wisdom of 

the coherent in Section 5.2, then conclude with a discussion of the decision-theoretic framework 

applying coherence weighting in Section 5.3. 

5.1. The Wisdom of the Coherent: Why Does Coherence Weighting Work? 

We have proposed that there are two relationships between coherence and 

correspondence that aggregators can capitalize on to exploit the “Wisdom of the Coherent.” The 

first, and most straightforward, is the causal relationship. In these cases, the judgment task 

requires the application of coherence-based rules of information to reach the correct answer. 

For instance, in the experiments by Wu et al. (2017) and other Bayesian inference tasks 

(Mandel, 2014), participants received statistical information (e.g., base rates and diagnostic 

probabilities) that was sufficient to correctly produce the target judgments using Bayes’ 

theorem. One might say that knowledge of Bayes’ theorem [6] suffices to yield both coherent 

and accurate judgments. However, this obscures the fact that coherence is the basis for scoring 

accuracy in such cases.  

The second relationship we described occurs when coherence diagnoses experts in the 
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opinion pool. Consider the general-knowledge task we examined here (see also Karvetski et al.,  

2013), which centered on the first man to step foot on the moon. A true expert will be certain 

that Neil Armstrong was the first person to set foot on the moon, P(A) = 1. This expert will be 

equally certain that Buzz Aldrin was not the first person to set foot on the moon, P(B) = 0, and 

also that one of either Neil Armstrong or Buzz Aldrin was the first man to step on the moon, P(A 

∪ B) = 1. This combination of responses is both correct and coherent, even though the assessor 

may not even understand the coherence principles applied. Rather, the exploitable relationship 

here leverages the fact that correct answers are, by definition, coherent. 

From a decision-theoretic standpoint, it is important for aggregators and decision-

makers seeking to improve judgment accuracy to consider which relationship they intend to 

exploit. The two relationships were dissociable in the present research, but they are neither 

mutually exclusive nor task-specific. For instance, knowledge of Kolmogorov’s axioms suffices to 

yield perfect accuracy in the general-knowledge domain if the participants are certain about at 

least one query: Neil Armstrong was the first man to step on the moon, therefor Buzz Aldrin 

must not be. Conversely, an expert of a real-life Turtle Island might simply know, as a matter of 

fact, the different environmental probabilities without necessarily applying Bayes’ theorem to 

arrive at the answer. Thus, a mixture of signals likely exists in all tasks to some degree. 

Critically, forecasting is a good example of where both types of bases for exploiting 

coherence may be present. For instance, accurate forecasting may demand knowledge of factors 

that are shaping the outcome as well as the statistical knowledge to coherently combine this 

information. Nevertheless, the nature of the relationship practitioners hope to exploit has 

implications for how best to extract the wisdom of the coherent among the crowd. This includes 

the ideal elicitation process before aggregation, the potential utility of exogenous ι, and the 

optimal aggregator function and group size. Next, we examine these issues in greater detail.  

5.2. Exploiting the Wisdom of the Coherent 

5.2.1. Elicitation Method 
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The coherence-correspondence relationship aggregators wish to exploit may affect 

decisions about the elicitation process. Take, for instance, the decision to structure elicitations 

in ways that mitigate incoherence or inaccuracy. For example, using pair-wise estimates (Por & 

Budescu, 2017); evaluation frames (Williams & Mandel, 2007); increasing the proximity of 

related items (Karvetski et al., 2013); using information presentation formats that make logical 

relations salient (Wu et al., 2017); consider-the-opposite strategies such as dialectical 

bootstrapping (Herzog & Hertwig, 2014); and eliciting confidence intervals to improve best 

estimates (Hemming et al., 2018; cf. Mandel et al., 2020). If aggregators wish to exploit the 

causal route, it is best to make the elicitation process as easy as possible: any elicitation method 

that serves to improve coherence should also improve accuracy. Those who understand the 

probabilistic axioms can capitalize on information clarity and achieve low ι. Those who do not 

understand the relevant probabilistic calculus are unaffected—for better or worse—by the 

difficulty of the elicitation process.  

