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Abstract

Humans regularly pursue activities characterized by dramatic success or failure outcomes

where, critically, the chances of success depend on the time invested working toward it. How

should people allocate time between such make-or-break challenges and safe alternatives, where

rewards are more predictable (e.g., linear) functions of performance? We present a formal frame-

work for studying time allocation between these two types of activities, and we explore optimal

behavior in both one-shot and dynamic versions of the problem. In the one-shot version, we illus-

trate striking discontinuities in the optimal time allocation policy as we gradually change the

parameters of the decision-making problem. In the dynamic version, we formulate the optimal

strategy—defined by a giving-up threshold—which adaptively dictates when people should stop

pursuing the make-or-break goal. We then show that this strategy is computationally inaccessible

for humans, and we explore boundedly rational alternatives. We compare the performance of the

optimal model against (a) a myopic giving-up threshold that is easier to compute, and even sim-

pler heuristic strategies that either (b) only decide whether or not to start pursuing the goal and

never give up or (c) consider giving up at a fixed number of control points. Comparing strategies

across environments, we investigate the cost and behavioral implications of sidestepping the com-

putational burden of full rationality.
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Life can only be understood backwards, but it must be lived forwards
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1. Introduction

From applying for a research grant to giving one’s all to earn a bonus at work, numer-

ous human activities can either be crowned by dramatic success or thwarted by failure. In

these “make-or-break” endeavors, people are either handsomely rewarded upon success

or gain nothing upon failure. Although there is almost always a monotonic relationship

between the invested time (or effort) in an activity and the expected levels of perfor-

mance, there is considerable uncertainty about the outcomes (e.g., success or failure).

Thus, some of the most important decisions in life may be defined by how one chooses

to allocate limited resources between make-or-break tasks—with potentially life changing

outcomes—and “safe” alternatives, where outcomes are a more predictable function of

performance (e.g., the linear relationship a wage worker experiences between hours

worked and income). How should you divide your time between chasing a challenging

goal and investing in safer occupations? What is the optimal allocation strategy, and how

does it compare to simpler, but computationally less expensive strategies? What behaviors

do the different strategies produce across decision-making settings?

1.1. Background

As early as the 1930s, Kurt Lewin and colleagues identified the importance of success-

or-failure reward structures for understanding human behavior (Hoppe, 1931; Lewin,

1936). They investigated how people with different abilities set their aspiration levels

(Festinger, 1942; Rotter, 1942), calibrated based on the chances of success and the poten-

tial rewards to be gained. Lewin and colleagues postulated that people experience joy

when they achieve their aspirations and feel acute loss when they fail, and that they

choose the appropriate aspiration level simply by balancing these two motivating forces

and the probability of success (Lewin, Dembo, Festinger, & Sears, 1944; Siegel, 1957).

In their work, they assumed that people strictly commit themselves to a single aspiration

level selected from a continuum of possible choices (i.e., a single task) and that there are

no constraints on the amount of time or effort that could be invested (i.e., an infinite hori-

zon). This early work provided valuable insights into how the likelihood of success influ-

ences how people set aspiration levels. Yet how do these insights transfer to problems

where there is a finite horizon (i.e., limited time to be allocated) and multiple tasks with

different payoff functions?

Since then, there have been repeated attempts in the behavioral sciences—independent

of or inspired by Lewin’s framework—to address how people reason about their chances

of success in meeting their goals (e.g., Bandura, 1977; Heider, 1958; Weiner & Kukla,

1970), how aspiration levels affect people’s choices (Diecidue & Van De Ven, 2008;

Payne, Laughhunn, & Crum, 1980; Simon, 1955), and how people choose among variable

levels of aspiration (Atkinson, 1957). Yet there has been no rigorous mathematical for-

malization of the problem people grapple with when they have to allocate scarce

resources between a make-or-break activity, where investment of additional effort can
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alter their chances of success, and a safe alternative.1 The closest attempt to formally

ground the problem was a static effort allocation framework developed by Kukla (1972),

who greatly simplified the problem by assuming away any uncertainty in the relation

between effort and performance. Kukla revealed a distinct discontinuous relationship

between task difficulty and the optimal allocation of effort; people should refrain from

engaging in very difficult tasks, but also invest more effort when success is marginally

within reach. Despite its simplicity, the setting Kukla described is of broad interest,

because it exposes the challenging nature of a common class of effort allocation problems

encountered in daily life. Similar discontinuities between the parameters that characterize

the decision-making problem (i.e., rewards, abilities, constraints) and the normatively pre-

scribed or observed behavior (i.e., time allocation) have been uncovered in various

domains, such as allocating time among learning tasks (Son & Sethi, 2006), effort in

writing prestigious grants (Bol, de Vaan, & van de Rijt, 2018), and allocating attention in

perceptual decisions (Morvan & Maloney, 2012), potentially hinting at a common under-

lying problem structure.

The notion that optimal solutions for even simple problems may harbor drastic discon-

tinuities as a function of the task parameters contrasts with the main time allocation para-

digms in economics and psychology, which assumes that different activities, often

defined as effort and leisure, complement each other (Becker, 1965; Borjas & Van Ours,

2000; Kurzban, Duckworth, Kable, & Myers, 2013; Varian, 1978). Such resource alloca-

tion problems (called “convex” in the language of mathematics) are easy to solve using

standard optimization techniques (Boyd & Vandenberghe, 2004), and the changes in the

optimal solutions are smooth as we gradually shift the parameters of the problem. In a

similar vein, optimal foraging theory (the most prominent time allocation paradigm in

behavioral biology) is also a convex optimization problem where the foraging time allo-

cated across different resource patches depends on immediate rewards and the rate at

which these rewards diminish (Charnov, 1976). Although these modeling frameworks

have been productively used to describe behavior and prescribe how to allocate resources

across a wide range of domains, ranging from mental effort allocation (Kool & Botvinick,

2014) to cognitive search (Payne, Duggan, & Neth, 2007; Pirolli & Card, 1999), they

cannot account for the behavioral dynamics produced by success–failure reward struc-

tures. In many real-life problems, returns directly depend on how additional efforts trans-

late into improved chances of success in achieving a make-or-break goal.

Make-or-break tasks also provide a new and valuable perspective for studying risk-tak-

ing behavior in dynamic environments. Alternative theories of risk-taking have been

empirically tested using experiments asking people to make consequential or hypothetical

choices among a number of discrete risky options (Edwards, 1954b; Kahneman & Tver-

sky, 1979; O’Donoghue & Somerville, 2018). Over the years, the models explaining

empirical irregularities became increasingly more complex, adding further parameters and

specifications to account for the largest number of choices. In real life, however, people

take risks dynamically, and the decision to keep on investing in a risky challenge can be

intimidating. Can risk-taking theories from the static domain be easily transferred to risky

dynamic goal-pursuit problems? Accordingly, how could one implement an artificial
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agent to be risk averse in the dynamic decision-making setting (Feldman & Sproull,

1977)? In challenging real-world environments, where calculating the optimal strategy is

computationally excessive, existing expected and non-expected utility theories need to be

cognitively simplified to become psychologically plausible (e.g., Ebert & Strack, 2015).

Here, we explore one promising avenue. Risk-averse behavior, and other distinctive

behavioral patterns (e.g., temporal discounting and perseverance), can be produced by

leveraging boundedly rational principles, such as myopia or simple heuristics.

1.2. Contributions and scope

The first contribution of this article is to develop a formal framework that accounts for

the role of uncertainty and information in resource allocation problems involving a make-

or-break activity and a safe alternative. Our framework draws inspiration from Lewin’s

early work on aspiration levels (e.g., Lewin et al., 1944) and Kukla’s (1972) static model

of effort allocation, but with a radical departure in how uncertainty accumulates with lar-

ger investments of effort or time. We show that manipulating critical factors in the task,

such as the rewards or constraints, can produce abrupt and discontinuous changes in the

normative allocation strategy, with uncertainty playing a crucial role in determining the

optimal solution. We describe two variants of the problem. In the one-shot allocation

problem, the decision maker receives feedback about performance only at the very end of

the task after all available time has been allocated. In this formulation of the problem,

performance is unobservable during the allocation phase, as is the case when studying for

a pass/fail exam or preparing a grant application. In the dynamic allocation problem, the

decision maker receives immediate feedback on their current output and—like a PhD can-

didate toiling to fulfill graduation requirements before funding runs out—can dynamically

adapt their allocation strategies at any point in time, either continuing to pursue the

make-or-break goal or dropping out in favor of the safe alternative.

