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Abstract

Theories of motivation describe how behavior is driven
by different factors like external rewards or inherent sat-
isfaction. In this project, we looked at two components
of motivation driving people to play games: “fun” — de-
fined as improving one’s model of the environment —
and the magnitude of available points (without monetary
compensation). Here, we test this theory by predicting
that engagement is influenced by two factors: fun, which
is maximal when learning progress is maximal — corre-
sponding to an intermediate level of difficulty — and the
magnitude of point values. We test our predictions in
a grid exploration task, in which we manipulate the un-
derlying spatial distribution as well as the magnitude of
outcomes. Both participants’ behavior and model-based
analyses confirmed our predictions.
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Introduction

Research on motivation has looked at a plethora of different
concepts (Cogliati Dezza, Schulz, & Wu, 2022) — from extrin-
sic rewards like monetary compensation (Braver et al., 2014;
Murayama, Matsumoto, Izuma, & Matsumoto, 2010) to intrin-
sic motivation like uncertainty reduction (Berlyne, 1962) and
empowerment (Brandle, Stocks, Tenenbaum, Gershman, &
Schulz, 2022). Here, we study two forms of motivation that
seem to be key drivers of why people play games: fun and
scoring points.

“Fun” is a broad concept with many interpretations. Here,
we use a computational framework describing “fun” as a
measure of progress in learning one’s model of the world
(Schmidhuber, 2010)1. Thus, we can think of fun as accom-
plishing the rational goal of improving learning progress, which
we expect to produce the highest engagement for interme-
diate difficulties (Vygotksy, 1978; Kidd, Piantadosi, & Aslin,

10ther approaches (e.g. Oudeyer, Gottlieb, & Lopes, 2016) are
similarly defined and make comparable predictions.

2012; Wilson, Shenhav, Straccia, & Cohen, 2019; Geana, Wil-
son, Daw, & Cohen, 2016; Ten, Kaushik, Oudeyer, & Gottlieb,
2021).

People are also motivated to play games by scoring points
or achieving high scores (Johnson et al., 2018), even when it
carries no monetary payoffs. People are even willing to spend
money at arcades or buy virtual game items to get the high-
est score. One reason might be that uncompensated points
share similar reward learning properties with classic extrinsic
rewards (Murayama, 2022).

In the current work, we examine both fun and uncompen-
sated points as motivational factors of engagement, in a task
where we can control the difficulty and the magnitude of point
values. We hypothesized that both factors will influence en-
gagement, producing the highest levels when difficulty is inter-
mediate and when the uncompensated point values are high-
est.

Experiment

We adopted the spatially correlated multi-armed bandit
paradigm (Wu, Schulz, Speekenbrink, Nelson, & Meder,
2018), but greatly increased the size of the environment to
30 x 30 grids (Fig. 1). Participants iteratively sampled tiles
on a grid, and observed their point value along with a cor-
responding color (darker for more points). At any point in the
task after the first five trials, participants could decide that they
were finished exploring the current grid, and progress onto
a new grid. The experiment deterministically ended after 10
minutes, independent of the number of grids or cells partici-
pants explored. Participants were not given any performance-
dependent bonus to focus on intrinsic motivation.

To manipulate difficulty, we changed the smoothness (i.e.,
spatial correlation) of point value by changing the length-scale
parameter A € [272,...,2%) of a radial basis function kernel
used to generate the environments. When A is small (e.g.
0.25), we generate “rough” environments (Fig. 1a), where the
value of a tile provided relatively little information about the val-
ues of adjacent tiles. When A is large, we generate “smooth”
environments (Fig. 1b), where values of tiles were strongly
predictive of nearby tiles. We manipulated uncompensated



Figure 1: Two example grids with different length-scale A. a:
A rough grid with A = 0.25. b: A smooth grid with A = 16.

points (i.e., point values of the tiles) via the range of point val-
ues on a grid, where we uniformly sampled a minimum value
between 5 and 35 and set the maximum to the minimum + 40.