If aggregators wish to exploit the diagnostic route, however, it may be useful to let 

individual differences in incoherence “flourish.” Aggregators can exploit these differences 

through coherence-weighted aggregation. In Karvetski et al. (2013) and our re-analyses, 

maximally spacing logically related judgments made coherence principles, such as additivity, 

less mentally accessible. This elicitation strategy allows aggregators to harness the wisdom of 

the coherent more efficiently. The idea of spacing judgments to increase incoherence might 

seem to be a perverse and counterintuitive strategy. However, when considered alongside 

recalibration and aggregation methods, its advantages become clear. The reasoning is that the 

relationship between coherence and correspondence could be incidental or diagnostic. For 

grouped judgments, it is more likely that a judge is coherent because they understand and 

accept the relevant principle. If they understand and accept additivity, for instance, they will try 

to provide additive judgments even if they do not know the correct answer. For spaced 

judgments, it is less likely that judges will be aware of the logical constraints on the set of 
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probabilities. In this case,  coherent assessors are more likely to be coherent simply because they 

know the correct answer. Accordingly, weighting by coherence will separate the wheat from the 

chaff.  

Interestingly, several methods hold promise for capitalizing on both causal and 

diagnostic relationships. For instance, one study showed that allowing judges to opt in to (or out 

of) judgments improved aggregated accuracy (Bennet et al., 2018). The researchers suggested 

that metacognitive assessments of one's expertise can predict accuracy. For the diagnostic 

signal, much of the benefit came from coherent and certain individuals (e.g., probabilities of 

exactly 0 and 1), exploiting a similar principle. For the causal route, we might expect judges with 

no knowledge of Bayes’ theorem to simply opt out, and where opting out is not an option, 

elicitation procedures should attempt to distinguish coherence due to understanding (or at least 

implementing) coherence principles versus incidental coherence that arrives incidentally via 

response biases such as straight-lining or responding .5 to convey one’s utter epistemic 

uncertainty. Aggregators must also consider the prevalence of false experts within the opinion 

pool who may be bullish and overconfident about incorrect responses, also achieving incidental 

coherence (Tetlock, 2005).  

Because a function cannot distinguish between these false experts and true experts, and 

because apparently lazy mid-lined responses might, in fact, be epistemically justified, future 

research on coherence-weighting could profitably focus on elicitation procedures that reduce 

confounds of the coherence signals. As we have shown, failure to identify the cases and the 

conditions where incidentally coherent responses are common could impose costs to accuracy. 

For example, information about response consistency (reliability) can improve accuracy through 

repeated elicitation (Miller & Steyvers, 2017). For the diagnostic route, reliability is a proxy for 

certainty and expertise. For the causal route, reliability is a proxy for the correct application of 

relevant probabilistic axioms and theories. In both cases, false positives are likely to be 

minimized. Regardless of the signal practitioners wish to exploit, they should take care not to 
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structure their elicitation processes such that incidental coherence is trivial to achieve, such as 

with the mid-lined responses in Wu et al. (2017) or the complementary constraint in Karvetski 

et al. (2013). 

Although we have emphasized the utility of coherence-weighting as a tool that can be 

used even in data-poor environments, nothing prevents decision-makers from combining it with 

other techniques to further improve the accuracy of aggregated estimates such as other 

performance-weighted methods (Collins et al., in press; Bolger & Rowe, 2015; Budescu & Chen, 

2015; Himmelstein et al., 2021). Furthermore, practitioners can combine ensembles of methods 

such as competitive (Lichtendahl et al., 2013) or structured (Fraser et al., in press) elicitation 

methods; enhancing the salience of private versus public information (Larrick et al., 2012), 

choosing smaller, wiser crowds (Soll et al., 2010); trimming opinion pools to account for under- 

and over-confidence (Yaniv, 1997; Jose et al., 2014); up-weighting assessors who update 

estimates frequently in small increments (Atanasov et al., 2020); or extremizing judgments 

(Baron et al., 2014; Hanea et al., 2021; Satopää & Ungar, 2015) to further improve accuracy. The 

latter is particularly appealing in general-knowledge tasks where the “outcomes” are, by 

definition, extreme. Unlike history- and disposition-based methods, these methods do not 

require a more data-rich environment than ones where coherence methods may be applied. 