The second contribution of this article is to introduce the optimal solution for the

dynamic version of the problem. In line with previous theoretical work on dynamic deci-

sion-making across disciplines in the behavioral and social sciences (Dixit & Pindyck,

1994; Houston & McNamara, 1999; Malhotra, Leslie, Ludwig, & Bogacz, 2018; McCar-

dle, Tsetlin, & Winkler, 2016) we show that the solution can be expressed by optimal

decision thresholds. We mathematically prove that optimally solving the dynamic alloca-

tion problem implies prioritizing investment in the make-or-break task over the safe

rewards task (whenever investing in the make-or-break task is considered profitable) and

switching unidirectionally to the safe alternative only when performance falls below the

giving-up threshold or when success has been reached. This allows us to use well-known

results from optimal stopping theory in stochastic processes (Shiryaev, 2007) as well as

standard numerical methods to calculate the optimal giving-up strategy. Following previ-

ous work on optimal stopping, we discretize time and derive the solution by backwards

induction. We show that acting optimally implies using a more tolerant giving-up thresh-

old as uncertainty in the environment increases, echoing results from the dynamic invest-

ing literature in finance and economics (McDonald & Siegel, 1986). The optimal strategy
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provides insights into the nature of the decision-making environment. Yet it is inaccessi-

ble to humans, due to its exorbitant computational costs (Simon, 1990). This raises the

question of how to constrain the space of computational level theories in order to define

cognitively plausible strategies that are available to human decision makers (Marr, 1982;

Van Rooij, 2008).

The third contribution of this article is to formulate plausible boundedly rational strate-

gies and to study their behavior and performance across decision-making environments.

First, we define a myopic giving-up strategy, which is based on the optimal solution to the

one-shot allocation problem. This myopic solution implies giving up earlier than the fully

optimal strategy, because it does not consider the possibility of dynamically reassessing

one’s policy based on new information acquired during the task (i.e., direct feedback about

performance). Myopic giving-up becomes more conservative relative to the optimal strategy

as uncertainty increases, yielding a distinct pattern of risk-aversion. Second, we examine the

play-to-win heuristic, a simple heuristic strategy that only decides whether or not to invest

in the make-or-break task, and then either abandons the task entirely or stubbornly perse-

veres until success or failure occurs. When contrasted with optimal giving-up, this strategy

produces risk-seeking behavior that is consistent with the sunk cost fallacy (Arkes & Blu-

mer, 1985). Finally, we define the control points strategy, a generalization of the above two

strategies, which considers giving-up at a fixed number of time points. The strategy allows

for a more flexible trade-off of computational complexity and dynamic responsiveness.

Holding all other factors constant, we find that an increase in uncertainty in the environment

improves the relative performance of the play-to-win and control points strategies, which

despite disregarding most information, almost always outperform the myopic giving-up

strategy and can approximate the performance of the optimal solution.

The structure of this paper is as follows: We begin by developing the mathematical

framework for the allocation problem and describing how different specifications of the

decision environment can change the reward structure of the make-or-break task. We then

describe the optimal solution to the one-shot allocation problem before moving on to the

dynamic version of the problem. We present both optimal and myopic solutions to the

dynamic problem, and we compare them to simpler heuristic strategies. In the Discussion,

we draw connections with the dynamic decision-making literature from mathematical psy-

chology and economics, with expected and non-expected utility theories, and with theo-

ries of effort allocation, motivation, and learning. These links highlight a rich set of

opportunities for further research and contributions.

2. A formal framework

Let us consider an agent who can allocate time (or any another resource) tm and ts
between two different reward-generating activities {m, s}, where m is an instance of a

make-or-break task with a binary success-failure outcome, and s is an instance of a safe
task, where rewards are a more predictable function of the allocated time. We assume

that the total available time to be allocated T is fixed, with T = tm + ts. We introduce a
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function describing how invested time maps onto performance quality (Eq. 1) and a func-

tion mapping performance quality onto rewards for each reward-generating activity

(Eqs. 2 and 3).

Intuitively, the quality (or quantity) of performance q(t) in any given task is a continu-

ous function of the allocated time t and depends on the abilities of the agent, starting

from q(0) = 0. Working on a task, however, is often accompanied by uncertainty about

future performance. For instance, people may commit unintended and random errors

(e.g., incorrect retrieval of information from memory during an examination), where these

types of errors can be described using a stochastic function. It is reasonable to assume

that the change in performance Dq over an interval of time Dt is a Gaussian random vari-

able, independent of past performance, and that this random change Dq depends only on

the magnitude of Dt (i.e., time homogeneity). The unique continuous function that satis-

fies all of the above assumptions is a diffusion process given by

qðtÞ ¼ kt þ rWt: ð1Þ

The first term in Eq. 1 is a deterministic term and is proportional to time, where k is

the skill level of the agent. Larger values of k lead to better performance for the same

amount of time. The second term is a random term, where r is the performance uncer-

tainty defining the variance per unit of time, and Wt is the Wiener process. A Wiener pro-

cess is the analog of a random walk for continuous time, where for each t, it yields a

Gaussian random variable Wt �Nð0; tÞ, with a mean of 0 and variance equal to t. In the

same way that the variance of a random walk increases with the number of steps, the

variance of a Wiener process also increases with time t. As shown in Fig. 1, the expecta-

tion of performance quality (dotted line) is affected only by the skill level k and the time

t, whereas the underlying uncertainty (shaded area) is determined by the performance

uncertainty r and grows with larger investments of time t.

2.1. Rewards as a function of performance

Given a specific reward-generating activity (e.g., writing a grant application or working

for an hourly wage), we can describe a function mapping performance onto rewards.

Here, we consider two different types of functions, gm(x) for the make-or-break task and

gs(x) for the safe task, where x = q(t) is the performance function described in Eq. 1.

2.1.1. Make-or-break
In the make-or-break setting, the agent either receives a considerable reward B upon

success, or nothing upon failure, depending on whether their performance x = q(t) reaches
a precise and known success threshold D:

gmðxÞ ¼ B; if x�D;
0; otherwise.

�
ð2Þ
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The performance threshold D captures the strict binary outcomes of success or failure

and controls the difficulty of the make-or-break task. The reward B may consist, for

example, in receiving a monetary bonus at work, winning an award, receiving a grant, or

the joy of reaching an aspiration.2 Note that it is not necessary for the reward to be a

known value, but it could also be sampled from some known distribution, in which case

B would denote the expected value of the reward.

2.1.2. Safe reward
In the safe-reward setting, rewards are a linear function of performance quality, with

reward rate v corresponding to an hourly wage or a fixed rate of reward as a function of

performance quality x = q(t):

gsðxÞ ¼ v � x: ð3Þ

2.2. Rewards as a function of resource allocation

We can now describe the stochastic processes of earning rewards as functions mapping

time allocations tm and ts onto rewards rm and rs:

Fig. 1. Performance quality as a function of time invested, with total available time T = 10. The panels show

different levels of performance uncertainty r; the colors represent different skill levels k. Dotted lines indi-

cate the expected performance quality and shaded areas show one standard deviation.
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rmðtmÞ ¼ gmðqmðtmÞÞ ¼ gmðkmtm þ rmW
m
tm
Þ

¼ B; if kmtm þ rmW
m
tm
�D

0; otherwise

� ð4Þ

rsðtsÞ ¼ gs qsðtsÞð Þ ¼ v � qsðtsÞ ¼ v � ðksts þ rsW
s
ts
Þ ð5Þ

The expectation of rewards for the make-or-break task can be written as

E½rmðtmÞ� ¼ B � Pðkmtm þ rmW
m
tm
�DÞ

¼ B � P 1ffiffiffiffi
tm

p Wm
tm
� D� kmtm

rm
ffiffiffiffi
tm

p
� �

¼ B � 1� U
D� kmtm
rm

ffiffiffiffi
tm

p
� �� � ð6Þ

where E½�� denotes expectation, Pð�Þ denotes probability, and Φ denotes the cumulative

distribution function of a standard normal distribution. Regardless of the exact parameters

of the problem, the above expression is always a sigmoid function of the allocated time

tm (see Supplementary Information Section 1). In contrast, the expectation of rewards for

the safe alternative is

E½rsðtsÞ� ¼ v � ksts: ð7Þ

Although uncertainty is a crucial component in calculating expected reward for the

make-or-break task (Eq. 6), the same does not apply to the safe-reward task (Eq. 7),

because the expected value of the Wiener process Ws
ts
�Nð0; tsÞ is always zero. Thus,

the performance uncertainty rs does not influence the expectation, but only the variance

of the reward. To give a better idea of these reward functions, Fig. 2 shows the influence

of each parameter on expected reward for each activity type as a function of time alloca-

tion.

2.2.1. Sensitivity of expected rewards to environmental parameters
The expected rewards for the make-or-break task are a sigmoid function of time allo-

cation (left column of Fig. 2), where the inflection point and the shape of the expected

returns curve are jointly determined by the performance uncertainty r, the skill level of

the agent km, the success threshold D, and the bonus B. First, note that the agent’s skill

level km and the difficulty of the task (defined by the success threshold D) are directly

related; increasing the former has a similar effect to decreasing the latter. Additionally,

the performance uncertainty r determines the shape of the expected returns in the make-

or-break task where, in the degenerate case of r = 0, expected reward becomes a step

function of time allocation (middle left panel of Fig. 2). As uncertainty increases, the cur-

vature of the sigmoid reward function becomes smoother. Finally, the bonus B in the
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Fig. 2. Expected reward as a function of time invested in the make-or-break task (left column) and the safe-

reward task (right column). The top row shows the influence of different skill levels (k) and the middle row

shows different levels of performance variance (r). The bottom row shows the influence of the task-specific

parameters: the bonus (B) and success threshold (D) bottom left, and the reward rate (v) bottom right. When

not specified, we use the default parameter values of T = 10, km = ks = 10, rm = rs = 5, B = 1000, D = 50,

and v = 10. These parameters are chosen such that the make-or-break reward is equal to the expected reward

for the safe-reward task when all available time T is invested in the latter, that is, B = v � ksT.
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make-or-break task and the skill level ks and reward rate v in the safe-reward task control

the relative payoffs between the two tasks. Multiplying or dividing both B and v � ks by
the same amount does not alter the relative payoff in the tasks.