We estimated motivation as a function of engagement,
based on how many tiles participants explored on each grid.
We hypothesized that engagement is influenced by two fac-
tors. First, we predicted an inverse-U-shaped relationship
between smoothness and engagement, with intermediately
smooth grids yielding the highest level of engagement. For
both very smooth and very rough grids, there is limited op-
portunity for learning progress. This is because participants
will either very rapidly learn the structure after only a few sam-
ples with minimal benefits for further exploration (very smooth)
or fail to learn the structure altogether due to a lack of any
point value correlation (very rough). In contrast, intermedi-
ately smooth grids were expected to induce the greatest levels
of engagement because participants could make meaningful
learning progress over an extended period. Second, we pre-
dicted that engagement and the magnitude of underlying point
values would have a linear relationship: a higher magnitude of
revealed points should induce greater engagement.

Simulations

We first conducted a series of simulations to test the learning
progress hypothesis in our paradigm with a Bayesian learn-
ing model. We did not conduct any simulations on the in-
fluence of the magnitude of point values, as they would by
definition display a simple linear relationship between magni-
tude and the number of samples. To investigate the influence
of the smoothness of the grids more formally, we simulated
2000 grids per value of the length-scale parameter A. In each
grid, we sampled randomly one tile after another. We created
a Bayesian model that — with each new sample — updated
its predictions over the values of all tiles, based on what was
sampled so far. We compared the model predictions to the
original values of the grid and calculated the mean squared
error. We then took the mean over all grids of each A sepa-
rately for each time step to plot the learning progress — a re-
duction of the error — over time for each kind of environment.
As can be seen in Figure 2a, in environments with small A
— rough grids — the model learns fast, but plateaus quickly

at an error of around 0.025. In environments with high A —
smooth grids — the model also learns fast and approaches 0
very quickly. Only in environments with intermediate A values
does the model learn over a longer period, which supported
our hypothesis. To simulate how long the models would in-
teract with a grid before going on to the next one, we set a
threshold for learning progress — the lower limit of how much
progress the model would count as “fun”. Here, we set the
value to 0.001 as this puts the predicted number of interac-
tions in the same range as participants’ actual interactions.
We counted the number of tiles each model sampled before
its absolute learning progress was below this threshold. As
expected, we found an inverted U relationship between the A
values and the number of samples (Fig. 2b).
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Figure 2: Simulation results. a: Errors of the different mod-
els per sample step. Models with small A quickly plateau and
models with high A quickly approach 0. Models with inter-
mediate A learn over a longer period. b: Predicted number
of interactions per model depending on the error. The model
with A = 4 learns for the most number of samples. Error bars
indicate the standard error of the mean.

Results

We analyzed data from 44 participants recruited via Amazon
Mechanical Turk. Participants interacted with an average of
40 grids (SD = 37.16) and explored an average of 19 tiles
per grid (SD = 29.49). We compared how long they engaged
with each grid as a function of the grid’s smoothness and the
magnitude of the underlying point values (Fig. 3). We used
a negative binomial mixed-effects regression analysis includ-
ing a random intercept and found that the A parameter had a
significant positive linear effect (f = 3.44, z =3.39, p < .001)
as well as a significant negative quadratic effect (f = —1.57,
z = —2.27, p =.023), which accounted for the inverted U-
shape, while the magnitude had a significant positive effect
(B=2.18,z=4.03, p < .001), confirming our hypotheses.

Discussion

We tested the influence of learning progress and uncompen-
sated points on engagement in a grid search paradigm. We
showed that engagement (i.e., the number of samples of each
grid) had a negative quadratic relationship with the smooth-
ness of the grids and a linear relationship with the magnitude
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Figure 3: Results a: Average number of samples dependent
on the smoothness — the higher A the smoother the grid. b:
Average number of samples dependent on the magnitude of
point values (with magnitude binned in bins of size 5). Error
bars indicate the standard error of the mean.

of point values: participants liked to interact with intermedi-
ately smooth grids — leading to higher learning progress —
and high point values the most.

While we were able to develop a model that showed similar
behavior as participants, we assumed that they use a random
sampling strategy. However, we know that humans of all ages
do not sample randomly in this paradigm (Giron et al., 2022).
In future work, we would like to implement different sampling
strategies to see how they change our model’s predictions.

We also assumed that people have the same prior expec-
tations as the actual smoothness of the grids. However, we
found in some additional simulations that the favorite diffi-
culty” level — the peak of the inverse U-shaped curve — can
be influenced by participants’ priors. We plan on investigating
this more closely by studying how the manipulation of priors —
showing participants opened grids with different smoothness
before the experiment — might lead to different preferences.
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