5.2.2. The Utility of Exogenous ι 

The distinction between ι that diagnoses accuracy versus ι as a causal determinant of 

accuracy has the benefit of explaining the exogenous ι results intuitively. To the extent that 

coherence is a causal determinant of accuracy on a task, it is not surprising that ι on that task 

would be a useful indicator of correspondence on a closely related task. For instance, the ability 

to derive coherent and accurate Bayesian probabilities on one Bayesian task (e.g., one involving 

the estimation of likelihoods) is a useful indicator of the ability to derive coherent and accurate 

probabilities on another Bayesian task (e.g., judging posterior probabilities). By comparison, 

where coherence diagnoses accuracy, it is not surprising that ι on one topic does not strongly 
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predict correspondence on another topic. Rather, its utility may depend on two factors: (1) a 

clear and uncontaminated diagnostic signal (i.e., the spaced condition), and (2) how closely 

related ι is to the task at hand. This implies that a topic-specific conceptualization of exogenous ι 

could be particularly effective, which is an issue that future research could investigate.  

Finally, although our present aggregation models cannot account for its effect, the 

variance of exogenous ι may have the potential for identifying experts. Homogeneity in 

coherence (or incoherence) may indicate someone who does (or does not) understand the 

relevant probabilistic axioms. By contrast, heterogeneity—a judge who is sometimes coherent 

and sometimes not—may represent an individual who is sometimes certain and coherent and, in 

other cases, strategically incoherent; e.g. mid-lining responses to express uncertainty or 

changing one’s mind partway through elicitation. This aspect of exogenous ι deserves further 

investigation. 

5.2.3. Choosing the ‘Best’ Function and Group Size 

The present research compared the efficacy of several functions used in previous studies 

(Fan et al., 2019; Karvetski et al., 2013; Wang et al., 2011; see Table 1). The present findings 

clarify, unsurprisingly, that there is no single “best” method. Weighting functions, the tuning 

parameter β, and group size k interacted in complex ways that affected MAE and PI in both task 

domains. Nevertheless, we draw the following lessons from these findings. First, both the 

weighting function and β work in tandem to determine how quickly the aggregation weight 

approaches zero as ι increases. In much the same way that β = 100 is more biased than β = 10, 

the rank function is more biased than the standardized linear difference function. As we have 

seen in our re-analysis of Wu et al. (2017), the most biased weighting strategies are not always 

optimal. In fact, across both re-analyses we conducted, more biased strategies often resulted in 

lower PI. In this way, the exponential function is more flexible than either the rank or 

standardized linear difference function given that its responsiveness to changes in β allows it to 

achieve a more modest weighting strategy if required by the practitioner. Providing further 
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evidence for this recommendation, we observed sub-optimal behavior in both the rank function 

and standardized linear difference function in both studies. The rank function was occasionally 

too biased by default, whereas the standardized linear difference function exhibited non-

monotonic improvements. 

Curiously, regarding the standardized linear difference function, across both domains 

and at low levels of β the function would achieve peak accuracy at low group sizes but worsen 

thereafter. This is because the function will always assign a weight of ω = 0 to the most 

incoherent judge, reducing the effective size of the opinion pool by 1. This has a proportionally 

large biasing effect for small group sizes, equivalent to a step function at k = 2 (i.e., choose the 

most coherent responder). That much of the benefits of coherence-weighting are the result of 

excluding incoherent judges in the opinion pool suggests that aggregators might efficaciously 

combine small (or select) crowd aggregation strategies (Mannes et al., 2014) with coherence-

weighting. Aggregators could employ a select crowd with a step function that assigns a weight of 

1 to judges that suffices a coherence criterion (e.g., ι = 0) and a weight of 0 to those that do not. 

In other words, aggregating only those judges that were coherent or coherent. Given its bias, the 

performance of such a model is similar to our ranked function where β = 100 Future research 

should investigate the efficacy of this ‘chasing the coherent’ strategy and the potential accuracy 

tradeoffs of permitting small coherence violations (i.e., critical values where ι > 0). 