2.2.2. Marginal returns
Investing a small amount of time in the make-or-break task typically yields very small

expected returns; the resulting performance is almost certain to fall below the success

threshold. Initially, increasing time allocation in the make-or-break task corresponds to

only small increases in expected reward, with returns being smaller when uncertainty is

low. However, as one continues to invest more time in the make-or-break task, the rate

of increase in expected reward accelerates and rises rapidly until it reaches an inflection

point (at tm = 5, middle left panel of Fig. 2). The rate at which expected reward increases

around the inflection point is determined by performance uncertainty r, with higher

uncertainty creating a more gradual transition (smoother sigmoid curves; see middle left

panel of Fig. 2). Eventually, as performance quality surpasses the threshold D, the mar-

ginal increases in expected reward become smaller and smaller, and the expected reward

curve draws near the upper bound of B. Thus, after a certain expected performance level,

additional effort has diminishing marginal returns.

3. Results

Having established the formal framework for the problem, we now present solutions to

two versions of the problem and discuss their implications. First, we address the one-shot
version of the problem, where the agent makes a single decision about how to allocate

resources between the two tasks, without any feedback on performance or reward. Sec-

ond, we address the dynamic version of the problem, where performance q(t) is observ-

able and switching between activities can occur at any point in time t < T (i.e., after any

amount of investment prior to exhausting all available time). We present a fully rational

and a boundedly rational solution to the dynamic problem, both relying on the idea of a

“giving-up” threshold; we then compare these solutions with simple heuristic strategies

that achieve competitive performance at much lower computational costs.

3.1. The one-shot allocation problem

If an agent has a fixed amount of time T to allocate between the two tasks, and needs

to commit to this allocation at the beginning of the task, how can they maximize the sum

of expected rewards? This problem is identical to a case where the agent has to commit

to a plan upfront, or to a scenario where there is no feedback on performance. Therefore,

the optimization problem is reduced to a single decision about how to divide the total

available time T between the two activities tm and ts, where the overall reward function

can be written as:
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hðtm; tsÞ ¼ E½rmðtmÞ� þ E½rsðtsÞ�

¼ B 1� U
D� kmtm
rm

ffiffiffiffi
tm

p
� �� �

þ v � ksts:
ð8Þ

An agent should then optimize this function (Eq. 8) under resource constraints, which

is written formally as follows:

maximize
tm;ts

hðtm; tsÞ;
subject to T ¼ tm þ ts:

ð9Þ

The above equations give rise to a simple, yet commonly encountered, non-convex

optimization problem. Below, we describe and offer intuitions about how the optimal

allocation policy depends on the parameters of the problem (see Fig. 3).

3.1.1. Playing safe or going all in
For some sets of parameters, one option completely dominates the other, and the deci-

sion maker should simply invest all available time resources T in just one of the tasks. In

some cases, for instance, the rewards of the make-or-break task simply do not justify the

risks, and the clear dominant option is to “play it safe” by investing all available time

resources in the safe-reward task. This is the case when (a) there is only a slim chance of

success in the make-or-break task (i.e., due to scarcity of total available time T, a very

high threshold D, or low skill level km; see top left of Fig. 3, where km = 1) or (b) when

the expected returns from the safe-reward task are simply much higher (i.e., when v � ksT
is much larger than B).

As we vary the parameters making the make-or-break task more attractive, it becomes

rational for agents to allocate at least some—possibly all—of their time to the make-or-

break task. There is a discontinuous switch in the optimal policy when a critical point in

the parameter space is crossed as we increase the total available time, the bonus of the

make-or-break task, or the skill level of the agent (see Section 2 in the Supporting Infor-

mation). This is illustrated in Fig. 4, where the optimal policy switches from “playing it

safe” (ts = T) to “going all in” (tm = T) at the critical value of km satisfying the equation

B � PðkmT þ rmW
m
T [DÞ ¼ v � ksT : ð10Þ

Equation 10 corresponds to the point where the two extreme policies of “playing it

safe” and “going all in” produce equal expected rewards. Transitions from one extreme

to the other always occur when the make-or-break task is sufficiently rewarding (see Sup-

porting Information for proof), and we vary the total available time resources T. In the

Supporting Information, we specify the exact conditions under which all-or-nothing tran-

sitions should occur as we vary the skill level or the reward of the make-or-break task.
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3.1.2. Slacking off for the highly skilled
In environments where success in the make-or-break task is highly likely without

requiring the investment of all available time, the optimal policy entails allocation of

resources to both activities. As expected performance in the make-or-break task increases

Fig. 3. Total expected reward as a function of the proportion of time allocated to the make-or-break task,

where remaining time is allocated to the safe-reward alternative. The top left panel shows how the shape of

the curve varies for different skill levels (we set km = ks = k). The top right panel shows the effect of uncer-

tainty (in the make-or-break task, r = rm) on the curve shape. The bottom panels show how the returns

curve changes as we vary the bonus or the threshold (left) or the reward rate in the safe task (right). When

not specified, we use the following default parameter values: T = 10, km = ks = 10, r = 5, B = 1,000,

D = 50, v = 10.
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beyond the critical point described in Eq. 10, the decision maker can potentially err on

the side of investing too much time in the make-or-break task. This error comes with the

opportunity cost of losing potential rewards from investing surplus time in the safe-re-

ward task. This is the case when the marginal expected gain of investing more time in

the make-or-break task is less than the gain of investing more time in the safe-reward

task, which is as follows:

E½rmðtmÞ�½ �0tm¼T\v � ks; ð11Þ

where the derivative is taken with respect to the allocation tm. In Fig. 4, this corresponds

to the point at which the optimal allocation of time to the make-or-break task begins to

decrease, as the likelihood of success increases as a function of skill level (km).
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Fig. 4. Optimal allocation as a function of skill level and under different levels of performance uncertainty

(line type). Unless otherwise specified, we use the following default parameter values: T = 10, B = 1000,

D = 50, v = 10. To illustrate the crucial role of uncertainty, we set ks = 3 and vary the value of

km 2 [0, 10]. For small performance uncertainty (r = 0.1), it is profitable to switch from allocating every-

thing to the safe-reward task to allocating everything to the make-or-break task when an agent has a 50%

chance of success. At higher uncertainty levels, this critical point occurs at a lower skill level (compare the

optimal allocation policy for r = 0.1 with r = 5 and r = 10). On the other hand, people with higher skill

levels should allocate time to the make-or-break task until the point that marginal returns from increasing the

chances of success in the task are equal to the linear opportunity cost of the safe-reward task (see Eq. 11). At

higher uncertainty levels, this critical point occurs at higher skill levels.
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Everything else being equal, a lower threshold and more total available resources make it

more likely that an agent should allocate time to both activities. People with higher skill

levels can quickly secure a higher probability of success and invest residual time

resources in the safe-reward task. Whereas Kukla (1972) suggested a discontinuous rela-

tionship between the difficulty of a task and the effort people exert, here we have gener-

alized it to any level of uncertainty and clarified the relations between the different

parameters of the problem (see Fig. 4, where skill and difficulty are inverse concepts).

3.1.3. The motivating effect of uncertainty
Everything else being equal, higher performance uncertainty implies that it is optimal

to allocate all time to the make-or-break task for a larger subset of parameters in the

parameter space. People with lower skill should dedicate themselves completely to the

make-or-break goal in hope of eventual success. It also makes sense for people with

higher skill to put all their effort in the make-or-break task, in order to minimize the risk

of failing (see also Fig. 1 in the Supporting Information). Higher uncertainty leads to an

increase in the expected rewards of the make-or-break task for small amounts of time

allocation, and it also implies that the deceleration of marginal returns occurs more

slowly (see the middle left panel of Fig. 2 and the upper right panel of Fig. 3). As a

result, in more uncertain environments (i.e., larger r), the critical point described by

Eq. 10 occurs for lower levels of skill or total available time, while the critical point

described by Eq. 11 occurs for larger values. Fig. 4 demonstrates this effect when com-

paring a low uncertainty environment (r = 0.1) with intermediate (r = 5) or high uncer-

tainty environments (r = 10). The motivating effect of uncertainty is particularly

pronounced when comparatively large rewards are at stake in the make-or-break task

(i.e., a high B ∕ (v � ksT) ratio) and gradually attenuates as the relative rewards from the

safe-reward task increase.

3.1.4. Discussion
In everyday experience, people often need to decide how to allocate their time or effort

between challenging make-or-break goals and safe alternatives. We have shown that this

type of resource allocation problem is non-convex in nature, leading to striking disconti-

nuities in how people should allocate their time as the parameters of the problem vary.

Small differences in people’s skill levels, resources, or the rewards available may change

the optimal policy from allocating all of one’s time to the safe-reward task to investing

everything in the make-or-break task. Crucially, we have shown how the degree of uncer-

tainty in the environment moderates the optimal allocation policy and determines when

these discontinuities occur.

3.2. The dynamic allocation problem

So far we have assumed that the agent makes a single allocation decision, dividing the

available time between two activities without any feedback on performance. In many

problems, however, people dynamically obtain information about their performance,
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which they can use to reassess their prospects of success and alter their behavior on the

fly. How should agents dynamically invest their time when they can directly observe their

performance and switch dynamically between tasks? In the analyses that follow, we

assume that the agent has full knowledge of all the critical parameters of the problem

and his current performance but is uncertain only about his future performance.

3.2.1. Optimal allocation policy
3.2.1.1. Order of tasks and switching between tasks: Intuitively, people above a certain

skill level in the make-or-break task should start by investing time toward it; they can

switch to the safe-reward task in case of an early success or if success seems unattain-

able. Because future rewards in the safe reward task do not depend on past performance

(i.e., there is no useful feedback from the safe task), the dominant strategy is to begin

with the make-or-break task and to switch unidirectionally to the safe-reward task (see

Supporting Information Section 3 for a proof). This leads to a significant simplification of

our problem: An optimal solution to the allocation problem involves at most one switch

between tasks and only from the make-or-break to the safe-reward task. The question

then is when to make this single switch.

3.2.1.2. Giving-up threshold: At any given point in the make-or-break task, the agent

has to decide whether to switch immediately to the safe-reward task or to further pursue

the make-or-break goal, based solely on the current performance. At very poor perfor-

mance levels, success is highly unlikely; therefore, a rational agent should switch to the

safe-reward task. On the other hand, if the agent is relatively close to the success thresh-

old (and assuming the reward is large enough), it would be sensible to continue in pursuit

of eventual success. For a specific intermediate level of performance, the two strategies

will yield the same expected reward, such that the agent can be indifferent about which

strategy to follow. We call this indifference point the giving-up threshold and at time t
we denote it by ct. Intuitively, the agent should abandon the make-or-break task in favor

of the safe-reward task if, and only if, performance is equal to or falls below this value

after time t. So long as the agent starts with a performance above the giving-up threshold

(i.e., qm(0) > c0 such that it is rational to invest in the make-or-break task at all), task

switching should occur when performance qm(t) falls below the giving-up threshold ct or
upon reaching the success threshold D. More precisely, the point at which an agent

should give up is given by

s ¼ minft : qmðtÞ� ct or qmðtÞ�Dg: ð12Þ

In the stochastic processes literature, this type of problem is considered a problem of

optimal stopping. The existence of a giving-up threshold that leads to an optimal policy

through Eq. 12 is guaranteed by Theorem 2.2 in Peskir and Shiryaev (2006), with several

methods for deriving this optimal policy given in Chapter 8 of the same book.3 To the

best of our knowledge, there is no analytic solution for finding the optimal policy and all

approaches that can be used to find it are computationally expensive. Here, we follow the
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most widely used approach for deriving the optimal policy, which involves discretizing

time and using backwards induction (Dixit & Pindyck, 1994; Kushner & Dupuis, 2013).

In this section, we use the expected value theory framework in order to convey our

results with the greatest clarity. Yet our analyses can also be generalized to the frame-

work of expected utility theory, and it is possible to account for risk-aversion, risk-seek-

ing, or inter-temporal discounting (see Supporting Information Sections 5 and 6).

First, we discretize time by dividing T into n equally sized intervals. This turns the

problem into a discrete optimal control problem whose solution involves solving, using

backwards induction, the resulting Bellman Equation

RkðxÞ ¼ max

Z 1

�1
Rkþ1ðyÞ � /xðyÞdy; gmðxÞ þ v � ks � ðn� kÞT

n

� �
; ð13Þ

for k = 0, . . ., n � 1. Rk(x) is the expected total reward from time k to n, if at time k the

performance in the make-or-break task is x, and /x is a suitable normal distribution. The

initial conditions are given by Rn(x) = gm(x) (see Supporting Information Section 4 for

details). Thus, the giving-up threshold ck at time k is the unique solution of the equation:

Z 1

�1
Rkþ1ðyÞ � /ckðyÞdy ¼ v � ks � ðn� kÞT

n
: ð14Þ

The optimal policy is to switch to the safe reward task at the first step k such that

qm(tk) ≤ ck, due to falling below the threshold, or qm(tk) ≥ D, due to success. Deriving the

optimal threshold requires starting from the end of the task and reasoning backwards.

Thus, calculating the giving-up threshold at t0 requires knowledge of the threshold values

at all subsequent steps. Finding the optimal solution is computationally demanding not

only for humans but also for machines, as we explain in the following paragraph.

3.2.1.3. The computational burden of calculating the optimal threshold: Herbert Simon,

one of the founding fathers of artificial intelligence, argued that theories of rationality that

do not take into account the computational costs of problem solving are incomplete or

even misleading (Simon, 1978). We build on his conception of rationality and apply com-

putational complexity theory (Papadimitriou, 2003; Van Rooij, 2008) to express the com-

putational cost of the optimal stopping strategy. As shown in Eq. 13, for each step k and

each performance value x, we have to calculate an integral over all performance values y
at the next step. Assuming that the integral is computed numerically and approximated

by a sum, both its computational cost and the accuracy of the result depend on the num-

ber of summands we use. If we use m terms in the sum, then the computational complex-

ity of one integration will be OðmÞ. This will give us Rk(x) for a specific k and x. But in
order to later find Rk-1(x’), for any x’, we need to have Rk(x) for m different values of x.
Thus, for each k, we need Oðm2Þ computations. This gives us Rk(x) for a specific k and

for m different values of x. The accuracy of the approximation also depends on the
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number of steps we use in the time axis, that is, the number of values of k. Thus, if we
divide time into n steps, we need in total Oðn � m2Þ computations for the solution

described above, which results in an algorithm of polynomial complexity. Although poly-

nomial-time algorithms are considered tractable in computer science and artificial intelli-

gence, as opposed to non-polynomial-time (for example, exponential-time), in practice

they can still be prohibitively expensive to compute,4 even for exponents as low as 2, like

Oðm2Þ�. Even for relatively small values for n and m (e.g., n = m = 100), the optimal

policy would require in the order of a million computations (n � m2 = 106). Regardless of

the exact cost measure used to penalize computation, the demands of the optimal strategy

are excessive (for different operationalizations of computational costs see Fechner,

Schooler, & Pachur, 2018; Johnson & Payne, 1985; Lieder & Griffiths, 2017). The com-

putational burden would be even larger for an optimally behaving risk-averse or risk-

seeking agent, since additional parameters would need to be computed (see Supporting

Information Section 6). An important principle in cognitive science is to constrain the

space of computational level theories to plausible strategies at the algorithmic level

(Marr, 1982). Thus, it becomes clear that alternative strategies with lower computational

complexity would provide valuable insights into how human decision makers grapple

with these problems or even hint to how to program artificial agents coping with similar

decision problems.

3.2.2. Boundedly rational alternatives
Dynamic decision-making problems are both widely prevalent (Brehmer, 1992; Fried-

man, Isaac, James, & Sunder, 2014; Gonzalez, Fakhari, & Busemeyer, 2017; March,

1996) and notoriously challenging from a computational perspective. While optimal solu-

tions often depend on backwards induction, several studies have shown that even for shal-

low planning depth, humans do not use backwards induction (e.g., Hotaling &

Busemeyer, 2012; Huys et al., 2015; Zhang & Yu, 2013). The same holds in game–theo-
retic contexts (Johnson, Camerer, Sen, & Rymon, 2002; McKelvey & Palfrey, 1992).

Instead of using computationally complex solutions, people tend to rely on simple and

computationally inexpensive algorithms. While heuristics can lead to consistent deviations

from optimality in some environments (Lieder & Griffiths, 2017; Tversky & Kahneman,

1974), they can produce competitive performance in other environments (Analytis,

Kothiyal, & Katsikopoulos, 2014; Gaissmaier & Schooler, 2008; Gigerenzer & Todd,

1999). In the following sections, we examine several boundedly rational strategies that

circumvent the computational costs of full rationality, yet perform competitively in some

environments.

3.2.2.1. The myopic giving-up strategy: An alternative to backward induction is to

assume that the decision maker acts myopically and decides whether or not to pursue the

make-or-break task further as if this decision were the last that they could make. Myopic

strategies accurately describe human behavior in a wide array of settings, ranging from

dynamic investment decisions and sequential hypothesis testing to sequential search and

multi-armed bandit tasks (see also Busemeyer & Rapoport, 1988; Gabaix, Laibson,
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Moloche, & Weinberg, 2006; Stojic, Analytis, & Speekenbrink, 2015; Thaler, Tversky,

Kahneman, & Schwartz, 1997; Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018;

Zhang & Yu, 2013). In our case, as more time is allocated to the make-or-break task,

some of the associated uncertainty becomes replaced by an actual outcome y = qm(t
0)

experienced up until time t0 2 [0, T]. The agent can use this information to revise their

allocation policy, making a myopic decision at any point during the allocation problem.