Regarding group size, we find that a larger crowd is generally better. However, gains in 

accuracy were associated with diminishing returns, similar to other studies of aggregation (Han 

& Budescu, 2019; Mandel et al., 2018). Beyond a small-to-moderate group size of about ten 

judges, the addition of a single extra participant often produced minimal benefits. This is in line 

with research showing that small-to-medium-sized groups are ideal during aggregation (Han & 

Budescu, 2019; Mannes et al., 2014; Navajas et al., 2018). The results of Turtle Island also show 

that large groups increased the risk of selecting at least one “false positive”—an individual who 

was incidentally coherent. Indeed, incidental coherence also diluted the effectiveness of 
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coherence-weighted aggregation in the general knowledge domain (Karvetski et al., 2013). We 

believe the present results are in line with conventional wisdom suggesting well-selected 

medium-sized groups often perform better than either small or large groups. Simple procedures 

such as scanning for straight-liners and omitting their judgments could mitigate the problem, 

though this is likely to be insufficient. Rather, we stress that practitioners who wish to employ 

coherence-weighting elicitation adopt a priori steps to reduce incidental coherence at the 

elicitation stage. 

5.3. Toward a Decision-Theoretic Framework for Optimizing Probability Judgment  

The foregoing discussion provides a proof of concept for the efficacy of coherence-

weighted aggregation in two distinct domains where expert judgment is frequently called upon. 

It also provides the basis for sketching a decision-theoretic framework for optimizing probability 

judgments. Central to this framework is the view that decisions about judgment optimization 

strategies must focus broadly on ensembles of relevant factors, which include, but are not 

restricted to, the selection of: (a) format for information presentation, (b) methods for eliciting 

judgments, (c) methods for recalibrating or otherwise transforming judgments either before or 

after aggregation, and (d) methods for aggregating judgments (Karvetski et al., 2020). The 

alternative—narrowly considering the effect of one of these factors on its own—is unlikely to 

reveal important lessons for judgment accuracy optimization that are robust and generalizable. 

From a methodological perspective, a focus on ensembles entails a greater degree of complexity 

in experimental variables. Researchers must better understand how the pillars of optimization—

information representation, judgment elicitation, and post-judgment recalibration and 

aggregation—interact amongst themselves and task characteristics (Zellner et al., 2021).  

Currently, few studies take this multi-interventionist approach, and we encourage further 

research along these lines.  
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Figure 1 

Mean Absolute Error in the General-knowledge Domain Using the Endogenous Metric 
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Figure 2 

Proportion Improved in the General-knowledge Domain Using the Endogenous Metric 

 

Note. The dashed lines are the lower (y = .459) and upper bound (y = .541) of the 99% CI of a 

random event using a binomial distribution with 1,000 events.  
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Figure 3 

Mean Absolute Error in the General-knowledge Domain Using the Exogenous Metric 
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Figure 4 

Proportion Improved in the General-knowledge Domain Using the Exogenous Metric 

 

Note. The dashed lines are the lower (y = .459) and upper bound (y = .541) of the 99% CI of a 

random event using a binomial distribution with 1,000 events. 
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Figure 5 

Mean Absolute Error in the Statistical-evidence Domain Using the Endogenous Metric 
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Figure 6 

Proportion Improved in the Statistical-evidence Domain Using the Endogenous Metric 

 

Note. The dashed lines are the lower (y = .480) and upper bound (y = .520) of the 99% CI of a 

random event using a binomial distribution with 4000 events. 
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Figure 7 

Histogram of Bootstrapped MAE Results at β = 100 in the Prior and Likelihood (PL) Condition 

 
Note: 4000 bootstraps total  
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Figure 8 

Mean Absolute Error in the Statistical-evidence Domain Using the Exogenous Metric 

 

  



IMPROVING CORRESPONDENCE THROUGH COHERENCE 50 

Figure 9 

Proportion Improved in the Statistical-evidence Domain Using the Exogenous Metric 

 

Note. The dashed lines are the lower (y = .480) and upper bound (y = .520) of the 99% CI of a 

random event using a binomial distribution with 4000 events. 
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Table 1 

List of Functions for Translating the Incoherence Metric ι into an Aggregation Weight ω 

Weight Function Formula 
 

Exponential  
(Wang et al., 2011) 

 

 
𝜔! = 𝑒(+,!×.) 