Because future performance is independent of past performance (by the properties of the

Wiener process), the problem of finding the optimal allocation is the same as before, but

with total time Tr = T � t’ and threshold D � y. The expected reward for the make-or-

break task, if additional time tm were invested in it, would be

E½rmðtmÞ� ¼ B � Pðkmtm þ rmW
m
tm
�D� yÞ

¼ B � 1� U
D� y� kmtm

rm
ffiffiffiffi
tm

p
� �� �

:
ð15Þ

The expected returns for the safe-reward option would still be E[rs(ts)] = v � ksts. A
myopic agent seeks to optimize the sum of these rewards, under the constraint

Tr = tm + ts, and will continue to invest in the task for as long as it would myopically be

profitable to do so. A giving-up threshold in terms of performance can be computed

(Fig. 5, dashed line) as the point below which the myopic policy prescribes investing no

further time in the make-or-break task, in other words when optimally tm = 0. When per-

formance drops below this threshold, the myopic agent will switch to the safe-reward

task.

Finding the tm that maximizes the total expected reward is an easy optimization prob-

lem, which can be solved by finding the roots of the derivative of Eq. 15. The computa-

tional complexity of this, using Newton’s method, for example, is a constant multiple of

the complexity of computing elementary functions (Brent, 1976). Hence, at any point, an

agent can decide whether to continue with the make-or-break task by solving a computa-

tionally inexpensive problem. In total, O(n) calculations will be needed, but distributed

equally over n intervals. This starkly contrasts with the optimal strategy, where the entire

computational cost has to be paid upfront. The myopic strategy produces highly risk-

averse behavior. In Fig. 6 we also compare the myopic strategy with an optimally behav-

ing risk-averse agent whose preferences are described by a power function. As uncer-

tainty in the environment increases, the myopic strategy aligns with progressively higher

levels of risk-aversion.

3.2.2.2. The play-to-win strategy: Another way to cope with the computational complex-

ity of dynamic decision-making is to employ heuristic strategies (Gigerenzer & Gaiss-

maier, 2011; Tversky & Kahneman, 1974). We first consider the play-to-win strategy, a

heuristic strategy that stubbornly pursues success in the make-or-break task, switching to

the safe-reward task only when the make-or-break threshold is reached. Thus, the strategy

only needs to decide whether to start pursuing the make-or-break goal at all, eliminating
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the computational costs almost entirely. Although the strategy is suboptimal, it has an

intuitive appeal. Most people are familiar with real-world examples of individuals who,

once they had taken the first step, would not give up on a goal, irrespective of their

chances of success. The crucial event calibrating the expected returns on this strategy is

the first time point at which the stochastic process crosses the success threshold. This

event is commonly referred to as the first passage time of the stochastic process. First

passage time problems for a Wiener process with a single threshold have been studied

extensively across scientific disciplines (see Redner, 2001) and the results can be readily

transferred to our setting. To calculate the expected total reward for this strategy, we need

to bear in mind that there are two cases: either (a) the agent pursues the make-or-break

task, but never reaches the reward threshold D and receives zero reward, or (b) the agent

reaches the reward threshold after some time s ≤ T and receives the bonus B in addition

Fig. 5. Visualization of the myopic (dashed line) and optimal (solid line) giving-up thresholds for three sam-

ples drawn from the stochastic performance process q(t). The green sample reaches the success threshold

(dotted line) and is free to invest the remaining time in the safe-reward task. The orange sample has hit the

myopic giving-up threshold (dashed line) and therefore gives up on the make-or-break task. However, an

optimal decision maker has a more tolerant giving-up threshold (solid line); thus, the blue sample and the

green sample continue even after hitting the myopic threshold, resulting in either a later giving-up point

(blue) or eventually reaching the success threshold (green). Any time resources remaining after the agent

reaches either a giving-up threshold or the success threshold are allocated to the safe-reward task. We use the

following default parameter values: T = 10, rm = rs = 5, B = 1000, D = 50, v = 10, but use km = ks = 5

for illustrative purposes.
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to rewards from the safe-reward task, to which any surplus resources T � s were allo-

cated. The time s can be defined mathematically as follows:

s ¼ minft : qmðtÞ�Dg ¼ min t : Wm
t þ km

rm
� t� D

rm

� �
: ð16Þ

In the stochastic processes literature, the above is referred to as a hitting time or first

passage time, at level D
rm
, of a Wiener process with drift km

rm
. We provide the exact proba-

bility density function of s (known as an inverse Gaussian distribution) and an analytical

expression for the expected reward for this strategy in Supporting Information Section 7.

Intuitively, the play-to-win heuristic can be ruinous for agents who start when their

chances of succeeding in the make-or-break task are negligible. To perform competitively

λ = λ = λ =

σ
=

σ
=

Fig. 6. Myopic, optimal, and risk-averse optimal (q = 0.75) giving-up thresholds, as a function of perfor-

mance variance (rm) and ability (km) in the make-or-break task. Other parameters are defaulted to T = 10,

rs = 5, B = 1000, D = 50, v = 10, and ks = 5. The shaded area shows one standard deviation of performance

quality. As rm increases, the differences between the myopic and optimal thresholds increase. Note that the

myopic giving-up strategy becomes progressively more risk-averse under higher uncertainty (i.e., more risk-

averse than the q = 0.75 optimal risk-averse curve when rm = 10). See Supporting Information Section 6 for

how to incorporate risk preferences in our framework.
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across environments, it has to be combined with a good starting rule. What is a good

starting rule for the play-to-win strategy? For somebody in possession of a calculator and

the analytical formula for the expected returns on the strategy (Supporting Information

Section 7), it would be trivial to compute whether the expected returns are higher for the

make-or-break task than for playing it safe. Even if suboptimal, this rule ensures that the

agent will reap—whenever possible—the higher expected returns procured from stub-

bornly pursuing the make-or-break goal. However, it is unlikely that laypeople will be

able to use the analytical formula. Alternatively, an individual could employ a myopic

calculation (using Eq. 15 only at t = 0) to gauge whether to start pursuing the make-or-

break goal in the first place, and then never give up. Such a starting rule is more cogni-

tively plausible and would protect people from starting in contexts where success is unli-

kely (e.g., where the decision maker has a low skill level and the uncertainty in the

environment is relatively low), eliminating the costs of continuously monitoring their pro-

gress and calculating a giving-up threshold. Note that in order to illustrate both the adap-

tive and pathological use of the play-to-win heuristic, we simulate the strategy in Fig. 7

without a starting rule, but we also discuss the psychologically plausible myopic starting

rule.

3.2.2.3. Control points strategy: Another plausible heuristic strategy is for the agent to

consider the possibility of giving up at only a fixed number of time points (e.g., at the

end of the academic or financial year). According to this strategy, there are two cases in

which the agent may switch to the safe-reward task: if she passes the reward threshold D
or if at one of the “control points” her performance drops below the giving-up threshold

ct. More precisely, the time s that the agent will switch to the safe-reward task is

s ¼ minft : qmðtÞ�D or t ¼ tk; tk is a control point and qmðtkÞ� ctkð Þg: ð17Þ

To some degree, educational institutions and businesses already implement this strat-

egy. They often require members to pass interim performance thresholds for progressing

to the next level, rather than supervising them continuously. The strategy can be also seen

as a self-control strategy (e.g., Ainslie, 1992; Metcalfe & Mischel, 1999), since people

only have to consider giving up at a few discrete points in time rather than face the con-

stant temptation to quit (as is the case for the myopic threshold).

The play-to-win and myopic giving-up strategies are special cases of the control points

strategy. The control points strategy considers giving-up at N points in time, while in the

case of the play-to-win strategy, the agent considers giving-up only at N = 1 point situ-

ated at the beginning of the task t = 0. On the other extreme, if we let N ? ∞, we

recover the myopic strategy. Although there are many possible ways one can choose the

points of control and the threshold, we will consider only a simple one, where the control

points are placed at equal intervals and the intermittent thresholds are calculated using a

myopic calculation. For instance, if the total available time is 10 units and there are 4

control points, then these will be at t 2 {2, 4, 6, 8} and the threshold at these points will

be set according to Eq. 17.
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Fig. 7. Strategy comparison. Reward distributions of each strategy (in decreasing order of complexity from

left to right), where the colored dots indicate the individual outcomes over 10,000 simulations, while the dia-

monds indicate the mean earnings. We vary the performance variance rm and skill level km, where the other

parameters are defaulted to T = 10, rs = 0, B = 1,000, D = 50, v = 10, and ks = 5. Rewards above 1,000

indicate that the agent succeeded in achieving the make-or-break goal and acquired additional rewards from

the safe-reward task. Rewards equal to 500 indicate that the agent allocated all available time to the safe task.