 

Standardized Linear Difference  
(Karvetski et al., 2013) 

𝜔! = ?
𝑚𝑎𝑥	(𝜄) − 𝜄!
𝑚𝑎𝑥	(𝜄)

B
.

 

 

Rank  
(Fan et al., 2019) 

𝜔! = C
1

𝑟𝑎𝑛𝑘(𝜄!)
F
.
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APPENDIX A. List of constraints on individuals’ Bayesian probability estimates 

Condition Given Derive Constraints 
 

Prior & 
Likelihood 
 

 

Prior 
P(B)  

 

Likelihood 
P(E | B) 

 
P(E | F) 

 
P(L | B) 

 
P(L | F) 

 

Marginal 
P(E) 

 
P(L) 

 

Non-Negativity/Bounds (Inequality) 
0 ≤ {P(B), P(E), P(L), P(E | B), P(E | F), P(L | B), 
P(L | F)} ≤ 1 
 

Non-Linear/Bayesian (Equality) 
0 = P(E) – {P(B) × P(E | B) + [1 − P(B)] × P(E | F)} 
 
0 = P(L) – {P(B) × P(L | B) + [1 − P(B)] × P(L | F)} 
 

  

Posterior 
P(B | E) 

 
P(B | D) 

 
P(B | L) 

 
P(B | M) 

 

Non-Negativity/Bounds (Inequality) 
0 ≤ {P(B), P(E | B), P(E | F), P(L | B), P(L | F), 
P(B | E), P(B | D), P(B | L), P(B | M)} ≤ 1 
 

Non-Linear/Bayesian (Equality) 
0 = P(B | E) – {P(B) × P(E | B)} /  
{[P(B) × P(E | B) + [1 − P(B)] × P(E | F)} 
 
0 = P(B | D) – {P(B) × [1 − P(E | B)]} / {[P(B)  
× [1 − P(E | B)] + [1 − P(B)] × [1 − P(E | F)]}  
 
0 = P(B | L) – {P(B) × P(L | B)} /  
{[P(B) × P(L | B) + [1 − P(B)] × P(L | F)} 
 
0 = P(B | M) – {P(B) × [1 − P(L | B)]} / {[P(B)  
× [1 − P(L | B)] + [1 − P(B)] × [1 − P(L | F)]} 
 

 

Marginal & 
Posterior 
 

 

Marginal 
P(E) 

 
 P(L) 

 

Posterior 
P(B | E) 

 
P(B | D) 

 
P(B | L) 

 
P(B | M) 

 

Prior 
P(B) 

 

Non-Negativity/Bounds (Inequality) 
0 ≤ {P(B), P(E), P(L), P(B | E), P(B | D), P(B | L), 
P(B|M)} ≤ 1 
 

Non-Linear/Bayesian (Equality)  
0 = P(B) – {P(E) × P(B | E) + [1 − P(E)] × P(B | D)} 
 
0 = P(B) – {P(L) × P(B | L) + [1 − P(L)] × P(B | M)} 
 

  

Likelihood 
P(E | B) 

 
P(E | F) 

 
P(L | B) 

 
P(L | F) 

 

Non-Negativity/Bounds (Inequality) 
0 ≤ {P(E), P(L), P(E | B), P(E | F), P(L | B),  
P(L | F), P(B | E), P(B | D), P(B | L), P(B | M)} ≤ 1 
 

Non-Linear/Bayesian (Equality)  
0 = P(E | B) × {P(E) × P(B | E) +  
[1 − P(E)] × P(B | D)} − P(E) × P(B | E)  
 
0 = P(E | F) × {P(E) × [1 − P(B | E)] +  
[1 − P(E)] × [1 − P(B | D)]} - P(E) × [1 − P(B | E)] 
 
0 = P(L | B) × {P(L) × P(B | L) +  
[1 − P(L)] × P(B | M)} − P(L) × P(B | L)  
 
0 = P(L | F) × {P(L) × [1 − P(B | L)] +  
[1 − P(L)] × [1 − P(B | L)]} - P(L) × [1 − P(B | L)] 
 

 