Rewards equal to 0 indicate that the agent pursued the make-or-break task unsuccessfully, without obtaining

any reward. Rewards between 500 and 0 imply that the decision maker began investing in the make-or-break

task, but gave up and switched to the safe-reward task. We implement the control points strategy with four

control points at t 2 {2, 4, 6, 8} and the play-to-win strategy without a starting rule to illustrate the patho-

logical case where it pursues the make-or-break task even when success is unlikely.
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3.2.3. Strategy comparison
For the play-to-win heuristic, the expected returns and the distribution of the time of

success can be derived analytically. In contrast, for threshold-based strategies and the

control points heuristic, the expected returns can be derived only numerically and the dis-

tribution of success and dropout times can only be determined using simulations. To

obtain additional insights into how the strategies compare to one another, we therefore

simulated the behavior of decision makers in the make-or-break task at three skill levels

(km 2 {4, 5, 6}) and two levels of uncertainty (rm 2 {5, 10}). These conditions are suf-

ficient to capture the crucial factors influencing the performance of the strategies as well

as the interaction between them. Fig. 7 compares the simulated behavior of the various

strategies in order of complexity (decreasing from left to right), showing the distribution

of attained rewards from which the timing distribution of successes and drop-outs can be

derived. We implement the play-to-win heuristic without a starting rule (i.e., it always

pursues the make-or-break task) for illustrative purposes, and implement the control

points strategy with 4 control points at t 2 {2, 4, 6, 8}, where intermittent thresholds are

calculated myopically. Table 1 provides a short summary of each strategy.

3.2.3.1. Optimal versus myopic giving-up strategies: Looking first at the optimal and

myopic giving-up strategies, the differences in performance shown in Fig. 7 can be

explained by a divergence in their respective thresholds (Fig. 6). As uncertainty in the

environment increases, so does the value of information that is received through feedback

in the course of the task. Only the optimal giving-up strategy integrates the value of

information that will be revealed in the future and thus prescribes persevering longer (be-

fore dropping out), whereas the myopic giving-up drops out more conservatively. At very

low or very high skill levels, the optimal and myopic giving-up strategies lead to similar

performance. At very low skill levels, both strategies play it safe; at very high skill

levels, even the more conservative myopic giving-up threshold is rarely ever triggered.5

We now focus on discussing how skill and uncertainty influence the performance of the

optimal or myopic giving-up strategies. Everything else being equal, the results will be

more pronounced when a larger reward is at stake (for high B ∕ (v � ksT) ratios), and the

differences will attenuate when the relative rewards from the safe-reward task increase.

Here we present results for B = 2v � ksT. The analysis could be also conducted for inher-

ently risk-averse or risk-seeking agents. The main difference then is that as we increase

the risk-aversion in the utility function the relative performance of the myopic strategy as

compared to the other strategies improves, making it more attractive for risk-averse deci-

sion makers.

The effect of skill level: The divergence between the myopic and optimal giving-up

strategies is most pronounced at intermediate skill levels (i.e., r = 5, km = 5). Under

these conditions, it is only marginally profitable (from a myopic perspective) to allocate

any amount of time to the make-or-break task. The myopic threshold is rather conserva-

tive, leading to quick dropouts in most simulation runs. Agents following the myopic

strategy succeed in the make-or-break task in very few cases (3.1%). In contrast, simu-

lated agents following the optimal strategy persevere for longer and succeed in
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approximately half the trials, with dropouts more evenly distributed across time (see the

upper middle panel of Fig. 7). At relatively low skill levels (e.g., rm = 5, km = 4), an

optimal decision maker would pursue the make-or-break task, whereas a myopic agent

would play it safe. Even under these conditions, an unexpectedly good start could bring

the success threshold within reach for an optimal decision maker. If performance falls

below expectations, a decision maker can switch to the safe-reward alternative, thereby

acquiring at least some rewards. Only a few of the simulated agents following the optimal

strategy persevere until success (only 3.3% for rm = 5, km = 4), with most simulated

agents dropping out early (upper left panel of Fig. 7). Under this set of parameters, the

optimal policy leads to a modest increase in terms of expected returns, where rare suc-

cesses are largely balanced out by early dropouts. The difference between the two giving-

up strategies is still notable—yet much smaller—at relatively high skill levels (see the

upper right panel of Fig. 7).

The effect of uncertainty: The two threshold strategies diverge even more in terms of

performance and observed behavior as uncertainty increases for two reasons. First, higher

uncertainty implies a higher value of dynamically revealed information. The optimal

strategy integrates this information and becomes more tolerant overall, investing in the

make-or-break task at even lower skill levels. Second, higher uncertainty leads to larger

fluctuations in performance, causing myopic agents to prematurely drop out more often,

Table 1

Summary of strategies

Strategy Summary Complexity

Optimal Derived through backwards induction and implemented as a

giving-up threshold calculated for each time point. If performance

falls below the threshold, the optimal strategy dictates that the

agent should give up and switch to the safe alternative.

Oðn � m2Þ

Myopic Similar to the optimal strategy, but using only a single forward-

looking myopic calculation to determine the giving-up threshold.

This myopic calculation implies a more conservative threshold as

uncertainty increases.

OðnÞ

Control points Rather than computing a giving-up threshold at all possible time

points, the control points strategy only considers giving up at a

fixed number of k time points using forward-looking calculations.

In the limit of infinite control points, it becomes the myopic

strategy.

OðkÞ

Play to win This is a fixed strategy that ignores feedback about performance,

and stubbornly pursues the make-or-break task until eventual

success or failure. This strategy can also be combined with a

number of different starting rules that gauge whether the make-

or-break task is worthwhile to pursue until an eventual success or

failure.

Oð0Þ without a
starting

rule and Oð1Þwith
a starting rule.

Note: n denotes the number of discrete time points, m are the discretized number of possible performance

levels, and k is the number of control points considered, where k < n.
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even at higher skill levels. Both these factors make the optimal threshold much more per-

severant at high levels of uncertainty when compared to the conservative myopic thresh-

old (contrast the upper and lower panels of Fig. 7).

3.2.3.2. When and why you should never give up: For moderate or high skill levels in

the make-or-break task, the play-to-win heuristic does fairly well relative to the optimal

strategy in terms of average rewards and can even outperform the myopic strategy. As

uncertainty in the environment increases, the play-to-win heuristic approximates the

expected rewards of the optimal strategy (see Fig. 7, middle and right columns for

r = 10 and km = 5, 6). How is this possible, given the stark difference in computational

costs? In environments with high uncertainty, the optimal strategy is already more toler-

ant in order to accommodate the increased value of information. Yet even in cases where

performance falls below the optimal giving-up threshold, it is not unlikely that perfor-

mance will rebound and ultimately reach the success threshold. In environments with

extreme uncertainty, the play-to-win heuristic approximates the expected rewards of the

optimal giving-up strategy, rendering the computational costs for deriving the optimal

threshold an unnecessary burden. Recall that for illustrative purposes, Fig. 7 shows the

play-to-win strategy without a starting rule, such that it always pursues the challenging

goal. This results in pathological cases, where play-to-win pursues the make-or-break task

even when the prospects of success seem impossibly bleak at the outset (see upper left

panel of Fig. 7 when rm = 5 and km = 4, where the play-to-win strategy would succeed

in only about 27% of the cases, and gain no rewards in other cases). This outcome can

easily be prevented by adding a starting rule using a myopic calculation to assess whether

it is worthwhile at all to invest in the make-or-break task, in which case effort is continu-

ally allocated until success or failure ensues. With a myopic starting rule, the play-to-win

strategy outperforms the myopic threshold strategy in all examined environments where

the make-or-break task is myopically perceived as attractive, despite disregarding feed-

back about performance.

The benefits of giving up full control. The control points strategy largely outperforms

the myopic strategy despite being computationally cheaper. It also slightly outperforms

play-to-win, further closing the gap to the optimal strategy, but at a relatively low compu-

tational cost. Recall that we implemented the control points strategy with N = 4 points,

where giving-up is myopically considered, located at equally spaced time intervals (corre-

sponding to the horizontal yellow lines in Fig. 7). In comparison, the myopic threshold

has N ? ∞ points, where giving up is considered and the play-to-win can be imple-

mented with N = 1 point (at the very beginning). By channeling dropouts to a few control

points, there is a substantial reduction in the probability of early dropouts. As seen in

Fig. 7, the control points strategy not only approximates the optimal strategy in terms of

rewards, but also in terms of the distribution of dropouts. While dropouts following the

control points strategy only occur at distinct points, the relative mass resembles that of

the optimal strategy much more than the other two boundedly rational strategies (e.g., the

distributions for km = 5 and rm = 5, 10). In high uncertainty environments where the

decision about whether to begin the task is marginal, the control points strategy leads to
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substantial gains over the myopic and play-to-win strategies (see km = 4 and rm = 10

bottom left of Fig. 7), suggesting that it may be a good heuristic in high uncertainty envi-

ronments. This implementation is not always beneficial, for instance, in environments

with lower levels of uncertainty an additional control point at t = 0 would protect deci-

sion-makers from starting the make-or-break task when it is too challenging (upper left

panel km = 4 and rm = 5).

3.2.4. Discussion
Our results suggest that even though there is a well-defined optimal allocation strategy,

the computational costs may be prohibitively expensive for both humans and artificial

decision makers. However, we show that simpler boundedly rational alternatives can

achieve high expected rewards at low computational costs by disregarding information

and exerting less control. The myopic strategy produces a distinct pattern of risk-averse

behavior (compared to the optimal strategy) at a lower computational cost. Using even

simpler models, we show that the play-to-win and control points strategies largely outper-

form the myopic threshold and can sometimes approximate the performance of the opti-

mal strategy. The competitive performance of these heuristic strategies runs contrary to

findings from other complex decision-making settings, where it has been shown that

higher uncertainty necessitates more monitoring and control (Osman, 2010). Our results

suggest that the right level of complexity and control may depend on the structure of the

task.

4. General discussion

How should people invest time in risky but highly rewarding, make-or-break tasks, for-

going other activities with safe rewards? How much effort should a scientist invest

towards applying for a prestigious grant? When should an entrepreneur give up on a

high-risk yet potentially high-reward startup that is currently performing worse than

expected? Researchers across disciplines in the social and behavioral sciences have

alluded to the crucial factors involved in making these decisions (e.g., Eccles & Wigfield,

2002; Radner & Rothschild, 1975; Vroom, 1964), but the problem has previously evaded

rigorous analysis. In this article, we present a formal framework that addresses this con-

ceptual gap and can be applied to allocation problems in psychology, economics, behav-

ioral biology, and artificial intelligence.

4.1. On the large impact of small changes

We found that the expected returns of the make-or-break tasks are sigmoid in shape,

which implies that similar real-world effort allocation problems may harbor discontinu-

ities in the best possible time allocation policy. Small changes in the parameters of the

problem can shift the prescribed allocation policy from one extreme (i.e., investing noth-

ing) to the other (i.e., allocating all available resources; see Kukla, 1972; Vancouver,
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More, & Yoder, 2008). For instance, consider two students with very similar skill levels

studying in the same competitive program. The optimal strategy may prescribe one stu-

dent to drop out entirely, while the other should double down and invest all available

resources into their studies. Similarly, relaxing the deadline for a grant application or

reducing the threshold required to achieve a bonus at work may mobilize people to dedi-

cate themselves fully to a task, whereas they might have appeared indifferent before. Cru-

cially, we showed that the optimal allocation policy is moderated by the degree of

uncertainty in the relation between effort and performance. In environments with high

uncertainty, people with a larger range of skill levels will be motivated to pursue chal-

lenging goals, either in hope of an outside chance of success or working hard to minimize

the offhand chances of failure. These results are at odds with the prevailing theories of

time allocation in economics, behavioral biology, and psychology, which typically assume

diminishing returns or that different activities complement each other (e.g., Becker, 1965;

Borjas & Van Ours, 2000; Charnov, 1976; Kurzban et al., 2013). In these theories, the

underlying optimization problems are convex, with only a single optimum that shifts

gradually as the parameters of the problem are varied. Likewise, the predicted policy

switches cannot be accounted for by theories of motivation in cognitive and organiza-

tional psychology (Bandura & Locke, 2003; Heath, Larrick, & Wu, 1999; Locke &

Latham, 2002), which suggest that people tend to respond to marginal changes in the dif-

ficulty of achieving a goal with continuous (either monotonic or non-monotonic) changes

in the amount of effort exerted.

4.2. The computational challenges of dynamic decision-making

There are two modes of discovery in the study of human decision-making. Psycholo-

gists and neuroscientists tend to start their inquiry by conducting experiments reflecting

realistic decision-making settings and assess the extent to which human behavior corre-

sponds to plausible cognitive models (e.g., Brehmer, 1992; Busemeyer, 2002; Gonzalez,

Lerch, & Lebiere, 2003). The descriptive, rather than the normative value of these models

drives the inquiry. For example, mathematical psychologists and neuroscientists have

extensively investigated dynamic decision-making in problems where people choose

between two or more multi-attribute options, and where information about the value of

the options is accessed and evaluated dynamically (e.g., by retrieving memories of similar

items experienced in the past). Similarly to our setting, new information is assumed to

unfold dynamically as a stochastic drift over time. Furthermore, these models assume that

decision makers make a choice when the evidence accumulated in favor of an alternative

has crossed a decision threshold (e.g., Busemeyer & Townsend, 1993; Khodadadi,

Fakhari, & Busemeyer, 2017; Krajbich, Armel, & Rangel, 2010; Ratcliff et al., 2016;

Usher & McClelland, 2001).

One of the main advantages of these dynamic models is that they generate rich predic-

tions, not only about eventual choices, but also about the timing of events, namely, when

and how often different decision thresholds will be crossed at different parameterizations

of the problem. At the same time, it has been increasingly valuable to leverage dynamic
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optimization techniques to obtain insights in the properties of optimal policies and to

assess the conditions under which different action thresholds lead to good decisions (see

Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Fudenberg, Strack, & Strzalecki,

2015; Malhotra et al., 2018; Tajima et al., 2016). These recent investigations provide the

first steps towards a rational analysis (Anderson, 1991; Chater & Oaksford, 1999) or what

David Marr (1982) describes as a computational level analysis of the tasks in question,

developing a better understanding of the reward structures and the environment within

which cognition adapts. Are the optimal policies for this task also cognitively plausible

strategies? Our computational complexity analysis suggests it is unlikely. Nevertheless,

knowing the optimal policies can guide the search for computationally efficient and psy-

chologically plausible algorithms that can produce competitive performance.

In contrast, economists and scientists in neighboring disciplines begin their inquiry

from normative models. Researchers in economics and finance have extensively studied

optimal policies in dynamic decision-making settings where the value of an asset—com-

monly described by a Wiener process—fluctuates over time (e.g., a stock, or the value of

a factory) and agents are required to make high-impact and irreversible decisions (e.g.,

selling a factory; see McDonald & Siegel, 1986; Pindyck, 1991). These problems have

clear-cut analogs in common problems encountered by laypeople, such as whether and

when to sell a house or quit a stressful job. Dixit and Pindyck (1994) were well aware of

the relevance of their modeling framework for everyday decisions and briefly discuss

marriage as an irreversible dynamic decision that most people make at least (or at most)

once. To date, only a handful of experimental studies have investigated how people make

decisions in such dynamic settings, where the tasks are framed as investment decisions

(Oprea, Friedman, & Anderson, 2009; Strack & Viefers, 2013). How do people cope with

the computational complexity of dynamic decision-making in these settings when the

optimal strategy is computationally inaccessible and there are scant opportunities for

learning? Defining and studying computationally simpler, boundedly rational strategies

could lead to a rich set of predictions about behavior in dynamic decision environments

(see, e.g., Oprea et al., 2009).

The dynamic task we present here has structural and technical similarities with both

these strands of research. Thinking like economists or theoretical biologists, we were able

to characterize the optimal giving-up strategy for a family of common problems.6 In the

spirit of Herbert Simon (1978), we employed complexity theory—an essential method-

ological tool in computer science and a artificial intelligence—to gauge the computational

requirements of the optimal strategy. We showed that it is computationally excessive for

humans, and that it is demanding even for modern computers. Thinking like behavioral

scientists, we then proposed several cognitively plausible alternatives, motivated by the

principles of myopic and heuristic decision-making. These simpler strategies come with

substantially cheaper computational costs. Deriving the optimal strategy enabled us to

assess the prescriptive value of the boundedly rational strategies for different parameters

of the decision-making problem. As in the dynamic decision-making problems investi-

gated in mathematical psychology and neuroscience, our models generate a rich set of

predictions about the timing of success and dropout at different parameterizations of the
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problem. Clearly, we have not yet exhausted the space of psychologically plausible stop-

ping strategies (see Busemeyer & Rapoport, 1988). For instance, an agent may decide to

stop when performance stagnates for a long period of time, constructing a local (in time)

stopping rule. Formally analyzing additional strategies is beyond the scope of this paper,

yet our framework paves the way for future experiments that will make it possible to

assess the descriptive value of the proposed strategies and to identify other plausible psy-

chological alternatives.

4.3. Risky choices, sunk costs, and bounded rationality

We started from the assumption that decision makers maximize expected value. This

was a convenience assumption that allowed us to convey our results with the greatest

clarity. How do our results connect to the literature on risky choice? When the marginal

utility of rewards diminishes (Bernoulli, 1954), people may discount the expected rewards

from the two activities, especially from the large make-or-break bonus (see Supporting

Information Section 6). Going a step further, people may subjectively reassess the value7

of succeeding or dropping out in the make-or-break task (Atkinson, 1957; Heath et al.,

1999; Lewin et al., 1944) or distort the probabilities of success and failure at each level

of invested effort (Kahneman & Tversky, 1979). How do these findings transfer to the

complex and dynamic decision-making settings encountered in the real world? There is

evidence that as the environment becomes more complex (e.g., the number of alternatives

increases) people tend to rely more on computationally simple strategies (e.g., Venkatra-

man, Payne, & Huettel, 2014). Every variable transformation, such as those implied by

expected and non-expected utility theories, requires computation. However, we have

already shown that the optimal strategy is prohibitively expensive, regardless of the mode

of computation. Thus, deriving an “optimal” risk-averse or time-discounted policy using

backwards induction may have normative value (e.g., Smith & Ulu, 2017) but little

descriptive or prescriptive value. Plausible theories of risky choice in dynamic contexts

have to address the severe computational challenges of deriving optimal and time-consis-

tent risk-averse strategies (also see Hammond, 1976). A way to tackle this issue is to

assume that some people are described by a non-expected utility theory (e.g. prospect the-

ory), while at the same time taking risks myopically, as if they disregarded future choices

(Ebert & Strack, 2015; Thaler et al., 1997).

In the real world, people may make risky choices by responding to the reward struc-

ture of the environment learning, for instance, from experienced rewards (Denrell, 2007;

Houston & McNamara, 1999; March, 1996; Stewart, Chater, & Brown, 2006). Impor-

tantly, computational limitations require that decision makers find simple and robust

strategies that trade off effectively between complexity and expected returns. This argu-

ment has been advanced already for static risky choices (see Brandst€atter, Gigerenzer, &
Hertwig, 2006; J. W. Payne, Bettman, & Johnson, 1993), yet it is imperative in most

dynamic decision-making problems, where the costs of computing “optimal strategies”

are high even for artificial agents. The psychologically plausible strategies we have pro-

posed can produce different risk-taking patterns, highlighting the boundedly rational
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approach to the study of risky behavior in dynamic contexts. For instance, the myopic

giving-up strategy produces risk-averse behavior when compared to the optimal strategy,

and becomes increasingly risk-averse with higher levels of uncertainty (see Fig. 6). Risk-

aversion could also be derived at much higher computational costs by passing rewards

through a risk-averse utility function and then calculating the optimal strategy. However,

here the pattern of risk-aversion produced by the myopic strategy is due to computational

simplifications rather than some innate risk preference. The play-to-win strategy, by con-

trast, produces behavior that can be seen as a version of risk-seeking and is compatible

with the sunk cost fallacy (Arkes & Blumer, 1985). Thus, instead of subjectively trans-

forming rewards and probabilities, people might express their risk tendencies by commit-

ting to boundedly rational strategies (Friedman et al., 2014; Pedroni et al., 2017).

Subjective transformations of value and distortions of perceived probabilities might be

important components of dynamic choices, but they have to operate in tandem with other

behavioral assumptions—such as myopia—to be behaviorally plausible (also see Thaler

et al., 1997). We intend to investigate these issues in future experiments.

4.4. Self-efficacy and learning

When people embark on new, challenging projects (such as pursuing a PhD or found-

ing a startup), they often only have a rough estimate of their own abilities. Bandura

(1977) coined the term “self-efficacy” to describe the belief in one’s ability to succeed,

complete tasks, and reach goals. A mismatch between believed and actual skill levels can

alter how people allocate their time to different tasks. Under-confidence can have the

most dramatic effect, leading to self-fulfilling prophecies, where people who underesti-

mate their abilities may never pursue a highly rewarding make-or-break goal (see Hogarth

& Karelaia, 2012). Without direct experience of successful achievement of a challenging

goal, the decision maker may never rectify their initial beliefs. In the one-shot version of

the task, overconfidence can lead decision makers to under-invest or over-invest depend-

ing on their skill level. In the dynamic version of the task, however, overconfidence may

encourage myopic individuals to persevere for longer, thereby counteracting the conserva-

tive effect of myopic giving up (Nozick, 1994).

How do people form beliefs about their own skill level and the relationship between

effort, luck, and achievement in a task? They may use social comparisons or individual

experiences in similar tasks to inform their beliefs about their skill levels (Bandura, 1977;

Bol et al., 2018; Frank, 1935). Repeated interactions with a task or continuous feedback

about performance may help them to hone their intuitions about how effort and luck

jointly define the chances of achieving a goal (Weiner, 1985; Weiner & Kukla, 1970).

Even if people are certain about their skill level, they may leverage repeated interactions

with the same task to refine their allocation strategies or choose among them (Erev &

Barron, 2005; Rieskamp & Otto, 2006). Oprea et al. (2009), for instance, studied how

people behave in optimal stopping problems, where they have to choose when to sell an

asset. Although the optimal strategy is similar in terms of complexity to the optimal
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threshold strategy described here, through repeat interactions with the same task, people

were able to approximate optimality by leveraging a simple learning strategy.

4.5. The value and cognitive underpinnings of perseverance

A main insight from the optimal giving-up strategy we advanced is that optimally

behaving agents should persevere before dropping out, and that the strategy should

become more tolerant as the amount of uncertainty in the environment increases. This

result echoes findings from the dynamic investing literature in economics and finance,

where agents should wait longer before making irreversible decisions, thus harnessing

the value of dynamically unfolding information (Dixit & Pindyck, 1994). Duckworth

and collaborators have shown that the ability to persevere and maintain effort in the

face of failures is at least as important as intelligence for succeeding in one’s field

(Duckworth, Peterson, Matthews, & Kelly, 2007). The unexpected outcomes of real-

world problems can often lead to discouragement and make people doubt their chances

of success. Perseverance when pursuing high-stakes, yet challenging goals might be

even more valuable in real-world settings, precisely because of the additional uncertain-

ties involved in estimating one’s abilities. In such settings, simple strategies that perse-

vere for longer than what seems reasonable under a myopic set of beliefs (e.g., the

control points strategy that considers giving up at only a few discrete time points, or

play-to-win as an extreme case of ignoring feedback) could in fact lead to better out-

comes. In line with work by McGuire and Kable (2013), our approach shows that peo-

ple’s ability to persevere is not merely a character trait but has important cognitive

underpinnings.

5. Conclusion

A common movie plot involves a protagonist pursuing a challenging but rewarding

make-or-break goal. After multiple frustrations and drawbacks, the protagonist manages

to come back on top before time runs out and marginally succeeds in meeting their goal.

In real life, people may rationally abstain from investing in such risky make-or-break

goals or give up early after initial setbacks, in order to pursue other safer activities.

Knowing when to pursue a challenging goal and when to give up are difficult decision-

making problems, yet they are pervasive in everyday life. We have shown that simple

strategies relying on myopic or heuristic principles perform competitively against the

optimal strategy, yet sidestep much of the computational burden. What is more, these

boundedly rational strategies can reproduce the distinctive behavioral patterns of risk-

aversion, risk-seeking, and the sunk-cost fallacy, suggesting that these patterns arise not

only from inherent preferences, but could also be the product of simplifying cognitive

strategies. Thus, the persevering movie hero may appear unboundedly courageous, exactly

because they are boundedly rational.
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Notes

1. Before the introduction of formal decision theory (von Neumann & Morgenstern,

2012) to psychology by Edwards (1953, 1954a), there were several attempts by

psychologists to introduce a formal theory of valence (Meehl & MacCorquodale,

1992); many of these attempts were inspired by the study of decision problems

characterized by success–failure reward structures. This body of research, com-

monly referred to as expectancy theory, turned out to be quasi-equivalent to subjec-

tive expected utility theory (Feather, 1959; Siegel, 2007), but lacked the theoretical

coherence and elegance of the latter, and waned in influence over time.

2. Lewin et al. (1936) and Atkinson (1957) suggest that failure to reach a previously

set aspiration level is accompanied by negative payoffs (e.g., feeling embarrassment

or disappointment). Similarly, expected utility theory suggests that people may dis-

count rewards B. Even if we allow for subjective transformations of the experi-

enced outcomes, the main insights of our framework hold.

3. There are various types of optimal stopping problems (for examples, see DeGroot,

2005). The dynamic decision-making problem we study shares concepts and meth-

ods with three distinct lineages of such problems. The first can be traced to Wald’s

sequential analysis (1964), where an agent has to decide when to stop evaluating

alternative hypotheses. This line of thought has been pursued further in psychology

and neuroscience, leading to choice models where evidence in favor of different

alternatives unfolds dynamically in time as a stochastic process (Ratcliff, Smith,

Brown, & McKoon, 1975; Tajima, Drugowitsch, & Pouget, 2013). A second lin-

eage studied in economics and finance builds on stochastic processes to investigate
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when to make high-stakes decisions when the value of assets fluctuate (Dixit &

Pindyck, 1994; Jacka, 2015). The main theoretical result of this line of research is

that agents should wait longer before making consequential decisions. A third

strand of research in management science and operations research relies on

dynamic optimization techniques to explore when to adopt a new technology or

give up investing in it when new information about its potential unfolds dynami-

cally (McCardle, 1982; Ulu & Smith, 1974).

4. The Fast-Fourier-Transform algorithm is considered one of the most important

algorithms of the 20th century (Cipra, 2000) because it reduced the computational

cost of the discrete Fourier transform from O n2ð Þ to O(n log n).
5. In the absence of uncertainty (r = 0), the problem degenerates and both strategies

follow the same solution as the one-shot problem, where the optimal allocation can

be derived from the outset and the notion of a giving-up threshold becomes mean-

ingless. That’s exactly the version of the problem studied by Kukla (2010).

6. Note that it is not always feasible to derive the optimal strategy for dynamic deci-

sion-making problems. In multi-armed bandit problems, for example, the optimal

policy (i.e., Gittins index) can only be derived under restrictive assumptions (Whit-

tle, 1970). Similarly, psychologists have long investigated human decision-making

in challenging dynamic tasks where it is impossible to even derive the optimal pol-

icy (Brehmer, 1992; Gonzalez et al., 2017).

7. Note that some form of intertemporal discounting (Berns, Laibson, & Loewenstein,

2007) is often built into dynamic decision-making models. We avoided adding a

discount factor in the main text to prevent the mathematics from appearing more

daunting without adding much substance. We explore that version of the problem

in Supporting Information Section 5.
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agent has to follow to numerically calculate the returns
from the optimal policy.
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